

Course 10
Realistic Materials in Computer Graphics

Acquisition Basics

Michael Goesele
MPI Informatik
(moving to the University of Washington)

Goal of this Section

- practical, hands-on description of acquisition basics
- general overview, caveats, misconceptions, solutions, hints, ...
- biased to the techniques used in our lab

Course 10: Realistic Materials in Computer Graphics

Michael Goesel

How can we measure material properties?

- color
- texture
- reflection properties
- normals
- •

Course 10: Realistic Materials in Computer Graphics

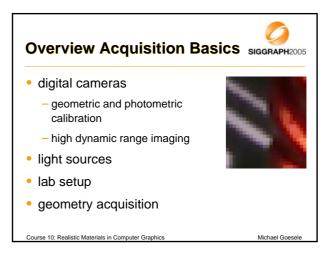
Michael Goes

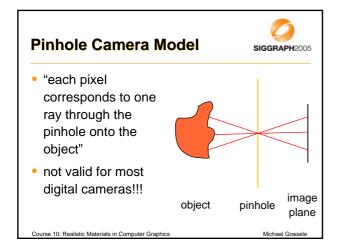
Special Purpose Tools

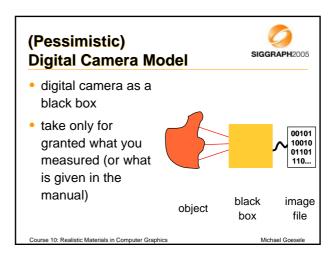
- gloss meter, haze meter, ...
 - various appearance characteristics
- spectrophotometer
 - spectral reflectance of a surface
- often used in industry where single parameters of one material are important

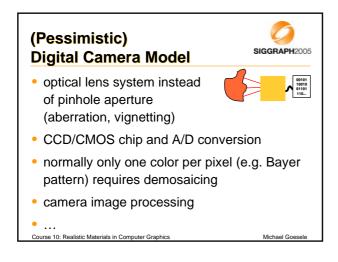
Course 10: Realistic Materials in Computer Graphics

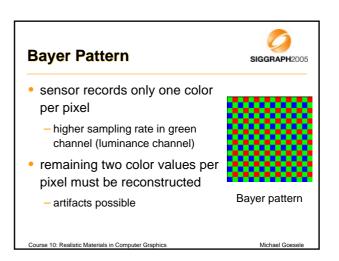
Michael Goesele

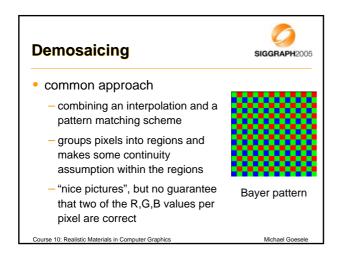

General Purpose Tools

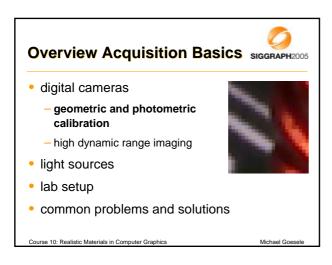


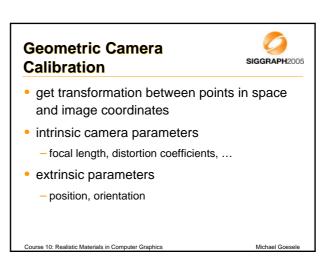

- setup with digital camera(s), controlled lighting, ...
- foundation of image-based techniques

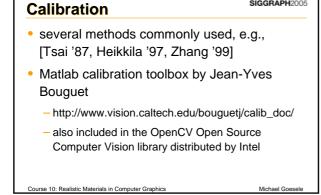


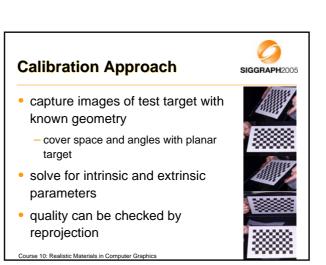


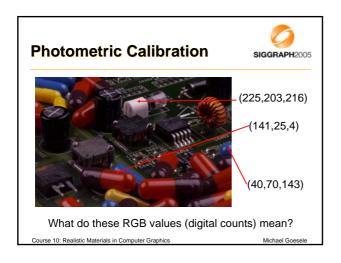






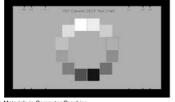



Pessimistic) Digital Camera Model often globally correct image no guarantee that each pixel contains reliable color values some issues can be solved using camera calibration



Geometric Camera

Camera Response Curve (OECF)


- · relationship between digital counts and luminance is unknown (and often non-linear)
 - gamma correction
 - image optimizations

· can be described by response curve or **OECF** (Opto-Electronic Conversion Function)

Camera Response Curve (OECF)

- · direct measurement via test chart
 - patches with known gray levels
 - uniform illumination

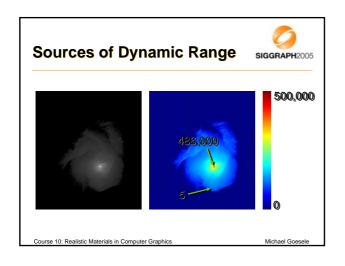
Camera Response Curve (OECF)

- patches arranged in a circle to suppress lens effects (e.g. vignetting)
- OECF can be determined for some discrete intensity levels/digital counts
- inversion using OECF leads to pixel values linearly related to luminance values

Overview Acquisition Basics SIGGRAPH2005

digital cameras

- geometric and photometric calibration
- high dynamic range imaging
- light sources
- lab setup
- common problems and solutions


Course 10: Realistic Materials in Computer Graphics

Sources of Dynamic Range SIGGRAPH2005

Definition of Dynamic Range SIGGRAPH2005

- dynamic range is the ratio of brightest to darkest (non-zero) intensity values in an image
 - assuming linear intensity
- often given as
 - ratio: 1:100.000
 - orders of magnitude: 5 orders of magnitude
 - in decibel: 100 dB

Dynamic Range of Cameras

example: photographic camera with standard CCD sensor

- dynamic range of sensor

- exposure variation 1/60th s 1/6000th s (handheld camera/non-static scene)
- 1:100
- varying aperture f/2.0 f/22.0
- ~1:100 1:10

- total (sequential)
- 1:100,000,000
- simultaneous dynamic range still only 1:1000

exposure bias/varying "sensitivity"

High Dynamic Range (HDR) **Imaging**

- · analog false-color film with several emulsions of different sensitivity levels by Wyckoff in the 1960s
 - dynamic range of about 108
- · modern CMOS sensors can achieve a dynamic range of $10^6 - 10^8$
 - logarithm in analog domain
 - multiple exposure techniques

se 10: Realistic Materials in Computer Graphics

High Dynamic Range Imaging

- extending dynamic range of ordinary camera
- combining multiple images with different exposure

Course 10: Realistic Materials in Computer Graphi

Determining the Response Curve

- [Madden 1993] assumes linear response
 - correct for raw CCD data
- [Debevec and Malik 1997]
 - selects a small number of pixels from the images
 - performs an optimization of the response curve with a smoothness constraint
- [Robertson et al. 1999, 2003]
 - optimization over all pixels in all images

Course 10: Realistic Materials in Computer Graphics

Michael Goese

Algorithm of Robertson et al. SIGGRAPH2005

- Principle of this approach:
 - calculate a HDR image using the response curve
 - find a better response curve using the HDR image
- (to be iterated until convergence)
- assume initially linear response

Algorithm of Robertson et al. SIGGRAPH2005

- input:
 - series of i images with exposure times t_i
 - pixel value at image position j is $y_{ij} = f(t_i x_i)$
- find irradiance x_i and response curve $I(y_{ii})$
 - t_ix_i is proportional to collected charge/radiant energy
 - f maps collected charge to intensity values

$$f^{-1}(y_{ii}) = t_i x_i =: I(y_{ii})$$

Algorithm of Robertson et al. SIGGRAPH2005

additional input:

- a weighting function $w(y_{ij})$ (bell shaped curve)
 - an initial camera response curve $I(y_{ii})$ usually linear
- calculate HDR values x_i from images using

$$x_{j} = \frac{\sum_{i} w(y_{ij})t_{i}^{2} \cdot \frac{I(y_{ij})}{t_{i}}}{\sum_{i} w(y_{ij})t_{i}^{2}} \qquad x_{j} =$$

Algorithm of Robertson et al. SIGGRAPH2005

- optimizing the response curve I:
- start again with definition $f^{-1}(y_{ij}) = t_i x_j =: I(y_{ij})$
- minimization of objective function

$$O = \sum w(y_{ij})(I(y_{ij}) - t_i x_j)^2$$

using Gauss-Seidel relaxation yields $E_m = \{(i, j) : y_{ij} = m\}$

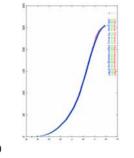
$$I(m) = \frac{1}{\sum_{i=1}^{m} \sum_{i=1}^{m} t_i x_i}$$

 $I(m) = \frac{1}{\operatorname{Card}(E_m)} \sum_{i,j \in E_m} t_i x_j$

Card(E_m) = number of elements in E_m

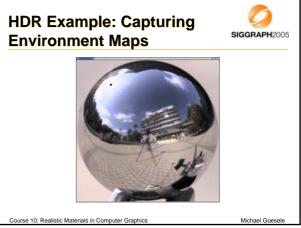
Algorithm of Robertson et al. SIGGRAPH2005

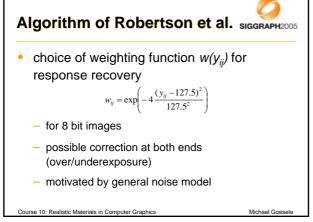
both steps are iterated


- calculation of a HDR image using I
- optimization of I using the HDR image
 - → I needs to be normalized, e.g., I(128)=1.0
- stop iteration after convergence
 - criterion: decrease of O below some threshold
 - usually only a couple of iterations

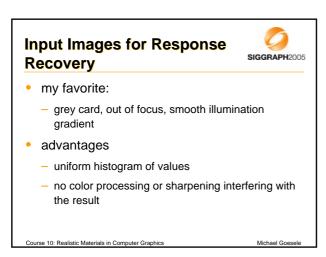
Course 10: Realistic Materials in Computer Graphics

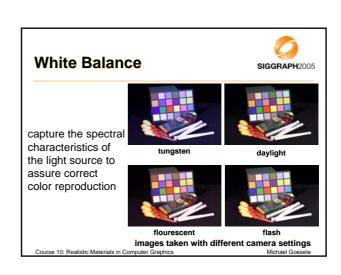
HDR Imaging: Algorithm of Robertson et al.

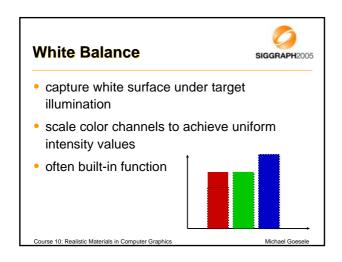


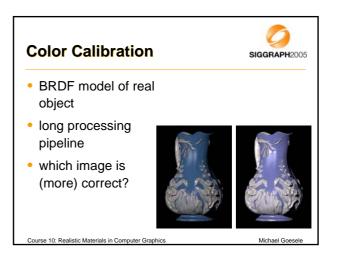


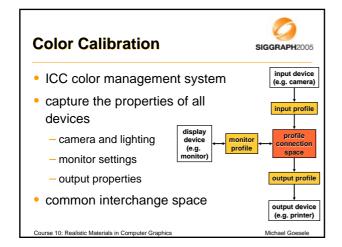
 $\log(I(y_{ii}))$

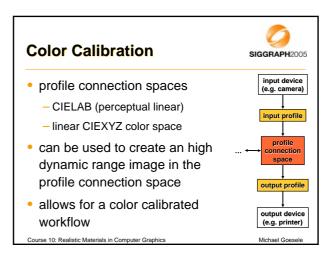


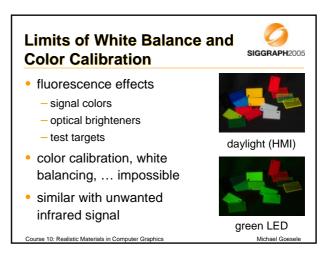


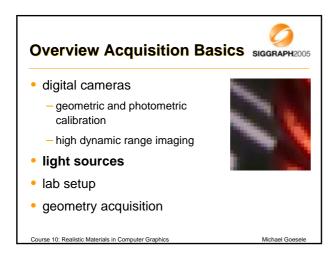


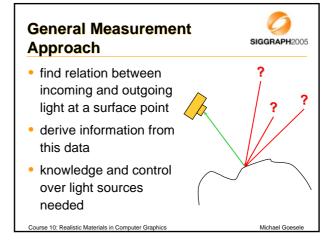


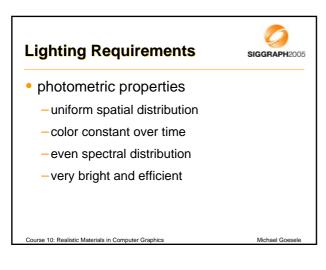

choice of weighting function w(y_{ij}) for HDR reconstruction
 introduce certainty function c as derivative of the response curve with logarithmic exposure axis
 approximation of response function by cubic spline to compute derivative
 w_{ij} = w(y_{ij}) = c(I_{yij})

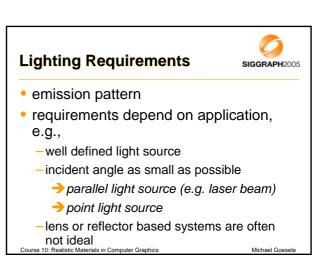


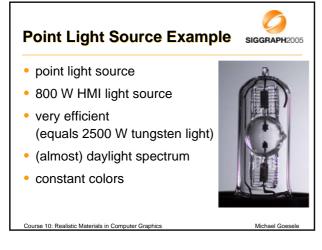


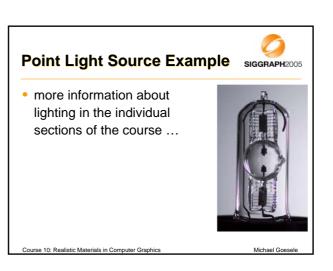












Overview Acquisition Basics SIGGRAPH2005

- digital cameras
 - geometric and photometric calibration
 - high dynamic range imaging
- light sources
- lab setup
- · geometry acquisition

Course 10: Realistic Materials in Computer Graphics

... .. .

Lab Setup

- part of the lighting considerations
- often low and diffuse reflection required to minimize the influence of the environment
- MPI photo studio
 - walls and ceiling covered with black felt
 - black needle fleece carpet

Course 10: Realistic Materials in Computer Graphics

Michael Goesel

Lab Setup SIGGRAPH2005

Lab Setup

- tuned for efficiency and flexibility
 - enough space
 - enough stands, supporting materials, ...
- have some lighting available in dark areas
 - e.g., radio controlled light switch
- safety concerns

Course 10: Realistic Materials in Computer Graphics

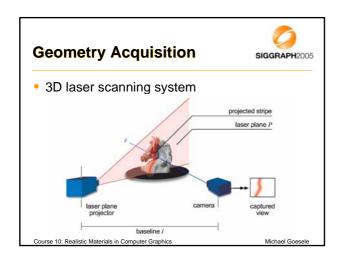
Michael Goesele

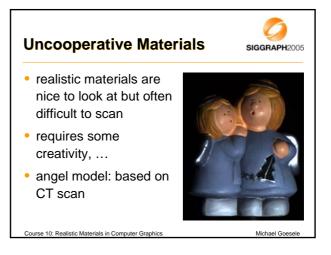
Overview Acquisition Basics SIGGRAPH2005

- digital cameras
 - geometric and photometric calibration
 - high dynamic range imaging
- light sources
- lab setup
- geometry acquisition

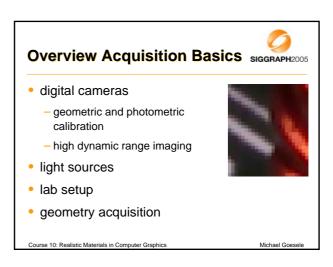
Course 10: Realistic Materials in Computer Graphics

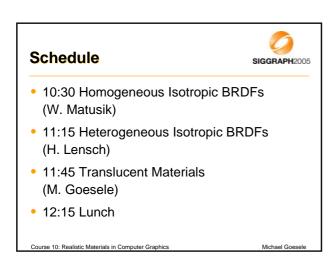
Michael Goesele


Geometry Acquisition



- · geometry of test targets often required
- could teach a separate course about the topic
- · but some comments ...


ourse 10: Realistic Materials in Computer Graphics


Michael Goesel

