

Co	mpa	arison	SIGGRAPH2005		
category	method	asymptotic # of images	typical # of images	weighting function	materials
active	RTEM	1	1	warping function	colorless, specularly refractive
	HEM	$O(\log k)$	20	box filter	refraction, translucency, highly specular, color transparency
	GEM	O(k)	600	sum of Gaussians	+color dispersion, multiple mappings and glossy reflection
	FBEM	O(k)	1,200	product of two 1D functions	-multiple mappings
	WEM	$O(k^2)$	1,200	object images	+diffuse reflection
passive	IBEM	N/A	40	probability map	colorless, specularly refractive
	ROEM	N/A	200	warping function	colorless, specularly refractive
Course	10: Realis	tic Materials in (Computer Gra	phics	Yung-Yu Chuang

Reference	
	SIGGRAPH2005
 D. Zongker, D. M. Werner, B. Curless, and D. H. Sa Matting and Compositing, SIGGRAPH 1999, pp205 	alesin. <u>Environment</u> 5-214.
 Yung-Yu Chuang, Douglas E. Zongker, Joel Hindoi Salesin, Richard Szeliski, <u>Environment Matting Extr Accuracy and Real-Time Capture</u>, SIGGRAPH 200 	rff, Brian Curless, David H. <u>ensions: Towards Higher</u> 00.
• P. Peers and P. Dutre. Wavelet Environment Mattin	ng, EGSR 2003.
 J. Zhu and YH. Yang. <u>Frequency-Based Environm</u> Graphics 2004. 	nent Matting, Pacific
 Y. Wexler, A. Fitzgibbon and A. Zisserman. <u>Image-Matting</u>, EGWR 2002, pp279-289. 	Based Environment
Course 10: Realistic Materials in Computer Graphics	Yung-Yu Chuang

Future work

• More general materials (Specular + diffuse)

SIGGRAPH2005

- Principled Bayesian approach
- Advanced rendering

Course 10: Realistic Materials in Computer G

Editing

Acknowledgements

Course 10: Realistic Materials in Computer Graphics

Douglas Zongker, Dawn Werner, Brian Curless, David Salesin, Joel Hindorff, Richard Szeliski, Jiayuan Zhu, Yee-Hong Yang, Pieter Peers, Philip Dutre, Yonatan Wexler, Andrew Fitzgibbon, Andrew Zisserman, Sameer Agarwal, Satya Mallick, David Kriegman, Serge Belongie, Wojciech Matusik, Hanspeter Pfister, Remo Ziegler, Addy Ngan, Leonard McMillan

Computing R and F from alpha
SIGGRAPH2005

$$C = F + (1 - \alpha)X + RX$$

$$C' = F + (1 - \alpha)X' + RX'$$

$$R(\alpha) = \frac{C - C'}{X - X'} - (1 - \alpha)$$

$$F(\alpha) = C - (1 - \alpha + R(\alpha))X$$
Course 10: Realistic Materia in Computer Graphics

