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Syntax and Semantics

Syntax
Basis: Typed first-order predicate logic

Modal operators 〈p〉 and [p] for each (JAVA CARD) program p

Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p:

[p]F : If p terminates, then F holds in the final state
(partial correctness)

<p>F : p terminates and F holds in the final state
(total correctness)
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Why Dynamic Logic?

Transparency wrt target programming language

Encompasses Hoare Logic

More expressive and flexible than Hoare logic

Symbolic execution is a natural interactive proof paradigm

Programs are “first-class citizens”

Real Java syntax
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Encompasses Hoare Logic

More expressive and flexible than Hoare logic

Symbolic execution is a natural interactive proof paradigm

Not merely partial/total correctness:

can employ programs for specification (e.g., verifying program
transformations)

can express security properties (two runs are indistinguishable)

extension-friendly (e.g., temporal modalities)
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Dynamic Logic Example Formulas

(balance >= c & amount > 0) −>
<charge(amount);> balance > c

<x = 1;> ([while (true) {}] false)
Program formulas can appear nested

\forall int val;
(
(<p> x .= val) <−> (<q> x .= val)

)
p, q equivalent relative to computation state restricted to x
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Dynamic Logic Example Formulas
a != null

->
<
int max = 0;
if ( a.length > 0 ) max = a[0];
int i = 1;
while ( i < a.length ) {
if ( a[i] > max ) max = a[i];
++i;

}
>
(
\forall int j; (j >= 0 & j < a.length -> max >= a[j])
&
(a.length > 0 ->
\exists int j; (j >= 0 & j < a.length & max = a[j]))

)
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Variables

Logical variables disjoint from program variables

No quantification over program variables

Programs do not contain logical variables

“Program variables” actually non-rigid functions
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Rigid and Flexible Terms

Example

<int i;> \forall int x; (i + 1 .= x −> <i++;> (i .= x))

Interpretation of i depends on computation state ⇒ flexible

Interpretation of x and + do not depend on state ⇒ rigid

Locations are always flexible
Logical variables, standard functions are always rigid
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Validity

A JAVA CARD DL formula is valid iff it is true in all states.

We need a calculus for checking validity of formulas
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Sequents and their Semantics

Syntax

ψ1, . . . , ψm︸ ︷︷ ︸
Antecedent

=⇒ φ1, . . . , φn︸ ︷︷ ︸
Succedent

where the φi, ψi are formulae (without free variables)

Semantics

Same as the formula

(ψ1 & · · · & ψm) −> (φ1 | · · · | φn)
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Sequent Rules

General form

rule name

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

(r = 0 possible: closing rules)

Soundness
If all premisses are valid, then the conclusion is valid

Use in practice
Goal is matched to conclusion
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Some Simple Sequent Rules

not left
Γ =⇒ A,∆
Γ, !A =⇒ ∆

imp left
Γ =⇒ A,∆ Γ, B =⇒ ∆

Γ, A −> B =⇒ ∆

close goal
Γ, A =⇒ A,∆

close by true
Γ =⇒ true,∆

all left
Γ, \forall t x;φ, {x/e}φ =⇒ ∆

Γ, \forall t x;φ =⇒ ∆

where e var-free term of type t′ ≺ t
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Sequent Calculus Proofs

Proof tree
Proof is tree structure with
goal sequent as root

Rules are applied
from conclusion (old goal)
to premisses (new goals)

Rule with no premiss closes proof branch

Proof is finished when all goals are closed
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Proof by Symbolic Program Execution

Sequent rules for program formulas?

What corresponds to top-level connective in a program?

The Active Statement in a Program

Sequent rules execute symbolically the active statement
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Sequent rules for program formulas?
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The Active Statement in a Program

l:{try{︸ ︷︷ ︸
π

i=0; j=0; } finally{ k=0; }}︸ ︷︷ ︸
ω

passive prefix π
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rest ω
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Rules for Symbolic Program Execution

If-then-else rule

Γ, B = true =⇒ <p ω>φ,∆ Γ, B = false =⇒ <q ω>φ,∆
Γ =⇒ <if (B) { p } else { q } ω>φ,∆

Complicated statements/expressions are simplified first, e.g.

Γ =⇒ <v=y; y=y+1; x=v; ω>φ,∆
Γ =⇒ <x=y++; ω>φ,∆

Simple assignment rule

Γ =⇒ {loc := val}<ω>φ,∆
Γ =⇒ <loc=val; ω>φ,∆
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Rules for Symbolic Program Execution

If-then-else rule
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Extending DL by Explicit State Updates

Updates
explicit syntactic elements in the logic

Elementary Updates

{loc := val}φ

where (roughly)
loc a program variable x, an attribute access o.attr, or an array access a[i]
val is same as loc, or a literal, or a logical variable

Parallel Updates

{loc1 := t1 || · · · || locn := tn}φ

no dependency between the n components (but ‘right wins’ semantics)
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Why Updates?

Updates are:
lazily applied (i.e. substituted into postcondition)

eagerly parallelised + simplified

Advantages
no renaming required

delayed/minimized proof branching (efficient aliasing treatment)
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Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}<> y < x
...

x < y =⇒ {t:=x}{x:=y}<y=t;> y < x
...

x < y =⇒ {t:=x}<x=y; y=t;> y < x
...

=⇒ x < y −> <int t=x; x=y; y=t;> y < x
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Program State Representation

Local program variables
Modeled as non-rigid constants

Heap
Modeled with theory of arrays:

heap : → Heap (the heap in the current state)
select : Heap ×Object × Field → Any
store : Heap ×Object × Field ×Any → Heap

Heap axioms (excerpt)
select(store(h, o, f, x), o, f) = x
select(store(h, o, f, x), u, f) = select(h, u, f) if o 6= u
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Handling Abrupt Termination

Abrupt termination handled by program transformations

Changing control flow = rearranging program parts

Example
TRY-THROW

Γ =⇒

〈 if (exc instanceof T)

{try {e=exc; r} finally {s}}

else {s throw exc;} ω

〉
φ, ∆

Γ =⇒ <try{throw exc; q} catch(T e){r} finally{s} ω>φ, ∆
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Handling Abrupt Termination

Abrupt termination handled by program transformations

Changing control flow = rearranging program parts

Example
TRY-THROW

Γ =⇒

〈π if (exc instanceof T)

{try {e=exc; r} finally {s}}

else {s throw exc;} ω

〉
φ, ∆

Γ =⇒ <π try{throw exc; q} catch(T e){r} finally{s} ω>φ, ∆
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Part III

Program Verification with Dynamic Logic

7 JAVA CARD DL

8 Sequent Calculus

9 Rules for Programs: Symbolic Execution

10 A Calculus for 100% JAVA CARD

11 Taclets – KeY’s Rule Description Language
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Supported Java Features

method invocation with polymorphism/dynamic binding

object creation and initialisation

arrays

abrupt termination

throwing of NullPointerExceptions, etc.

bounded integer data types

transactions

All JAVA CARD language features are fully addressed in KeY
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Java—A Language of Many Features

Ways to deal with Java features
Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose extensions of program logic

Pro: Feature needs not be handled in calculus
Contra: Modified source code
Example in KeY: Very rare: treating inner classes
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Java—A Language of Many Features

Ways to deal with Java features
Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose extensions of program logic

Pro: Flexible, easy to implement, usable
Contra: Not expressive enough for all features
Example in KeY: Complex expression eval, method inlining, etc., etc.
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Java—A Language of Many Features

Ways to deal with Java features
Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose extensions of program logic

Pro: No logic extensions required, enough to express most features
Contra: Creates difficult first-order POs, unreadable antecedents
Example in KeY: Dynamic types and branch predicates
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Java—A Language of Many Features

Ways to deal with Java features
Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose extensions of program logic

Pro: Arbitrarily expressive extensions possible
Contra: Increases complexity of all rules
Example in KeY: Method frames, updates
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Components of the Calculus

1 Non-program rules
first-order rules
rules for data-types
first-order modal rules
induction rules

2 Rules for reducing/simplifying the program (symbolic execution)
Replace the program by

case distinctions (proof branches) and
sequences of updates

3 Rules for handling loops
using loop invariants
using induction

4 Rules for replacing a method’s invocation by the method’s contract
5 Update simplification
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Part III
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9 Rules for Programs: Symbolic Execution

10 A Calculus for 100% JAVA CARD

11 Taclets – KeY’s Rule Description Language
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Taclets:
KeY’s Rule Description Language

Taclets ...

represent sequent calculus rules in KeY

use a simple text-based format

are descriptive, but with operational flavor

are not a tactic metalanguage
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Taclet Syntax

andLeft
Γ, A,B =⇒ ∆

Γ, A & B =⇒ ∆

Taclet

andLeft {
\find ( A & B ==> )
\replacewith ( A, B ==>)

};

Unique name
Find expression:

Formula (Term) to be modified
Sequent arrow ==> formula must occur top level and on the
corresponding side of the sequent.

Goal Description: describes new sequent
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Taclet Syntax

Some rules are only sound in a certain context

modusPonens
Γ, A,B =⇒ ∆

Γ, A,A −> B =⇒ ∆

Taclet

modusPonens {
\assumes ( A ==> )
\find ( A -> B ==> )
\replacewith( B ==> )

};
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Taclet Syntax

Proof Splitting: andRight

Γ =⇒ A,∆ Γ =⇒ B,∆
Γ =⇒ A & B,∆

andRight {
\find ( ==> A & B )
\replacewith (==> A );
\replacewith (==> B )

};

Variable Conditions: allRight

Γ =⇒ {x/c}Φ,∆
Γ =⇒ ∀T x; Φ,∆

, c new

allRight {
\find ( ==> \forall x;phi )
\varcond(\new(c,\dependingOn(phi)))
\replacewith ( ==> {\subst x;c}phi )

};
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Taclet Syntax

Proof Splitting: andRight

Γ =⇒ A,∆ Γ =⇒ B,∆
Γ =⇒ A & B,∆

andRight {
\find ( ==> A & B )
\replacewith (==> A );
\replacewith (==> B )

};

Variable Conditions: allRight

Γ =⇒ {x/c}Φ,∆
Γ =⇒ ∀T x; Φ,∆

, c new

allRight {
\find ( ==> \forall x;phi )
\varcond(\new(c,\dependingOn(phi)))
\replacewith ( ==> {\subst x;c}phi )
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Taclets for Program Transformations

Γ =⇒

〈π if (exc == null) {

try{ throw new NPE(); catch(T e) {r};

} else if (exc instanceof T) {e=exc; r}

else throw exc; ω

〉
φ

Γ =⇒ <π try{throw exc; q} catch(T e){r}; ω>φ

\find ( <.. try { throw #se; #slist }
catch ( #t #v0 ) { #slist1 } ...> post )

\replacewith (
<.. if (#se == null) {

try { throw new NullPointerException (); }
catch (#t #v0) { #slist1 }

} else if (#se instanceof #t) {
#t #v0 = (#t) #se;
#slist1

} else throw #se; ...> post )
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Part IV

Verifying Information-Flow Properties

12 Information Flow

13 Formalisation in DL

14 Objects and Information Flow
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Language-based Information Security

Secret and public information

Partitioning of the set of program variables into

variables which contain confidential information (“high variables”)
– NOT observable by the attacker –

variables which contain non-confidential information (“low variables”)
– observable by the attacker –

Informal definition of non-interference

A program is secure, if the initial values of the high variables do not
interfere with the final values of the low variables.
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Examples

Note

Sequential Java programs
Termination not considered

Which methods are secure?

void m_1() {
low = high;

}

void m_3() {
if (high > 0) {low = 1;}
else {low = 2;};

}
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Examples

Note

Sequential Java programs
Termination not considered

Which methods are secure?

void m_1() {
low = high;

}
NOT SECURE

void m_3() {
if (high > 0) {low = 1;}
else {low = 2;};

}

NOT SECURE
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Examples
Which methods are secure?

void m_4() {
high = 0;
low = high;

}

void m_5() {
low = high;
low = low -high;

}

void m_6() {
if (false) low = high;

}
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Which methods are secure?

void m_4() {
high = 0;
low = high;

}

SECURE

void m_5() {
low = high;
low = low -high;

}

SECURE

void m_6() {
if (false) low = high;

}
SECURE
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Information-flow Analysis Approaches
performance

security type systems

precision / expressiveness

graph-theoretical reachability
on dependence graph

explicit dependency
tracking by ghost code

approximative calculi
for Hoare style logics

formalization in
higher order logic

formalization in

by self-composition
Hoare style logics
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Non-Interference

Definition (Low-equivalence on states)

Two states are low-equivalent if they assign the same values to low
variables.

Definition (Non-interference)

Starting P in two arbitrary low-equivalent states results in two final states
that are also low-equivalent.
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Non-interference

P a program

L the set of low variables

s1

s2

P

s′1
s1 'L s′1

s′2

P

s2 'L s′2

where
si 'L s′i ⇔ ∀ v ∈ L (vsi = vs

′
i)
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Non-interference

P a program

L1, L2 sets of low variables

s1

s2

P

s′1
s1 'L1 s

′
1

s′2

P

s2 'L2 s
′
2

where
si 'Li s

′
i ⇔ ∀ v ∈ Li (vsi = vs

′
i)
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Non-Interference in JavaDL (Version 1)

Encoding with alternating quantifiers

For all low input values inl, there exist low output values r such that for all
high input values inh, if we assign the values inl to the program variables
low and inh to the program variables high, then after execution of P the
values of low are r.

∀inl∃r∀inh({low := inl || high := inh}[P ]low = r)

Problem

Not suitable for automatic verification
 instantiation of existential quantifier difficult.
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Non-Interference in JavaDL (Version 2)

Encoding with self-composition

Running two instances of P on the same low values but on arbitrary high
values results in low variables which have the same values.

∀inl∀in1
h∀in2

h∀out1l ∀out2l {low := inl}(
{high := in1

h}[P ]out1l = low

∧ {high := in2
h}[P ]out2l = low

→ out1l = out2l

)
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Declassification

Intuition

Let T (high, low) be a term.

The only thing the attacker is allowed to learn about the secret inputs is
the value of T in the initial state.

Definition (Non-interference with declassification)

Starting P in two arbitrary low-equivalent states coinciding in the value
of T results in two final states that are also low-equivalent.
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Declassification in JavaDL

Encoding non-interference with declassification

Running two instances of P on the same low values and arbitrary high
values coinciding on T results in low variables which have the same
values.

∀inl∀in1
h∀in2

h∀out1l ∀out2l {low := inl}(
{high := in1

h}T = {high := in2
h}T

∧ {high := in1
h}[P ]out1l = low

∧ {high := in2
h}[P ]out2l = low

→ out1l = out2l

)
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DEMO
Verifying Information-flow Properties with the KeY Tool
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Object-Sensitive Non-interference

Leakage by aliasing

void m() {
C c1 = new C(); // new obj
C c2 = c1; // alias
c2.x = high;
low = c1.x;

}
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Object-Sensitive Non-interference

Leakage by aliasing

void m() {
C c1 = new C(); // new obj
C c2 = c1; // alias
c2.x = high;
low = c1.x;

}

NOT SECURE
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Object-Sensitive Non-interference

Object creation and object identity

if (high >0) {
low1 = new C();
low2 = new C();

} else {
low2 = new C();
low1 = new C();

}

Assumption

References are opaque

Only comparison of objects by == is observable
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Object-Sensitive Non-interference

Object creation and object identity

low1 = new C();
low2 = new C();
if (high >0) { low1 = low2; }

if (high >0) { low = new C() }
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Object-Sensitive Non-interference

Object creation and object identity

low1 = new C();
low2 = new C();
if (high >0) { low1 = low2; }

NOT SECURE

if (high >0) { low = new C() } NOT SECURE
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Object-Sensitive Non-interference

Idea

ISOMORPHIC object structures in low variables
IDENTITY NOT required

Instead of
si 'Li s

′
i ⇔ ∀ v ∈ Li (vsi = vs

′
i)

use
si 'πi

Li
s′i ⇔ ∀ v ∈ Li (πi(vsi) = vs

′
i)

where
π1, π2 are compatible

i.e.
π1(o) = π2(o) if o observable in both s1 and s2
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Object-Sensitive Non-interference

s1: high 7→ 1

s2:

low1 7→
o1
low2 7→
o2
high 7→ 1

P

s′1: high 7→ −1
π1 = id

s′2:
low1 7→ o2
low2 7→ o1
high 7→ −1

P

π2(o1) = o2,
π2(o2) = o1

Secure because o1, o2 not observable in s1
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Object-Sensitive Non-interference

s1: high 7→ 1

s2:
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low2 7→
o2
high 7→ 1

P

s′1: high 7→ −1
π1 = id

s′2:
low1 7→ o2
low2 7→ o2
high 7→ −1

P

π2 =?

Not secure because no suitable π2 exists
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Object-Sensitive Non-interference

s1:
low 7→ o1
high 7→ 1

s2:
low 7→ o2
high 7→ 1

P

s′1:
low 7→ o1
high 7→ −1

π1 = id

s′2:
low 7→ o1
high 7→ −1

P

π2(o2) = o1

Not secure because o1 observable in s1 and π1(o1) 6= π2(o1)
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Object-Sensitive Non-interference

Optimisations

L1, L2 sequences of low terms (instead of sets of variables)

π1 can be fixed to be id
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DEMO
Objects and Information-flow with the KeY Tool
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Part V

Wrap Up

15 Further Usage of Verification Technology

16 Directions of Current Research in KeY
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Further Usage of
Verification Technology

Verification performs deep Program Analysis

Information in (partial) proofs usable for other purposes
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Further Usage:
Verification-Driven Test Generation

Specification- and code-based approach

Achieve strong hybrid coverage criteria

Exploit strong correspondence:
proof branches↔ program execution paths

Each leaf of (partial) proof branch contains
constraint on inputs
resulting in
corresponding path condition
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Directions of Current Research with KeY

Topics

Scalability (combine with light-weight techniques)

Usability (support user in understanding proof state)

Concurrency and distribution

Information-flow / security properties

Application: eVoting
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THE END

(for now)
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