
www.kit.eduKIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Bernhard Beckert | VTSA, 24.–28.08.2015

Part B

Deductive Verification of Object-Oriented Software

KIT – INSTITUTE FOR THEORETICAL COMPUTER SCIENCE

http://www.kit.edu

Part III

Program Verification with Dynamic Logic

7 JAVA CARD DL

8 Sequent Calculus

9 Rules for Programs: Symbolic Execution

10 A Calculus for 100% JAVA CARD

11 Taclets – KeY’s Rule Description Language

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 35/102

Part III

Program Verification with Dynamic Logic

7 JAVA CARD DL

8 Sequent Calculus

9 Rules for Programs: Symbolic Execution

10 A Calculus for 100% JAVA CARD

11 Taclets – KeY’s Rule Description Language

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 36/102

Syntax and Semantics

Syntax
Basis: Typed first-order predicate logic

Modal operators 〈p〉 and [p] for each (JAVA CARD) program p

Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p:

[p]F : If p terminates, then F holds in the final state
(partial correctness)

<p>F : p terminates and F holds in the final state
(total correctness)

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 37/102

Syntax and Semantics

Syntax
Basis: Typed first-order predicate logic

Modal operators 〈p〉 and [p] for each (JAVA CARD) program p

Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p:

[p]F : If p terminates, then F holds in the final state
(partial correctness)

<p>F : p terminates and F holds in the final state
(total correctness)

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 37/102

Syntax and Semantics

Syntax
Basis: Typed first-order predicate logic

Modal operators 〈p〉 and [p] for each (JAVA CARD) program p

Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p:

[p]F : If p terminates, then F holds in the final state
(partial correctness)

<p>F : p terminates and F holds in the final state
(total correctness)

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 37/102

Syntax and Semantics

Syntax
Basis: Typed first-order predicate logic

Modal operators 〈p〉 and [p] for each (JAVA CARD) program p

Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p:

[p]F : If p terminates, then F holds in the final state
(partial correctness)

<p>F : p terminates and F holds in the final state
(total correctness)

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 37/102

Why Dynamic Logic?

Transparency wrt target programming language

Encompasses Hoare Logic

More expressive and flexible than Hoare logic

Symbolic execution is a natural interactive proof paradigm

Programs are “first-class citizens”

Real Java syntax

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 38/102

Why Dynamic Logic?

Transparency wrt target programming language

Encompasses Hoare Logic

More expressive and flexible than Hoare logic

Symbolic execution is a natural interactive proof paradigm

Hoare triple {ψ} α {φ} equiv. to DL formula ψ −> [α]φ

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 38/102

Why Dynamic Logic?

Transparency wrt target programming language

Encompasses Hoare Logic

More expressive and flexible than Hoare logic

Symbolic execution is a natural interactive proof paradigm

Not merely partial/total correctness:

can employ programs for specification (e.g., verifying program
transformations)

can express security properties (two runs are indistinguishable)

extension-friendly (e.g., temporal modalities)

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 38/102

Why Dynamic Logic?

Transparency wrt target programming language

Encompasses Hoare Logic

More expressive and flexible than Hoare logic

Symbolic execution is a natural interactive proof paradigm

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 38/102

Dynamic Logic Example Formulas

(balance >= c & amount > 0) −>
<charge(amount);> balance > c

<x = 1;> ([while (true) {}] false)
Program formulas can appear nested

\forall int val;
(
(<p> x .= val) <−> (<q> x .= val)

)
p, q equivalent relative to computation state restricted to x

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 39/102

Dynamic Logic Example Formulas

(balance >= c & amount > 0) −>
<charge(amount);> balance > c

<x = 1;> ([while (true) {}] false)
Program formulas can appear nested

\forall int val;
(
(<p> x .= val) <−> (<q> x .= val)

)
p, q equivalent relative to computation state restricted to x

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 39/102

Dynamic Logic Example Formulas

(balance >= c & amount > 0) −>
<charge(amount);> balance > c

<x = 1;> ([while (true) {}] false)
Program formulas can appear nested

\forall int val;
(
(<p> x .= val) <−> (<q> x .= val)

)
p, q equivalent relative to computation state restricted to x

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 39/102

Dynamic Logic Example Formulas

(balance >= c & amount > 0) −>
<charge(amount);> balance > c

<x = 1;> ([while (true) {}] false)
Program formulas can appear nested

\forall int val;
(
(<p> x .= val) <−> (<q> x .= val)

)
p, q equivalent relative to computation state restricted to x

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 39/102

Dynamic Logic Example Formulas

(balance >= c & amount > 0) −>
<charge(amount);> balance > c

<x = 1;> ([while (true) {}] false)
Program formulas can appear nested

\forall int val;
(
(<p> x .= val) <−> (<q> x .= val)

)
p, q equivalent relative to computation state restricted to x

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 39/102

Dynamic Logic Example Formulas
a != null

->
<
int max = 0;
if (a.length > 0) max = a[0];
int i = 1;
while (i < a.length) {
if (a[i] > max) max = a[i];
++i;

}
>
(
\forall int j; (j >= 0 & j < a.length -> max >= a[j])
&
(a.length > 0 ->
\exists int j; (j >= 0 & j < a.length & max = a[j]))

)

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 40/102

Variables

Logical variables disjoint from program variables

No quantification over program variables

Programs do not contain logical variables

“Program variables” actually non-rigid functions

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 41/102

Rigid and Flexible Terms

Example

<int i;> \forall int x; (i + 1 .= x −> <i++;> (i .= x))

Interpretation of i depends on computation state ⇒ flexible

Interpretation of x and + do not depend on state ⇒ rigid

Locations are always flexible
Logical variables, standard functions are always rigid

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 42/102

Rigid and Flexible Terms

Example

<int i;> \forall int x; (i + 1 .= x −> <i++;> (i .= x))

Interpretation of i depends on computation state ⇒ flexible

Interpretation of x and + do not depend on state ⇒ rigid

Locations are always flexible
Logical variables, standard functions are always rigid

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 42/102

Rigid and Flexible Terms

Example

<int i;> \forall int x; (i + 1 .= x −> <i++;> (i .= x))

Interpretation of i depends on computation state ⇒ flexible

Interpretation of x and + do not depend on state ⇒ rigid

Locations are always flexible
Logical variables, standard functions are always rigid

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 42/102

Rigid and Flexible Terms

Example

<int i;> \forall int x; (i + 1 .= x −> <i++;> (i .= x))

Interpretation of i depends on computation state ⇒ flexible

Interpretation of x and + do not depend on state ⇒ rigid

Locations are always flexible
Logical variables, standard functions are always rigid

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 42/102

Rigid and Flexible Terms

Example

<int i;> \forall int x; (i + 1 .= x −> <i++;> (i .= x))

Interpretation of i depends on computation state ⇒ flexible

Interpretation of x and + do not depend on state ⇒ rigid

Locations are always flexible
Logical variables, standard functions are always rigid

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 42/102

Validity

A JAVA CARD DL formula is valid iff it is true in all states.

We need a calculus for checking validity of formulas

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 43/102

Validity

A JAVA CARD DL formula is valid iff it is true in all states.

We need a calculus for checking validity of formulas

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 43/102

Part III

Program Verification with Dynamic Logic

7 JAVA CARD DL

8 Sequent Calculus

9 Rules for Programs: Symbolic Execution

10 A Calculus for 100% JAVA CARD

11 Taclets – KeY’s Rule Description Language

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 44/102

Part III

Program Verification with Dynamic Logic

7 JAVA CARD DL

8 Sequent Calculus

9 Rules for Programs: Symbolic Execution

10 A Calculus for 100% JAVA CARD

11 Taclets – KeY’s Rule Description Language

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 45/102

Sequents and their Semantics

Syntax

ψ1, . . . , ψm︸ ︷︷ ︸
Antecedent

=⇒ φ1, . . . , φn︸ ︷︷ ︸
Succedent

where the φi, ψi are formulae (without free variables)

Semantics

Same as the formula

(ψ1 & · · · & ψm) −> (φ1 | · · · | φn)

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 46/102

Sequents and their Semantics

Syntax

ψ1, . . . , ψm︸ ︷︷ ︸
Antecedent

=⇒ φ1, . . . , φn︸ ︷︷ ︸
Succedent

where the φi, ψi are formulae (without free variables)

Semantics

Same as the formula

(ψ1 & · · · & ψm) −> (φ1 | · · · | φn)

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 46/102

Sequent Rules

General form

rule name

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

(r = 0 possible: closing rules)

Soundness
If all premisses are valid, then the conclusion is valid

Use in practice
Goal is matched to conclusion

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 47/102

Sequent Rules

General form

rule name

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

(r = 0 possible: closing rules)

Soundness
If all premisses are valid, then the conclusion is valid

Use in practice
Goal is matched to conclusion

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 47/102

Sequent Rules

General form

rule name

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

(r = 0 possible: closing rules)

Soundness
If all premisses are valid, then the conclusion is valid

Use in practice
Goal is matched to conclusion

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 47/102

Sequent Rules

General form

rule name

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

(r = 0 possible: closing rules)

Soundness
If all premisses are valid, then the conclusion is valid

Use in practice
Goal is matched to conclusion

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 47/102

Some Simple Sequent Rules

not left
Γ =⇒ A,∆
Γ, !A =⇒ ∆

imp left
Γ =⇒ A,∆ Γ, B =⇒ ∆

Γ, A −> B =⇒ ∆

close goal
Γ, A =⇒ A,∆

close by true
Γ =⇒ true,∆

all left
Γ, \forall t x;φ, {x/e}φ =⇒ ∆

Γ, \forall t x;φ =⇒ ∆

where e var-free term of type t′ ≺ t
JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 48/102

Some Simple Sequent Rules

not left
Γ =⇒ A,∆
Γ, !A =⇒ ∆

imp left
Γ =⇒ A,∆ Γ, B =⇒ ∆

Γ, A −> B =⇒ ∆

close goal
Γ, A =⇒ A,∆

close by true
Γ =⇒ true,∆

all left
Γ, \forall t x;φ, {x/e}φ =⇒ ∆

Γ, \forall t x;φ =⇒ ∆

where e var-free term of type t′ ≺ t
JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 48/102

Some Simple Sequent Rules

not left
Γ =⇒ A,∆
Γ, !A =⇒ ∆

imp left
Γ =⇒ A,∆ Γ, B =⇒ ∆

Γ, A −> B =⇒ ∆

close goal
Γ, A =⇒ A,∆

close by true
Γ =⇒ true,∆

all left
Γ, \forall t x;φ, {x/e}φ =⇒ ∆

Γ, \forall t x;φ =⇒ ∆

where e var-free term of type t′ ≺ t
JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 48/102

Some Simple Sequent Rules

not left
Γ =⇒ A,∆
Γ, !A =⇒ ∆

imp left
Γ =⇒ A,∆ Γ, B =⇒ ∆

Γ, A −> B =⇒ ∆

close goal
Γ, A =⇒ A,∆

close by true
Γ =⇒ true,∆

all left
Γ, \forall t x;φ, {x/e}φ =⇒ ∆

Γ, \forall t x;φ =⇒ ∆

where e var-free term of type t′ ≺ t
JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 48/102

Some Simple Sequent Rules

not left
Γ =⇒ A,∆
Γ, !A =⇒ ∆

imp left
Γ =⇒ A,∆ Γ, B =⇒ ∆

Γ, A −> B =⇒ ∆

close goal
Γ, A =⇒ A,∆

close by true
Γ =⇒ true,∆

all left
Γ, \forall t x;φ, {x/e}φ =⇒ ∆

Γ, \forall t x;φ =⇒ ∆

where e var-free term of type t′ ≺ t
JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 48/102

Sequent Calculus Proofs

Proof tree
Proof is tree structure with
goal sequent as root

Rules are applied
from conclusion (old goal)
to premisses (new goals)

Rule with no premiss closes proof branch

Proof is finished when all goals are closed

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 49/102

Sequent Calculus Proofs

Proof tree
Proof is tree structure with
goal sequent as root

Rules are applied
from conclusion (old goal)
to premisses (new goals)

Rule with no premiss closes proof branch

Proof is finished when all goals are closed

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 49/102

Sequent Calculus Proofs

Proof tree
Proof is tree structure with
goal sequent as root

Rules are applied
from conclusion (old goal)
to premisses (new goals)

Rule with no premiss closes proof branch

Proof is finished when all goals are closed

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 49/102

Sequent Calculus Proofs

Proof tree
Proof is tree structure with
goal sequent as root

Rules are applied
from conclusion (old goal)
to premisses (new goals)

Rule with no premiss closes proof branch

Proof is finished when all goals are closed

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 49/102

Part III

Program Verification with Dynamic Logic

7 JAVA CARD DL

8 Sequent Calculus

9 Rules for Programs: Symbolic Execution

10 A Calculus for 100% JAVA CARD

11 Taclets – KeY’s Rule Description Language

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 50/102

Part III

Program Verification with Dynamic Logic

7 JAVA CARD DL

8 Sequent Calculus

9 Rules for Programs: Symbolic Execution

10 A Calculus for 100% JAVA CARD

11 Taclets – KeY’s Rule Description Language

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 51/102

Proof by Symbolic Program Execution

Sequent rules for program formulas?

What corresponds to top-level connective in a program?

The Active Statement in a Program

Sequent rules execute symbolically the active statement

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 52/102

Proof by Symbolic Program Execution

Sequent rules for program formulas?

What corresponds to top-level connective in a program?

The Active Statement in a Program

l:{try{ i=0; j=0; } finally{ k=0; }}

Sequent rules execute symbolically the active statement

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 52/102

Proof by Symbolic Program Execution

Sequent rules for program formulas?

What corresponds to top-level connective in a program?

The Active Statement in a Program

l:{try{ i=0; j=0; } finally{ k=0; }}

Sequent rules execute symbolically the active statement

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 52/102

Proof by Symbolic Program Execution

Sequent rules for program formulas?

What corresponds to top-level connective in a program?

The Active Statement in a Program

l:{try{︸ ︷︷ ︸
π

i=0; j=0; } finally{ k=0; }}︸ ︷︷ ︸
ω

passive prefix π
active statement i=0;
rest ω

Sequent rules execute symbolically the active statement

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 52/102

Proof by Symbolic Program Execution

Sequent rules for program formulas?

What corresponds to top-level connective in a program?

The Active Statement in a Program

l:{try{︸ ︷︷ ︸
π

i=0; j=0; } finally{ k=0; }}︸ ︷︷ ︸
ω

passive prefix π
active statement i=0;
rest ω

Sequent rules execute symbolically the active statement

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 52/102

Rules for Symbolic Program Execution

If-then-else rule

Γ, B = true =⇒ <p ω>φ,∆ Γ, B = false =⇒ <q ω>φ,∆
Γ =⇒ <if (B) { p } else { q } ω>φ,∆

Complicated statements/expressions are simplified first, e.g.

Γ =⇒ <v=y; y=y+1; x=v; ω>φ,∆
Γ =⇒ <x=y++; ω>φ,∆

Simple assignment rule

Γ =⇒ {loc := val}<ω>φ,∆
Γ =⇒ <loc=val; ω>φ,∆

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 53/102

Rules for Symbolic Program Execution

If-then-else rule

Γ, B = true =⇒ <p ω>φ,∆ Γ, B = false =⇒ <q ω>φ,∆
Γ =⇒ <if (B) { p } else { q } ω>φ,∆

Complicated statements/expressions are simplified first, e.g.

Γ =⇒ <v=y; y=y+1; x=v; ω>φ,∆
Γ =⇒ <x=y++; ω>φ,∆

Simple assignment rule

Γ =⇒ {loc := val}<ω>φ,∆
Γ =⇒ <loc=val; ω>φ,∆

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 53/102

Rules for Symbolic Program Execution

If-then-else rule

Γ, B = true =⇒ <p ω>φ,∆ Γ, B = false =⇒ <q ω>φ,∆
Γ =⇒ <if (B) { p } else { q } ω>φ,∆

Complicated statements/expressions are simplified first, e.g.

Γ =⇒ <v=y; y=y+1; x=v; ω>φ,∆
Γ =⇒ <x=y++; ω>φ,∆

Simple assignment rule

Γ =⇒ {loc := val}<ω>φ,∆
Γ =⇒ <loc=val; ω>φ,∆

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 53/102

Extending DL by Explicit State Updates

Updates
explicit syntactic elements in the logic

Elementary Updates

{loc := val}φ

where (roughly)
loc a program variable x, an attribute access o.attr, or an array access a[i]
val is same as loc, or a literal, or a logical variable

Parallel Updates

{loc1 := t1 || · · · || locn := tn}φ

no dependency between the n components (but ‘right wins’ semantics)
JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 54/102

Extending DL by Explicit State Updates

Updates
explicit syntactic elements in the logic

Elementary Updates

{loc := val}φ

where (roughly)
loc a program variable x, an attribute access o.attr, or an array access a[i]
val is same as loc, or a literal, or a logical variable

Parallel Updates

{loc1 := t1 || · · · || locn := tn}φ

no dependency between the n components (but ‘right wins’ semantics)
JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 54/102

Extending DL by Explicit State Updates

Updates
explicit syntactic elements in the logic

Elementary Updates

{loc := val}φ

where (roughly)
loc a program variable x, an attribute access o.attr, or an array access a[i]
val is same as loc, or a literal, or a logical variable

Parallel Updates

{loc1 := t1 || · · · || locn := tn}φ

no dependency between the n components (but ‘right wins’ semantics)
JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 54/102

Why Updates?

Updates are:
lazily applied (i.e. substituted into postcondition)

eagerly parallelised + simplified

Advantages
no renaming required

delayed/minimized proof branching (efficient aliasing treatment)

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 55/102

Why Updates?

Updates are:
lazily applied (i.e. substituted into postcondition)

eagerly parallelised + simplified

Advantages
no renaming required

delayed/minimized proof branching (efficient aliasing treatment)

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 55/102

Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}<> y < x
...

x < y =⇒ {t:=x}{x:=y}<y=t;> y < x
...

x < y =⇒ {t:=x}<x=y; y=t;> y < x
...

=⇒ x < y −> <int t=x; x=y; y=t;> y < x

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 56/102

Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}<> y < x
...

x < y =⇒ {t:=x}{x:=y}<y=t;> y < x
...

x < y =⇒ {t:=x}<x=y; y=t;> y < x
...

=⇒ x < y −> <int t=x; x=y; y=t;> y < x

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 56/102

Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}<> y < x
...

x < y =⇒ {t:=x}{x:=y}<y=t;> y < x
...

x < y =⇒ {t:=x}<x=y; y=t;> y < x
...

=⇒ x < y −> <int t=x; x=y; y=t;> y < x

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 56/102

Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}<> y < x
...

x < y =⇒ {t:=x}{x:=y}<y=t;> y < x
...

x < y =⇒ {t:=x}<x=y; y=t;> y < x
...

=⇒ x < y −> <int t=x; x=y; y=t;> y < x

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 56/102

Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}<> y < x
...

x < y =⇒ {t:=x}{x:=y}<y=t;> y < x
...

x < y =⇒ {t:=x}<x=y; y=t;> y < x
...

=⇒ x < y −> <int t=x; x=y; y=t;> y < x

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 56/102

Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}<> y < x
...

x < y =⇒ {t:=x}{x:=y}<y=t;> y < x
...

x < y =⇒ {t:=x}<x=y; y=t;> y < x
...

=⇒ x < y −> <int t=x; x=y; y=t;> y < x

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 56/102

Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}<> y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}<> y < x
...

x < y =⇒ {t:=x}{x:=y}<y=t;> y < x
...

x < y =⇒ {t:=x}<x=y; y=t;> y < x
...

=⇒ x < y −> <int t=x; x=y; y=t;> y < x

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 56/102

Program State Representation

Local program variables
Modeled as non-rigid constants

Heap
Modeled with theory of arrays:

heap : → Heap (the heap in the current state)
select : Heap ×Object × Field → Any
store : Heap ×Object × Field ×Any → Heap

Heap axioms (excerpt)
select(store(h, o, f, x), o, f) = x
select(store(h, o, f, x), u, f) = select(h, u, f) if o 6= u

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 57/102

Program State Representation

Local program variables
Modeled as non-rigid constants

Heap
Modeled with theory of arrays:

heap : → Heap (the heap in the current state)
select : Heap ×Object × Field → Any
store : Heap ×Object × Field ×Any → Heap

Heap axioms (excerpt)
select(store(h, o, f, x), o, f) = x
select(store(h, o, f, x), u, f) = select(h, u, f) if o 6= u

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 57/102

Program State Representation

Local program variables
Modeled as non-rigid constants

Heap
Modeled with theory of arrays:

heap : → Heap (the heap in the current state)
select : Heap ×Object × Field → Any
store : Heap ×Object × Field ×Any → Heap

Heap axioms (excerpt)
select(store(h, o, f, x), o, f) = x
select(store(h, o, f, x), u, f) = select(h, u, f) if o 6= u

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 57/102

Handling Abrupt Termination

Abrupt termination handled by program transformations

Changing control flow = rearranging program parts

Example
TRY-THROW

Γ =⇒

〈 if (exc instanceof T)

{try {e=exc; r} finally {s}}

else {s throw exc;} ω

〉
φ, ∆

Γ =⇒ <try{throw exc; q} catch(T e){r} finally{s} ω>φ, ∆

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 58/102

Handling Abrupt Termination

Abrupt termination handled by program transformations

Changing control flow = rearranging program parts

Example
TRY-THROW

Γ =⇒

〈 if (exc instanceof T)

{try {e=exc; r} finally {s}}

else {s throw exc;} ω

〉
φ, ∆

Γ =⇒ <try{throw exc; q} catch(T e){r} finally{s} ω>φ, ∆

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 58/102

Handling Abrupt Termination

Abrupt termination handled by program transformations

Changing control flow = rearranging program parts

Example
TRY-THROW

Γ =⇒

〈π if (exc instanceof T)

{try {e=exc; r} finally {s}}

else {s throw exc;} ω

〉
φ, ∆

Γ =⇒ <π try{throw exc; q} catch(T e){r} finally{s} ω>φ, ∆

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 58/102

Part III

Program Verification with Dynamic Logic

7 JAVA CARD DL

8 Sequent Calculus

9 Rules for Programs: Symbolic Execution

10 A Calculus for 100% JAVA CARD

11 Taclets – KeY’s Rule Description Language

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 59/102

Part III

Program Verification with Dynamic Logic

7 JAVA CARD DL

8 Sequent Calculus

9 Rules for Programs: Symbolic Execution

10 A Calculus for 100% JAVA CARD

11 Taclets – KeY’s Rule Description Language

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 60/102

Supported Java Features

method invocation with polymorphism/dynamic binding

object creation and initialisation

arrays

abrupt termination

throwing of NullPointerExceptions, etc.

bounded integer data types

transactions

All JAVA CARD language features are fully addressed in KeY

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 61/102

Supported Java Features

method invocation with polymorphism/dynamic binding

object creation and initialisation

arrays

abrupt termination

throwing of NullPointerExceptions, etc.

bounded integer data types

transactions

All JAVA CARD language features are fully addressed in KeY

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 61/102

Java—A Language of Many Features

Ways to deal with Java features
Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose extensions of program logic

Pro: Feature needs not be handled in calculus
Contra: Modified source code
Example in KeY: Very rare: treating inner classes

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 62/102

Java—A Language of Many Features

Ways to deal with Java features
Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose extensions of program logic

Pro: Flexible, easy to implement, usable
Contra: Not expressive enough for all features
Example in KeY: Complex expression eval, method inlining, etc., etc.

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 62/102

Java—A Language of Many Features

Ways to deal with Java features
Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose extensions of program logic

Pro: No logic extensions required, enough to express most features
Contra: Creates difficult first-order POs, unreadable antecedents
Example in KeY: Dynamic types and branch predicates

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 62/102

Java—A Language of Many Features

Ways to deal with Java features
Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose extensions of program logic

Pro: Arbitrarily expressive extensions possible
Contra: Increases complexity of all rules
Example in KeY: Method frames, updates

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 62/102

Components of the Calculus

1 Non-program rules
first-order rules
rules for data-types
first-order modal rules
induction rules

2 Rules for reducing/simplifying the program (symbolic execution)
Replace the program by

case distinctions (proof branches) and
sequences of updates

3 Rules for handling loops
using loop invariants
using induction

4 Rules for replacing a method’s invocation by the method’s contract
5 Update simplification

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 63/102

Components of the Calculus

1 Non-program rules
first-order rules
rules for data-types
first-order modal rules
induction rules

2 Rules for reducing/simplifying the program (symbolic execution)
Replace the program by

case distinctions (proof branches) and
sequences of updates

3 Rules for handling loops
using loop invariants
using induction

4 Rules for replacing a method’s invocation by the method’s contract
5 Update simplification

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 63/102

Components of the Calculus

1 Non-program rules
first-order rules
rules for data-types
first-order modal rules
induction rules

2 Rules for reducing/simplifying the program (symbolic execution)
Replace the program by

case distinctions (proof branches) and
sequences of updates

3 Rules for handling loops
using loop invariants
using induction

4 Rules for replacing a method’s invocation by the method’s contract
5 Update simplification

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 63/102

Components of the Calculus

1 Non-program rules
first-order rules
rules for data-types
first-order modal rules
induction rules

2 Rules for reducing/simplifying the program (symbolic execution)
Replace the program by

case distinctions (proof branches) and
sequences of updates

3 Rules for handling loops
using loop invariants
using induction

4 Rules for replacing a method’s invocation by the method’s contract
5 Update simplification

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 63/102

Components of the Calculus

1 Non-program rules
first-order rules
rules for data-types
first-order modal rules
induction rules

2 Rules for reducing/simplifying the program (symbolic execution)
Replace the program by

case distinctions (proof branches) and
sequences of updates

3 Rules for handling loops
using loop invariants
using induction

4 Rules for replacing a method’s invocation by the method’s contract
5 Update simplification

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 63/102

Part III

Program Verification with Dynamic Logic

7 JAVA CARD DL

8 Sequent Calculus

9 Rules for Programs: Symbolic Execution

10 A Calculus for 100% JAVA CARD

11 Taclets – KeY’s Rule Description Language

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 64/102

Part III

Program Verification with Dynamic Logic

7 JAVA CARD DL

8 Sequent Calculus

9 Rules for Programs: Symbolic Execution

10 A Calculus for 100% JAVA CARD

11 Taclets – KeY’s Rule Description Language

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 65/102

Taclets:
KeY’s Rule Description Language

Taclets ...

represent sequent calculus rules in KeY

use a simple text-based format

are descriptive, but with operational flavor

are not a tactic metalanguage

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 66/102

Taclet Syntax

andLeft
Γ, A,B =⇒ ∆

Γ, A & B =⇒ ∆

Taclet

andLeft {
\find (A & B ==>)
\replacewith (A, B ==>)

};

Unique name
Find expression:

Formula (Term) to be modified
Sequent arrow ==> formula must occur top level and on the
corresponding side of the sequent.

Goal Description: describes new sequent
JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 67/102

Taclet Syntax

andLeft
Γ, A,B =⇒ ∆

Γ, A & B =⇒ ∆

Taclet

andLeft {
\find (A & B ==>)
\replacewith (A, B ==>)

};

Unique name
Find expression:

Formula (Term) to be modified
Sequent arrow ==> formula must occur top level and on the
corresponding side of the sequent.

Goal Description: describes new sequent
JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 67/102

Taclet Syntax

andLeft
Γ, A,B =⇒ ∆

Γ, A & B =⇒ ∆

Taclet

andLeft {
\find (A & B ==>)
\replacewith (A, B ==>)

};

Unique name
Find expression:

Formula (Term) to be modified
Sequent arrow ==> formula must occur top level and on the
corresponding side of the sequent.

Goal Description: describes new sequent
JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 67/102

Taclet Syntax

andLeft
Γ, A,B =⇒ ∆

Γ, A & B =⇒ ∆

Taclet

andLeft {
\find (A & B ==>)
\replacewith (A, B ==>)

};

Unique name
Find expression:

Formula (Term) to be modified
Sequent arrow ==> formula must occur top level and on the
corresponding side of the sequent.

Goal Description: describes new sequent
JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 67/102

Taclet Syntax

andLeft
Γ, A,B =⇒ ∆

Γ, A & B =⇒ ∆

Taclet

andLeft {
\find (A & B ==>)
\replacewith (A, B ==>)

};

Unique name
Find expression:

Formula (Term) to be modified
Sequent arrow ==> formula must occur top level and on the
corresponding side of the sequent.

Goal Description: describes new sequent
JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 67/102

Taclet Syntax

Some rules are only sound in a certain context

modusPonens
Γ, A,B =⇒ ∆

Γ, A,A −> B =⇒ ∆

Taclet

modusPonens {
\assumes (A ==>)
\find (A -> B ==>)
\replacewith(B ==>)

};

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 68/102

Taclet Syntax

Some rules are only sound in a certain context

modusPonens
Γ, A,B =⇒ ∆

Γ, A,A −> B =⇒ ∆

Taclet

modusPonens {
\assumes (A ==>)
\find (A -> B ==>)
\replacewith(B ==>)

};

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 68/102

Taclet Syntax

Some rules are only sound in a certain context

modusPonens
Γ, A,B =⇒ ∆

Γ, A,A −> B =⇒ ∆

Taclet

modusPonens {
\assumes (A ==>)
\find (A -> B ==>)
\replacewith(B ==>)

};

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 68/102

Taclet Syntax

Proof Splitting: andRight

Γ =⇒ A,∆ Γ =⇒ B,∆
Γ =⇒ A & B,∆

andRight {
\find (==> A & B)
\replacewith (==> A);
\replacewith (==> B)

};

Variable Conditions: allRight

Γ =⇒ {x/c}Φ,∆
Γ =⇒ ∀T x; Φ,∆

, c new

allRight {
\find (==> \forall x;phi)
\varcond(\new(c,\dependingOn(phi)))
\replacewith (==> {\subst x;c}phi)

};

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 69/102

Taclet Syntax

Proof Splitting: andRight

Γ =⇒ A,∆ Γ =⇒ B,∆
Γ =⇒ A & B,∆

andRight {
\find (==> A & B)
\replacewith (==> A);
\replacewith (==> B)

};

Variable Conditions: allRight

Γ =⇒ {x/c}Φ,∆
Γ =⇒ ∀T x; Φ,∆

, c new

allRight {
\find (==> \forall x;phi)
\varcond(\new(c,\dependingOn(phi)))
\replacewith (==> {\subst x;c}phi)

};

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 69/102

Taclets for Program Transformations

Γ =⇒

〈π if (exc == null) {

try{ throw new NPE(); catch(T e) {r};

} else if (exc instanceof T) {e=exc; r}

else throw exc; ω

〉
φ

Γ =⇒ <π try{throw exc; q} catch(T e){r}; ω>φ

\find (<.. try { throw #se; #slist }
catch (#t #v0) { #slist1 } ...> post)

\replacewith (
<.. if (#se == null) {

try { throw new NullPointerException (); }
catch (#t #v0) { #slist1 }

} else if (#se instanceof #t) {
#t #v0 = (#t) #se;
#slist1

} else throw #se; ...> post)

JAVA CARD DL Sequent Calculus Symbolic Execution A Calculus for 100% JAVA CARD Taclets

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 70/102

Part IV

Verifying Information-Flow Properties

12 Information Flow

13 Formalisation in DL

14 Objects and Information Flow

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 71/102

Part IV

Verifying Information-Flow Properties

12 Information Flow

13 Formalisation in DL

14 Objects and Information Flow

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 72/102

Language-based Information Security

Secret and public information

Partitioning of the set of program variables into

variables which contain confidential information (“high variables”)
– NOT observable by the attacker –

variables which contain non-confidential information (“low variables”)
– observable by the attacker –

Informal definition of non-interference

A program is secure, if the initial values of the high variables do not
interfere with the final values of the low variables.

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 73/102

Language-based Information Security

Secret and public information

Partitioning of the set of program variables into

variables which contain confidential information (“high variables”)
– NOT observable by the attacker –

variables which contain non-confidential information (“low variables”)
– observable by the attacker –

Informal definition of non-interference

A program is secure, if the initial values of the high variables do not
interfere with the final values of the low variables.

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 73/102

Examples

Note

Sequential Java programs
Termination not considered

Which methods are secure?

void m_1() {
low = high;

}

void m_3() {
if (high > 0) {low = 1;}
else {low = 2;};

}

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 74/102

Examples

Note

Sequential Java programs
Termination not considered

Which methods are secure?

void m_1() {
low = high;

}

void m_3() {
if (high > 0) {low = 1;}
else {low = 2;};

}

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 74/102

Examples

Note

Sequential Java programs
Termination not considered

Which methods are secure?

void m_1() {
low = high;

}
NOT SECURE

void m_3() {
if (high > 0) {low = 1;}
else {low = 2;};

}

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 74/102

Examples

Note

Sequential Java programs
Termination not considered

Which methods are secure?

void m_1() {
low = high;

}
NOT SECURE

void m_3() {
if (high > 0) {low = 1;}
else {low = 2;};

}

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 74/102

Examples

Note

Sequential Java programs
Termination not considered

Which methods are secure?

void m_1() {
low = high;

}
NOT SECURE

void m_3() {
if (high > 0) {low = 1;}
else {low = 2;};

}

NOT SECURE

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 74/102

Examples
Which methods are secure?

void m_4() {
high = 0;
low = high;

}

void m_5() {
low = high;
low = low -high;

}

void m_6() {
if (false) low = high;

}
Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 75/102

Examples
Which methods are secure?

void m_4() {
high = 0;
low = high;

}

SECURE

void m_5() {
low = high;
low = low -high;

}

void m_6() {
if (false) low = high;

}
Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 75/102

Examples
Which methods are secure?

void m_4() {
high = 0;
low = high;

}

SECURE

void m_5() {
low = high;
low = low -high;

}

void m_6() {
if (false) low = high;

}
Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 75/102

Examples
Which methods are secure?

void m_4() {
high = 0;
low = high;

}

SECURE

void m_5() {
low = high;
low = low -high;

}

SECURE

void m_6() {
if (false) low = high;

}
Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 75/102

Examples
Which methods are secure?

void m_4() {
high = 0;
low = high;

}

SECURE

void m_5() {
low = high;
low = low -high;

}

SECURE

void m_6() {
if (false) low = high;

}
Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 75/102

Examples
Which methods are secure?

void m_4() {
high = 0;
low = high;

}

SECURE

void m_5() {
low = high;
low = low -high;

}

SECURE

void m_6() {
if (false) low = high;

}
SECURE

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 75/102

Information-flow Analysis Approaches
performance

security type systems

precision / expressiveness

graph-theoretical reachability
on dependence graph

explicit dependency
tracking by ghost code

approximative calculi
for Hoare style logics

formalization in
higher order logic

formalization in

by self-composition
Hoare style logics

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 76/102

Information-flow Analysis Approaches
performance

precision / expressiveness

formalization in

by self-composition
Hoare style logics

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 77/102

Non-Interference

Definition (Low-equivalence on states)

Two states are low-equivalent if they assign the same values to low
variables.

Definition (Non-interference)

Starting P in two arbitrary low-equivalent states results in two final states
that are also low-equivalent.

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 78/102

Non-Interference

Definition (Low-equivalence on states)

Two states are low-equivalent if they assign the same values to low
variables.

Definition (Non-interference)

Starting P in two arbitrary low-equivalent states results in two final states
that are also low-equivalent.

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 78/102

Non-interference

P a program

L the set of low variables

s1

s2

P

s′1
s1 'L s′1

s′2

P

s2 'L s′2

where
si 'L s′i ⇔ ∀ v ∈ L (vsi = vs

′
i)

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 79/102

Non-interference

P a program

L1, L2 sets of low variables

s1

s2

P

s′1
s1 'L1 s

′
1

s′2

P

s2 'L2 s
′
2

where
si 'Li s

′
i ⇔ ∀ v ∈ Li (vsi = vs

′
i)

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 80/102

Non-Interference in JavaDL (Version 1)

Encoding with alternating quantifiers

For all low input values inl, there exist low output values r such that for all
high input values inh, if we assign the values inl to the program variables
low and inh to the program variables high, then after execution of P the
values of low are r.

∀inl∃r∀inh({low := inl || high := inh}[P]low = r)

Problem

Not suitable for automatic verification
 instantiation of existential quantifier difficult.

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 81/102

Non-Interference in JavaDL (Version 1)

Encoding with alternating quantifiers

For all low input values inl, there exist low output values r such that for all
high input values inh, if we assign the values inl to the program variables
low and inh to the program variables high, then after execution of P the
values of low are r.

∀inl∃r∀inh({low := inl || high := inh}[P]low = r)

Problem

Not suitable for automatic verification
 instantiation of existential quantifier difficult.

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 81/102

Non-Interference in JavaDL (Version 2)

Encoding with self-composition

Running two instances of P on the same low values but on arbitrary high
values results in low variables which have the same values.

∀inl∀in1
h∀in2

h∀out1l ∀out2l {low := inl}(
{high := in1

h}[P]out1l = low

∧ {high := in2
h}[P]out2l = low

→ out1l = out2l

)

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 82/102

Declassification

Intuition

Let T (high, low) be a term.

The only thing the attacker is allowed to learn about the secret inputs is
the value of T in the initial state.

Definition (Non-interference with declassification)

Starting P in two arbitrary low-equivalent states coinciding in the value
of T results in two final states that are also low-equivalent.

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 83/102

Declassification

Intuition

Let T (high, low) be a term.

The only thing the attacker is allowed to learn about the secret inputs is
the value of T in the initial state.

Definition (Non-interference with declassification)

Starting P in two arbitrary low-equivalent states coinciding in the value
of T results in two final states that are also low-equivalent.

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 83/102

Declassification in JavaDL

Encoding non-interference with declassification

Running two instances of P on the same low values and arbitrary high
values coinciding on T results in low variables which have the same
values.

∀inl∀in1
h∀in2

h∀out1l ∀out2l {low := inl}(
{high := in1

h}T = {high := in2
h}T

∧ {high := in1
h}[P]out1l = low

∧ {high := in2
h}[P]out2l = low

→ out1l = out2l

)

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 84/102

DEMO
Verifying Information-flow Properties with the KeY Tool

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 85/102

Object-Sensitive Non-interference

Leakage by aliasing

void m() {
C c1 = new C(); // new obj
C c2 = c1; // alias
c2.x = high;
low = c1.x;

}

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 86/102

Object-Sensitive Non-interference

Leakage by aliasing

void m() {
C c1 = new C(); // new obj
C c2 = c1; // alias
c2.x = high;
low = c1.x;

}

NOT SECURE

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 86/102

Object-Sensitive Non-interference

Object creation and object identity

if (high >0) {
low1 = new C();
low2 = new C();

} else {
low2 = new C();
low1 = new C();

}

Assumption

References are opaque

Only comparison of objects by == is observable

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 87/102

Object-Sensitive Non-interference

Object creation and object identity

if (high >0) {
low1 = new C();
low2 = new C();

} else {
low2 = new C();
low1 = new C();

}

SECURE

Assumption

References are opaque

Only comparison of objects by == is observable

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 87/102

Object-Sensitive Non-interference

Object creation and object identity

if (high >0) {
low1 = new C();
low2 = new C();

} else {
low2 = new C();
low1 = new C();

}

SECURE

Assumption

References are opaque

Only comparison of objects by == is observable

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 87/102

Object-Sensitive Non-interference

Object creation and object identity

low1 = new C();
low2 = new C();
if (high >0) { low1 = low2; }

if (high >0) { low = new C() }

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 88/102

Object-Sensitive Non-interference

Object creation and object identity

low1 = new C();
low2 = new C();
if (high >0) { low1 = low2; }

NOT SECURE

if (high >0) { low = new C() }

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 88/102

Object-Sensitive Non-interference

Object creation and object identity

low1 = new C();
low2 = new C();
if (high >0) { low1 = low2; }

NOT SECURE

if (high >0) { low = new C() }

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 88/102

Object-Sensitive Non-interference

Object creation and object identity

low1 = new C();
low2 = new C();
if (high >0) { low1 = low2; }

NOT SECURE

if (high >0) { low = new C() } NOT SECURE

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 88/102

Object-Sensitive Non-interference

Idea

ISOMORPHIC object structures in low variables
IDENTITY NOT required

Instead of
si 'Li s

′
i ⇔ ∀ v ∈ Li (vsi = vs

′
i)

use
si 'πi

Li
s′i ⇔ ∀ v ∈ Li (πi(vsi) = vs

′
i)

where
π1, π2 are compatible

i.e.
π1(o) = π2(o) if o observable in both s1 and s2

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 89/102

Object-Sensitive Non-interference

s1: high 7→ 1

s2:

low1 7→
o1
low2 7→
o2
high 7→ 1

P

s′1: high 7→ −1
π1 = id

s′2:
low1 7→ o2
low2 7→ o1
high 7→ −1

P

π2(o1) = o2,
π2(o2) = o1

Secure because o1, o2 not observable in s1

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 90/102

Object-Sensitive Non-interference

s1: high 7→ 1

s2:

low1 7→
o1
low2 7→
o2
high 7→ 1

P

s′1: high 7→ −1
π1 = id

s′2:
low1 7→ o2
low2 7→ o1
high 7→ −1

P

π2(o1) = o2,
π2(o2) = o1

Secure because o1, o2 not observable in s1

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 90/102

Object-Sensitive Non-interference

s1: high 7→ 1

s2:

low1 7→
o1
low2 7→
o2
high 7→ 1

P

s′1: high 7→ −1
π1 = id

s′2:
low1 7→ o2
low2 7→ o2
high 7→ −1

P

π2 =?

Not secure because no suitable π2 exists

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 91/102

Object-Sensitive Non-interference

s1: high 7→ 1

s2:

low1 7→
o1
low2 7→
o2
high 7→ 1

P

s′1: high 7→ −1
π1 = id

s′2:
low1 7→ o2
low2 7→ o2
high 7→ −1

P

π2 =?

Not secure because no suitable π2 exists

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 91/102

Object-Sensitive Non-interference

s1:
low 7→ o1
high 7→ 1

s2:
low 7→ o2
high 7→ 1

P

s′1:
low 7→ o1
high 7→ −1

π1 = id

s′2:
low 7→ o1
high 7→ −1

P

π2(o2) = o1

Not secure because o1 observable in s1 and π1(o1) 6= π2(o1)

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 92/102

Object-Sensitive Non-interference

s1:
low 7→ o1
high 7→ 1

s2:
low 7→ o2
high 7→ 1

P

s′1:
low 7→ o1
high 7→ −1

π1 = id

s′2:
low 7→ o1
high 7→ −1

P

π2(o2) = o1

Not secure because o1 observable in s1 and π1(o1) 6= π2(o1)

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 92/102

Object-Sensitive Non-interference

Optimisations

L1, L2 sequences of low terms (instead of sets of variables)

π1 can be fixed to be id

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 93/102

DEMO
Objects and Information-flow with the KeY Tool

Information Flow Formalisation in DL Objects and Information Flow

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 94/102

Part V

Wrap Up

15 Further Usage of Verification Technology

16 Directions of Current Research in KeY

Further Usage of Verification Technology Directions of Current Research in KeY

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 95/102

Part V

Wrap Up

15 Further Usage of Verification Technology

16 Directions of Current Research in KeY

Further Usage of Verification Technology Directions of Current Research in KeY

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 96/102

Further Usage of
Verification Technology

Verification performs deep Program Analysis

Information in (partial) proofs usable for other purposes

Further Usage of Verification Technology Directions of Current Research in KeY

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 97/102

Further Usage:
Verification-Driven Test Generation

Specification- and code-based approach

Achieve strong hybrid coverage criteria

Exploit strong correspondence:
proof branches↔ program execution paths

Each leaf of (partial) proof branch contains
constraint on inputs
resulting in
corresponding path condition

Further Usage of Verification Technology Directions of Current Research in KeY

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 98/102

Further Usage:
Verification-Driven Test Generation

Specification- and code-based approach

Achieve strong hybrid coverage criteria

Exploit strong correspondence:
proof branches↔ program execution paths

Each leaf of (partial) proof branch contains
constraint on inputs
resulting in
corresponding path condition

Further Usage of Verification Technology Directions of Current Research in KeY

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 98/102

Further Usage:
Verification-Driven Test Generation

Specification- and code-based approach

Achieve strong hybrid coverage criteria

Exploit strong correspondence:
proof branches↔ program execution paths

Each leaf of (partial) proof branch contains
constraint on inputs
resulting in
corresponding path condition

Further Usage of Verification Technology Directions of Current Research in KeY

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 98/102

Further Usage:
Verification-Driven Test Generation

Specification- and code-based approach

Achieve strong hybrid coverage criteria

Exploit strong correspondence:
proof branches↔ program execution paths

Each leaf of (partial) proof branch contains
constraint on inputs
resulting in
corresponding path condition

Further Usage of Verification Technology Directions of Current Research in KeY

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 98/102

Part V

Wrap Up

15 Further Usage of Verification Technology

16 Directions of Current Research in KeY

Further Usage of Verification Technology Directions of Current Research in KeY

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 99/102

Part V

Wrap Up

15 Further Usage of Verification Technology

16 Directions of Current Research in KeY

Further Usage of Verification Technology Directions of Current Research in KeY

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 100/102

Directions of Current Research with KeY

Topics

Scalability (combine with light-weight techniques)

Usability (support user in understanding proof state)

Concurrency and distribution

Information-flow / security properties

Application: eVoting

Further Usage of Verification Technology Directions of Current Research in KeY

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 101/102

Directions of Current Research with KeY

Topics

Scalability (combine with light-weight techniques)

Usability (support user in understanding proof state)

Concurrency and distribution

Information-flow / security properties

Application: eVoting

Further Usage of Verification Technology Directions of Current Research in KeY

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 101/102

Directions of Current Research with KeY

Topics

Scalability (combine with light-weight techniques)

Usability (support user in understanding proof state)

Concurrency and distribution

Information-flow / security properties

Application: eVoting

Further Usage of Verification Technology Directions of Current Research in KeY

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 101/102

Directions of Current Research with KeY

Topics

Scalability (combine with light-weight techniques)

Usability (support user in understanding proof state)

Concurrency and distribution

Information-flow / security properties

Application: eVoting

Further Usage of Verification Technology Directions of Current Research in KeY

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 101/102

Directions of Current Research with KeY

Topics

Scalability (combine with light-weight techniques)

Usability (support user in understanding proof state)

Concurrency and distribution

Information-flow / security properties

Application: eVoting

Further Usage of Verification Technology Directions of Current Research in KeY

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 101/102

THE END

(for now)

Further Usage of Verification Technology Directions of Current Research in KeY

Bernhard Beckert – Deductive Verification of Object-Oriented Software VTSA, 24.–28.08.2015 102/102

