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ENS Cachan

12 academic departments: mathematics, computer science, chemistry,
social sciences, . . .

13 research laboratories

Laboratoire Spécification & Vérification
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Research at LSV

Verification of critical software and systems

Goal: develop the mathematical and algorithmic foundations to the
development of tools for automatically proving correctness and detecting
flaws.

Applications: computerized systems, databases, security protocols

LSV in figures

Founded in 1997

Around 25 permanents + 15 PhD students

5 research teams
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SECSI team

Security of Information Systems

4 permanents: David Baelde, H. Comon-Lundh, S. Delaune, et J.
Goubault-Larrecq.

1 engineer + 1 postdoc

3 phd students
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Cryptographic protocols everywhere !

Goal: they aim at securing communications over public/insecure networks
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Some security properties

Secrecy: May an intruder learn some secret message between two
honest participants?

Authentication: Is the agent Alice really talking to Bob?

Anonymity: Is an attacker able to learn something about the identity
of the participants who are communicating?

Non-repudiation: Alice sends a message to Bob. Alice cannot later
deny having sent this message. Bob cannot deny having received the
message.

...
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How does a cryptographic protocol work (or not)?

Protocol: small programs explaining how to exchange messages
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How does a cryptographic protocol work (or not)?

Protocol: small programs explaining how to exchange messages

Cryptographic: make use of cryptographic primitives

Examples: symmetric encryption, asymmetric encryp-
tion, signature, hashes, . . .
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What is a symmetric encryption scheme?

Symmetric encryption

encryption decryption
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What is a symmetric encryption scheme?

Symmetric encryption

encryption decryption

Example: This might be as simple as shifting each letter by a number of
places in the alphabet (e.g. Caesar cipher)

Today: DES (1977), AES (2000)
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A famous example

Enigma machine (1918-1945)

electro-mechanical rotor cipher machines used
by the German to encrypt during Wold War II

permutations and substitutions

A bit of history

1918: invention of the Enigma machine

1940: Battle of the Atlantic during which Alan Turing’s Bombe was
used to test Enigma settings.

−→ Everything about the breaking of the Enigma cipher systems remained
secret until the mid-1970s.
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Advertisement
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What is an asymmetric encryption scheme?

Asymmetric encryption

encryption decryption

public key private key
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What is an asymmetric encryption scheme?

Asymmetric encryption

encryption decryption

public key private key

Examples:

1976: first system published by W. Diffie, and M. Hellman,

1977: RSA system published by R. Rivest, A. Shamir, and L. Adleman.

−→ their security relies on well-known mathematical problems (e.g.
factorizing large numbers, computing discrete logarithms)

Today: those systems are still in use
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What is a signature scheme?

Signature

signature verification

private key public key

Example:

The RSA cryptosystem (in fact, most public key cryptosystems) can be
used as a signature scheme.
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How does a cryptographic protocol work (or not)?

Example: A simplified version of the Denning-Sacco protocol (1981)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

What about secrecy of s ?
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How does a cryptographic protocol work (or not)?

Example: A simplified version of the Denning-Sacco protocol (1981)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

What about secrecy of s ?

Consider a scenario where A starts a session with C who is dishonest.

1. A → C : aenc(sign(k , priv(A)), pub(C ))
C knows the key k
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How does a cryptographic protocol work (or not)?

Example: A simplified version of the Denning-Sacco protocol (1981)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

What about secrecy of s ?

Consider a scenario where A starts a session with C who is dishonest.

1. A → C : aenc(sign(k , priv(A)), pub(C ))
C knows the key k

2. C (A) → B : aenc(sign(k , priv(A)), pub(B))
3. B → A : senc(s, k) Attack !
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Exercise

We propose to fix the Denning-Sacco protocol as follows:

Version 1

A → B : aenc(〈A,B , sign(k , priv(A))〉, pub(B))
B → A : senc(s, k)

Version 2

A → B : aenc(sign(〈A,B , k〉, priv(A))〉, pub(B))
B → A : senc(s, k)

Which version would you prefer to use?
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Exercise

We propose to fix the Denning-Sacco protocol as follows:

Version 1

A → B : aenc(〈A,B , sign(k , priv(A))〉, pub(B))
B → A : senc(s, k)

Version 2

A → B : aenc(sign(〈A,B , k〉, priv(A))〉, pub(B))
B → A : senc(s, k)

Which version would you prefer to use? Version 2

−→ Version 1 is still vulnerable to the aforementioned attack.
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What about protocols used in real life ?
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Credit Card payment protocol

Serge Humpich case - “ Yescard “ (1997)
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Credit Card payment protocol

Serge Humpich case - “ Yescard “ (1997)

Step 1: A logical flaw in the protocol allows one to
copy a card and to use it without knowing the PIN
code.

−→ not a real problem, there is still a bank account
to withdraw
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Credit Card payment protocol

Serge Humpich case - “ Yescard “ (1997)

Step 1: A logical flaw in the protocol allows one to
copy a card and to use it without knowing the PIN
code.

−→ not a real problem, there is still a bank account
to withdraw

Step 2: breaking encryption via factorisation of the following (96 digits)
number: 213598703592091008239502270499962879705109534182
6417406442524165008583957746445088405009430865999

−→ now, the number that is used is made of 232 digits
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HTTPS connections

Lots of bugs and attacks, with fixes every month

FREAK attack discovered by Baraghavan et al (Feb. 2015)

1 a logical flaw that allows a man in the middle attacker to downgrade
connections from ’strong’ RSA to ’export-grade’ RSA;

2 breaking encryption via factorisation of such a key can be easily done.

−→ ’export-grade’ were introduced under the pressure of US governments
agencies to ensure that they would be able to decrypt all foreign encrypted
communication.
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This talk: formal methods for protocol verification

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?
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This talk: formal methods for protocol verification

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?

Two main tasks

1 Modelling cryptographic protocols and their security properties

2 Designing verification algorithms
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Modelling messages

and

Deciding knowledge

(in a simple setting)
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Symbolic model

−→ Various models (e.g. [Dolev & Yao, 81]) having some common features
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Symbolic model

−→ Various models (e.g. [Dolev & Yao, 81]) having some common features

Messages

They are abstracted by terms.
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Symbolic model

−→ Various models (e.g. [Dolev & Yao, 81]) having some common features

Messages

They are abstracted by terms.

The attacker
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Symbolic model

−→ Various models (e.g. [Dolev & Yao, 81]) having some common features

Messages

They are abstracted by terms.

The attacker

may read every message sent on the network,

may intercept and send new messages according
to its deduction capabilities.
−→ only symbolic manipulations on terms.
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Messages as terms

−→ It is important to have a tight modelling of messages
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Messages as terms

−→ It is important to have a tight modelling of messages

Terms

They are built over a signature F , and an infinite set of names N .

t ::= n name n ∈ N
| f(t1, . . . , tk) application of symbol f ∈ F

Names are used to model atomic data
−→ e.g. keys, nonces, agent names, . . .

Function symbols are used to model cryptographic primitives
−→ e.g. encryption, signature, . . .
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A typical signature

Standard primitives

F = {senc, aenc, sk, sign, 〈 〉}
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A typical signature

Standard primitives

F = {senc, aenc, sk, sign, 〈 〉}

Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

These messages can be modelled as follows:

1 aenc(sign(k , sk(a)), b);

2 senc(s, k)
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Capabilities of the attacker

Symbolic manipulation on terms

He may build new messages following deduction rules

Pairing Symmetric encryption

x y

〈x , y〉

〈x , y〉

x

〈x , y〉

y

x y

senc(x , y)

senc(x , y) y

x

Asymmetric encryption Signature

x y

aenc(x , y)

aenc(x , y) sk(y)

x

x sk(y)

sign(x , sk(y))

sign(x , sk(y))

x
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Deduction relation T ⊢ u

We say that u is deducible from T if there exists a proof tree such that:

1 each leaf is labeled by v with v ∈ T ;

2 for each node labeled by v0 and having n sons labeled by v1, . . . , vn,
there exists a deduction rule R such that

v1 . . . vn

v0

is an instance of R

3 the root is labeled by u.
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Deduction relation T ⊢ u

We say that u is deducible from T if there exists a proof tree such that:

1 each leaf is labeled by v with v ∈ T ;

2 for each node labeled by v0 and having n sons labeled by v1, . . . , vn,
there exists a deduction rule R such that

v1 . . . vn

v0

is an instance of R

3 the root is labeled by u.

Exercise - Going back to the Denning Sacco protocol

Let T = {a, b, c , sk(c), aenc(sign(k , sk(a)), c), senc(s, k)}.

Is s deducible from T ?
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Exercise

Exercise - Going back to the Denning Sacco protocol

Let T = {a, b, c , sk(c), aenc(sign(k , sk(a)), c), senc(s, k)}.

Is s deducible from T ?
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Exercise

Exercise - Going back to the Denning Sacco protocol

Let T = {a, b, c , sk(c), aenc(sign(k , sk(a)), c), senc(s, k)}.

Is s deducible from T ?

Answer: Of course, Yes !

senc(s, k)

aenc(sign(k , sk(a)), c) sk(c)

sign(k , sk(a))

k

s
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Denning Sacco protocol

1. A → C : aenc(sign(k , priv(A)), pub(C ))

2. C (A) → B : aenc(sign(k , priv(A)), pub(B))
3. B → A : senc(s, k) Attack !

Exercise (continued)

Let T0 = {a, b, c , sk(c), aenc(sign(k , sk(a)), c)}.

Is aenc(sign(k , sk(a)), b) deducible from T0?
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Denning Sacco protocol

1. A → C : aenc(sign(k , priv(A)), pub(C ))

2. C (A) → B : aenc(sign(k , priv(A)), pub(B))
3. B → A : senc(s, k) Attack !

Exercise (continued)

Let T0 = {a, b, c , sk(c), aenc(sign(k , sk(a)), c)}.

Is aenc(sign(k , sk(a)), b) deducible from T0?

Answer: Of course, Yes !

aenc(sign(k , sk(a)), c) sk(c)

sign(k , sk(a)) b

aenc(sign(k , sk(a)), b)
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Deciding deduction (in this simple setting)

The deduction problem

Input: a finite set of terms T (the knowledge of the attacker) and a
term u (the secret),

Output: Is u deducible from T?
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Deciding deduction (in this simple setting)

The deduction problem

Input: a finite set of terms T (the knowledge of the attacker) and a
term u (the secret),

Output: Is u deducible from T?

Proposition

The deduction problem is decidable in PTIME.
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Deciding deduction (in this simple setting)

The deduction problem

Input: a finite set of terms T (the knowledge of the attacker) and a
term u (the secret),

Output: Is u deducible from T?

Proposition

The deduction problem is decidable in PTIME.

Algorithm

1 Saturation of T with terms in St(T ∪ {u}) that are deducible in one
step;

2 if u is in the saturated set then return Yes else return No.

S. Delaune (LSV) Verification of security protocols 25th August 2015 27 / 60



Soundness, completeness, and termination

Soundness If the algorithm returns Yes then u is indeed deducible
from T . −→ easy to prove
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Soundness, completeness, and termination

Soundness If the algorithm returns Yes then u is indeed deducible
from T . −→ easy to prove

Termination The set of subterms is finite and polynomial, and one-step
deducibility can be checked in polynomial time.

−→ easy to prove for the deduction rules under study
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Soundness, completeness, and termination

Soundness If the algorithm returns Yes then u is indeed deducible
from T . −→ easy to prove

Termination The set of subterms is finite and polynomial, and one-step
deducibility can be checked in polynomial time.

−→ easy to prove for the deduction rules under study

Completeness If the term u is deducible from T , then the algorithm
returns Yes. Otherwise, it returns No.

−→ this relies on a locality property

Locality lemma

Let T and u be such that T ⊢ u. There exists a prooftree witnessing this
fact for which all the nodes are labeled by some v with v ∈ St(T ∪ {u}).
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Proof sketch

Locality lemma

Let T and u be such that T ⊢ u. There exists a tree witnessing this fact
for which all the nodes are labeled by some v with v ∈ St(T ∪ {u}).

Let P be a proof tree witnessing the fact that T ⊢ u having a minimal size
(number of nodes). We show by induction on P that:

if P ends with root labeled by v then P only contains terms in
St(T ∪ {v});
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Proof sketch

Locality lemma

Let T and u be such that T ⊢ u. There exists a tree witnessing this fact
for which all the nodes are labeled by some v with v ∈ St(T ∪ {u}).

We first split the deduction rules into two categories:

1 composition rules: encryption, signature, and pairing

2 decomposition rules: decryption, projections, . . .

Let P be a proof tree witnessing the fact that T ⊢ u having a minimal size
(number of nodes). We show by induction on P that:

if P ends with root labeled by v then P only contains terms in
St(T ∪ {v});

if P ends with a decomposition rule then P only contains terms
in St(T ).

−→ this is left as an exercise
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Exercise

Consider the following set of deduction rules:

x sk(y)

sign(x , sk(y))

sign(x , sk(y)) vk(y)

x

y

vk(y)

1 Give an example showing that these deduction rules are not local.

2 Extend the notion of subterms to restore the locality property, and
show that de deduction problem is decidable.
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Exercise

Consider the following set of deduction rules:

x sk(y)

sign(x , sk(y))

sign(x , sk(y)) vk(y)

x

y

vk(y)

1 Give an example showing that these deduction rules are not local.

2 Extend the notion of subterms to restore the locality property, and
show that de deduction problem is decidable.

Solution

1 Let T = {sign(s, sk(a)); a} and u = s.

2 St+(T ) = St(T ) ∪ {vk(u) | sk(u) ∈ vk(u) ∈ St(T )}.
−→ the locality proof is left as an exercise
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Exercise

Consider the following set of deduction rules:

x y

〈x , y〉

〈x , y〉

x

〈x , y〉

y

x y

senc(x , y)

senc(x , y) y

x

In order to decide whether a term u is deducible from a set of terms T , we
propose the following algorithm:

1 Starting from T , apply as much as possible the decryption and the
projection rules This leads to a set of terms called Decomposition(T ).

2 Check whether u can be obtained by applying the composition rules
on top of terms in Decomposition(T ).

3 In case of success, the algorithm returns Yes. Otherwise, it returns No.

Questions

What about termination, soundness, and completness?
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Modelling messages

and

Deciding knowledge

(in a richer setting)
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More cryptographic primitives

We may want to consider a richer term algebra and rely on an equational
theory E to take into account the properties of the primitives

Exclusive or operator:

(x ⊕ y)⊕ z = x ⊕ (y ⊕ z) x ⊕ x = 0
x ⊕ y = y ⊕ x x ⊕ 0 = x
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More cryptographic primitives

We may want to consider a richer term algebra and rely on an equational
theory E to take into account the properties of the primitives

Exclusive or operator:

(x ⊕ y)⊕ z = x ⊕ (y ⊕ z) x ⊕ x = 0
x ⊕ y = y ⊕ x x ⊕ 0 = x

Blind signature (used in evoting protocol)

check(sign(x , y), vk(y)) = x
unblind(blind(y , y), y) = x

unblindsign(sign(blind(x , y), z), y) = sign(x , z)
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More cryptographic primitives

We may want to consider a richer term algebra and rely on an equational
theory E to take into account the properties of the primitives

Exclusive or operator:

(x ⊕ y)⊕ z = x ⊕ (y ⊕ z) x ⊕ x = 0
x ⊕ y = y ⊕ x x ⊕ 0 = x

Blind signature (used in evoting protocol)

check(sign(x , y), vk(y)) = x
unblind(blind(y , y), y) = x

unblindsign(sign(blind(x , y), z), y) = sign(x , z)

Homomorphic encryption:

sdec(senc(x , y), y) = x
enc(〈x , y〉, z) = 〈enc(x , z), enc(y , z)〉 proj1(〈x , y〉) = x
dec(〈x , y〉, z) = 〈dec(x , z), dec(y , z)〉 proj2(〈x , y〉) = y
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

1 symmetric encryption: senc(·, ·), sdec(·, ·)

−→ sdec(senc(x , y), y) = x
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

1 symmetric encryption: senc(·, ·), sdec(·, ·)

−→ sdec(senc(x , y), y) = x

2 asymmetric encryption: aenc(·, ·), adec(·, ·), pk(·)

−→ adec(aenc(x , pk(y)), y) = x
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

1 symmetric encryption: senc(·, ·), sdec(·, ·)

−→ sdec(senc(x , y), y) = x

2 asymmetric encryption: aenc(·, ·), adec(·, ·), pk(·)

−→ adec(aenc(x , pk(y)), y) = x

3 signature: sign(·, ·), check(·, ·)

−→ check(sign(x , y), pk(y)) = x
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Deduction in this more general setting

Deduction rules are as follows:

u1 · · · uk

f ∈ F
f(u1, . . . , uk)

u
u =E u′

u′
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Deduction in this more general setting

Deduction rules are as follows:

u1 · · · uk

f ∈ F
f(u1, . . . , uk)

u
u =E u′

u′

Example: Let E := sdec(senc(x , y), y) = x and T = {senc(secret, k), k}.
We have that T ⊢ secret.

senc(secret, k) k
sdec ∈ F

sdec(senc(secret, k), k)
sdec(senc(x, y), y) = x

secret
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The deduction problem: is u deducible from φ?

We consider a signature F and an equational theory E.

The deduction problem

Input A sequence φ = {w1 ⊲ v1, . . . ,wn ⊲ vn} of terms and a term u

Output Is u deducible from φ ?
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The deduction problem: is u deducible from φ?

We consider a signature F and an equational theory E.

The deduction problem

Input A sequence φ = {w1 ⊲ v1, . . . ,wn ⊲ vn} of terms and a term u

Output Is u deducible from φ ?

Characterization of deduction
T ⊢ u if, and only if, there exists a term R such that Rφ =E u.
−→ such a term R is a recipe of the term u.
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The deduction problem: is u deducible from φ?

We consider a signature F and an equational theory E.

The deduction problem

Input A sequence φ = {w1 ⊲ v1, . . . ,wn ⊲ vn} of terms and a term u

Output Is u deducible from φ ?

Characterization of deduction
T ⊢ u if, and only if, there exists a term R such that Rφ =E u.
−→ such a term R is a recipe of the term u.

Example: Let φ = {w1 ⊲ pk(ska); w2 ⊲ pk(skb); w3 ⊲ skc ;
w4 ⊲ aenc(sign(k , ska), pk(skc)); w5 ⊲ senc(s, k)}.

We have that:
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The deduction problem: is u deducible from φ?

We consider a signature F and an equational theory E.

The deduction problem

Input A sequence φ = {w1 ⊲ v1, . . . ,wn ⊲ vn} of terms and a term u

Output Is u deducible from φ ?

Characterization of deduction
T ⊢ u if, and only if, there exists a term R such that Rφ =E u.
−→ such a term R is a recipe of the term u.

Example: Let φ = {w1 ⊲ pk(ska); w2 ⊲ pk(skb); w3 ⊲ skc ;
w4 ⊲ aenc(sign(k , ska), pk(skc)); w5 ⊲ senc(s, k)}.

We have that:

k is deducible from φ using R1 = check(adec(w4,w3),w1),
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The deduction problem: is u deducible from φ?

We consider a signature F and an equational theory E.

The deduction problem

Input A sequence φ = {w1 ⊲ v1, . . . ,wn ⊲ vn} of terms and a term u

Output Is u deducible from φ ?

Characterization of deduction
T ⊢ u if, and only if, there exists a term R such that Rφ =E u.
−→ such a term R is a recipe of the term u.

Example: Let φ = {w1 ⊲ pk(ska); w2 ⊲ pk(skb); w3 ⊲ skc ;
w4 ⊲ aenc(sign(k , ska), pk(skc)); w5 ⊲ senc(s, k)}.

We have that:

k is deducible from φ using R1 = check(adec(w4,w3),w1),

s is deducible from φ using R2 = sdec(w5,R1).
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Deduction problem in this richer setting

Proposition

The deduction problem is decidable for the equational theory modelling the
DS protocol (and actually any subterm convergent equational theory).

Algorithm:

1 saturation of φ with its deducible subterm; we get φ+

2 does there exist a recipe R such that Rφ+ = s (syntaxic equality)
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Deduction problem in this richer setting

Proposition

The deduction problem is decidable for the equational theory modelling the
DS protocol (and actually any subterm convergent equational theory).

Algorithm:

1 saturation of φ with its deducible subterm; we get φ+

2 does there exist a recipe R such that Rφ+ = s (syntaxic equality)

Going back to the previous example:

φ = {w1 ⊲ pk(ska); w2 ⊲ pk(skb); w3 ⊲ skc ;
w4 ⊲ aenc(sign(k , ska), pk(skc)); w5 ⊲ senc(s, k)}.

φ+ = φ ⊎ {w6 ⊲ sign(k , ska); w7 ⊲ pk(skc); w8 ⊲ k ; w9 ⊲ s}.
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Some other equational theories

Blind signature
check(sign(x , y), vk(y)) = x
unblind(blind(y , y), y) = x

unblindsign(sign(blind(x , y), z), y) = sign(x , z)

Decidability can be shown in a similar fashion extending the notion of
subterm.
−→ sign(m, k) will be considered as a subterm of sign(blind(m, r), k)
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Some other equational theories

Blind signature
check(sign(x , y), vk(y)) = x
unblind(blind(y , y), y) = x

unblindsign(sign(blind(x , y), z), y) = sign(x , z)

Decidability can be shown in a similar fashion extending the notion of
subterm.
−→ sign(m, k) will be considered as a subterm of sign(blind(m, r), k)

Exclusive or

(x ⊕ y)⊕ z = x ⊕ (y ⊕ z) x ⊕ x = 0
x ⊕ y = y ⊕ x x ⊕ 0 = x

The deduction problem can be reduced to the problem of solving systems
of linear equations over Z/2Z.
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Deduction is not always sufficient

pub(k)

enc(yes , pub(k))

→ The intruder knows the values yes and no !

The real question

Is the intruder able to tell whether Alice sends yes or no?
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Static equivalence

The static equivalence problem

Input Two frames φ and ψ

φ = {w1 ⊲ u1, . . . ,wℓ ⊲ uℓ} ψ = {w1 ⊲ v1, . . . ,wℓ ⊲ vℓ}

Ouput Can the attacker distinguish the two frames, i.e. does there

exist a test R1
?
= R2 such that:

R1φ =E R2φ but R1ψ 6=E R2ψ (or the converse).
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Static equivalence

The static equivalence problem

Input Two frames φ and ψ

φ = {w1 ⊲ u1, . . . ,wℓ ⊲ uℓ} ψ = {w1 ⊲ v1, . . . ,wℓ ⊲ vℓ}

Ouput Can the attacker distinguish the two frames, i.e. does there

exist a test R1
?
= R2 such that:

R1φ =E R2φ but R1ψ 6=E R2ψ (or the converse).

Example: Consider the frames:

φ = {w1 ⊲ pk(sks); w2 ⊲ aenc(yes, pk(sks))}; and

ψ = {w1 ⊲ pk(sks); w2 ⊲ aenc(no, pk(sks))}.

They are not in static equivalence: aenc(yes,w1)
?
= w2.
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Exercise

Consider the equational theories:

Esenc defined by sdec(senc(x , y), y) = x , and

Ecipher which extends Esenc by the equation senc(sdec(x , y), y) = x .

Questions

Which of the following pairs of frames are statically equivalent ? Whenever
applicable give the distinguishing test.

{w1 ⊲ yes}
?
∼Esenc {w1 ⊲ no}

{w1 ⊲ senc(yes, k)}
?
∼Esenc {w1 ⊲ senc(no, k)}

{w1 ⊲ senc(n, k),w2 ⊲ k}
?
∼Esenc {w1 ⊲ senc(n, k),w2 ⊲ k ′}

{w1 ⊲ senc(n, k),w2 ⊲ k}
?
∼Ecipher

{w1 ⊲ senc(n, k),w2 ⊲ k ′}
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Exercise

Consider the equational theories:

Esenc defined by sdec(senc(x , y), y) = x , and

Ecipher which extends Esenc by the equation senc(sdec(x , y), y) = x .

Questions

Which of the following pairs of frames are statically equivalent ? Whenever
applicable give the distinguishing test.

{w1 ⊲ yes}
?
∼Esenc {w1 ⊲ no} X

{w1 ⊲ senc(yes, k)}
?
∼Esenc {w1 ⊲ senc(no, k)} X

{w1 ⊲ senc(n, k),w2 ⊲ k}
?
∼Esenc {w1 ⊲ senc(n, k),w2 ⊲ k ′} X

{w1 ⊲ senc(n, k),w2 ⊲ k}
?
∼Ecipher

{w1 ⊲ senc(n, k),w2 ⊲ k ′} X
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Static equivalence

Proposition

The static equivalence problem is decidable in PTIME for the theory
modelling the DS protocol (and actually any subterm convergent
equational theory).
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Static equivalence

Proposition

The static equivalence problem is decidable in PTIME for the theory
modelling the DS protocol (and actually any subterm convergent
equational theory).

Algorithm:

1 saturation of φ/ψ with their deducible subterms φ+/ψ+

2 does there exist a test R1
?
= R2 such that R1φ

+ = R2φ
+ whereas

R1ψ
+ 6= R2ψ

+ (again syntaxic equality) ?

−→ actually, we only need to consider small tests
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Example

Consider the frames:

φ = {w1 ⊲ aenc(〈yes , r1〉, pk(sks)); w2 ⊲ sks}; and

ψ = {w1 ⊲ aenc(〈no, r2〉, pk(sks)); w2 ⊲ sks}.

They are not in static equivalence: proj1(adec(w1,w2))
?
= yes.
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They are not in static equivalence: proj1(adec(w1,w2))
?
= yes.

Applying the algorithm on these frames, we get:
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Example

Consider the frames:

φ = {w1 ⊲ aenc(〈yes , r1〉, pk(sks)); w2 ⊲ sks}; and

ψ = {w1 ⊲ aenc(〈no, r2〉, pk(sks)); w2 ⊲ sks}.

They are not in static equivalence: proj1(adec(w1,w2))
?
= yes.

Applying the algorithm on these frames, we get:

φ+ = φ ⊎ {w3 ⊲ 〈yes, r1〉; , and

ψ+ = ψ ⊎ {w3 ⊲ 〈no, r2〉; .
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They are not in static equivalence: proj1(adec(w1,w2))
?
= yes.

Applying the algorithm on these frames, we get:
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Example

Consider the frames:

φ = {w1 ⊲ aenc(〈yes , r1〉, pk(sks)); w2 ⊲ sks}; and

ψ = {w1 ⊲ aenc(〈no, r2〉, pk(sks)); w2 ⊲ sks}.

They are not in static equivalence: proj1(adec(w1,w2))
?
= yes.

Applying the algorithm on these frames, we get:

φ+ = φ ⊎ {w3 ⊲ 〈yes, r1〉; w4 ⊲ yes; w5 ⊲ r1}, and

ψ+ = ψ ⊎ {w3 ⊲ 〈no, r2〉; w4 ⊲ no; w5 ⊲ r2}.
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Example

Consider the frames:

φ = {w1 ⊲ aenc(〈yes , r1〉, pk(sks)); w2 ⊲ sks}; and

ψ = {w1 ⊲ aenc(〈no, r2〉, pk(sks)); w2 ⊲ sks}.

They are not in static equivalence: proj1(adec(w1,w2))
?
= yes.

Applying the algorithm on these frames, we get:

φ+ = φ ⊎ {w3 ⊲ 〈yes, r1〉; w4 ⊲ yes; w5 ⊲ r1}, and

ψ+ = ψ ⊎ {w3 ⊲ 〈no, r2〉; w4 ⊲ no; w5 ⊲ r2}.

−→ Conclusion: φ+ and ψ+ are not in static equivalence: w4
?
= yes.
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Some other equational theories

Blind signature
check(sign(x , y), vk(y)) = x
unblind(blind(x , y), y) = x

unblindsign(sign(blind(x , y), z), y) = sign(x , z)

This can be done in a similar fashion extending a bit the notion of subterm
−→ again sign(m, k) will be considered as a subterm of sign(blind(m, r), k).
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Some other equational theories

Blind signature
check(sign(x , y), vk(y)) = x
unblind(blind(x , y), y) = x

unblindsign(sign(blind(x , y), z), y) = sign(x , z)

This can be done in a similar fashion extending a bit the notion of subterm
−→ again sign(m, k) will be considered as a subterm of sign(blind(m, r), k).

Exclusive or

(x ⊕ y)⊕ z = x ⊕ (y ⊕ z) x ⊕ x = 0
x ⊕ y = y ⊕ x x ⊕ 0 = x

The static equivalence problem can be reduced in PTIME to the problem of
deciding whether two systems of linear equations have the same set of
solutions overs Z/2Z.
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Existing decidability/complexity results and tools

Theory E Deduction Static Equivalence

subterm convergent PTIME

blind sign., addition, decidable

homo. encryption [Abadi & Cortier, TCS’06]

ACU NP-complete PTIME

Exclusive Or
PTIME PTIME

Abelian Group

ACUNh/AGh PTIME decidable

[D., IPL’05;Cortier & D., JAR’12]

−→ A combination result for disjoint theories [Cortier & D., JAR’12]

−→ Automatic tools for checking static equivalence: YAPA M. Baudet
(2006); KISS S. Ciobaca (2010); and FAST B. Conchinha (2011)
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Modelling protocols

and

security properties
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Protocols as processes

Applied pi calculus [Abadi & Fournet, 01]

basic programming language with constructs for concurrency and
communication

−→ based on the π-calculus [Milner et al., 92], and in some ways similar to
the spi-calculus [Abadi & Gordon, 98]
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Protocols as processes

Applied pi calculus [Abadi & Fournet, 01]

basic programming language with constructs for concurrency and
communication

−→ based on the π-calculus [Milner et al., 92], and in some ways similar to
the spi-calculus [Abadi & Gordon, 98]

Some advantages:

allows us to model cryptographic primitives

both reachability and equivalence-based specification of properties
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Protocols as processes - syntax and semantics

Syntax : P ,Q := 0 null process
in(c , x).P input
out(c , u).P output
if u = v then P else Q conditional
P | Q parallel composition
!P replication
new n.P fresh name generation
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Protocols as processes - syntax and semantics

Syntax : P ,Q := 0 null process
in(c , x).P input
out(c , u).P output
if u = v then P else Q conditional
P | Q parallel composition
!P replication
new n.P fresh name generation

Semantics →:

Comm out(c ,M).P | in(c , x).Q → P | Q{M/x}
Then if M = N then P else Q → P when M =E N
Else if M = N then P else Q → Q when M 6=E N

closed by structural equivalence (≡) and application of evaluation contexts.
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Going back to Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)
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Going back to Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k. out(c , aenc(sign(k , ska), pkb)).
in(c , xa). let ya = sdec(xa, k) in...
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B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k. out(c , aenc(sign(k , ska), pkb)).
in(c , xa). let ya = sdec(xa, k) in...

PB(skb, pka) = in(c , xb). let yb = check(adec(xb , skb), pka) in
new s.out(c , senc(s, yb))
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in(c , xa). let ya = sdec(xa, k) in...

PB(skb, pka) = in(c , xb). let yb = check(adec(xb , skb), pka) in
new s.out(c , senc(s, yb))

One possible scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb, pk(ska))
)
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new s.out(c , senc(s, yb))

One possible scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb, pk(ska))
)

→ new ska, skb, k .
(

in(c , xa). let ya = sdec(xa, k) in . . .
| let yb = k in new s.out(c , senc(s, yb)

)
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(

in(c , xa). let ya = sdec(xa, k) in . . .
| let yb = k in new s.out(c , senc(s, yb)

)

→ new ska, skb, k , s.
(

let ya = sdec(senc(s, k), k) in . . . | 0
)
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Going back to Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k. out(c , aenc(sign(k , ska), pkb)).
in(c , xa). let ya = sdec(xa, k) in...

PB(skb, pka) = in(c , xb). let yb = check(adec(xb , skb), pka) in
new s.out(c , senc(s, yb))

One possible scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb, pk(ska))
)

→ new ska, skb, k .
(

in(c , xa). let ya = sdec(xa, k) in . . .
| let yb = k in new s.out(c , senc(s, yb)

)

→ new ska, skb, k , s.
(

let ya = sdec(senc(s, k), k) in . . . | 0
)

−→ this simply models a normal execution between two honest participants
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Security properties - confidentiality

Confidentiality for process P w.r.t. secret s

For all processes A such that A | P →∗ Q, we have that Q is not of the
form C [out(c , s).Q ′] with c public.
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Security properties - confidentiality

Confidentiality for process P w.r.t. secret s

For all processes A such that A | P →∗ Q, we have that Q is not of the
form C [out(c , s).Q ′] with c public.

Some difficulties:

we have to consider all the possible executions in presence of an
arbitrary adversary (modelled as a process)

we have to consider realistic initial configurations
−→ replications to model an unbounded number of sessions,
−→ reveal public keys and private keys to model dishonest agents,
−→ PA/PB may play with other (and perhaps) dishonest agents, . . .
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

The aforementioned attack

1. A → C : aenc(sign(k , priv(A)), pub(C ))

2. C (A) → B : aenc(sign(k , priv(A)), pub(B))
3. B → A : senc(s, k)

The “minimal” initial configuration to retrieve the attack is:

new ska.new skb.
(

out(c , pk(skb)) | PA(ska, pk(skc)) | PB(skb, pk(ska))
)
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

The aforementioned attack

1. A → C : aenc(sign(k , priv(A)), pub(C ))

2. C (A) → B : aenc(sign(k , priv(A)), pub(B))
3. B → A : senc(s, k)

The “minimal” initial configuration to retrieve the attack is:

new ska.new skb.
(

out(c , pk(skb)) | PA(ska, pk(skc)) | PB(skb, pk(ska))
)

Exercise: Exhibit the process A (the behaviour of the attacker) that
witnesses the aforementioned attack.
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Security properties - authentication

This can be expressed as a correspondence property:

if B finishes a session, thinking he has talked to A then A has also
finished a session, thinking she has talked to B (+ possibly
agreement on some values).

Enriched syntax for processes:

P ,Q := 0 null process
in(c , x).P input
. . .
event p(u1, . . . , un).P event

Authentication properties with agreement on some values:

∀x .EndB(a, b, x) ⇒ EndA(a, b, x)
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State of the art in a nutshell

confidentiality for an unbounded number of sessions

undecidable in general [Even & Goldreich, 83; Durgin et al, 99]

More details

some decidability results for some restricted fragment, e.g. one
variable per protocol’s rule [Comon & Cortier, 03]

ProVerif: A tool that does not correspond to any decidability result
but works well in practice. [Blanchet, 01]

More details
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State of the art in a nutshell

confidentiality for a bounded number of sessions

a decidability result (NP-complete)
[Rusinowitch & Turuani, 01; Millen & Shmatikov, 01]

result extended to deal with various cryptographic primitives.

−→ various automatic tools, e.g. AVISPA platform [Armando et al., 05]
More details about this tomorrow !

S. Delaune (LSV) Verification of security protocols 25th August 2015 54 / 60



Challenge

Would you be able to find the attack on the well-known
Needham-Schroeder protocol?

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

To help you:
http://www.lsv.ens-cachan.fr/~delaune/VTSA/proverif.pdf
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Questions ?

See you tomorrow !

S. Delaune (LSV) Verification of security protocols 25th August 2015 56 / 60



Undecidability

Post Correspondence Problem

Input A sequence of tiles (u0, v0) (u1, v1) . . . (un, vn) with
ui , vi ∈ {a, b}∗.

Output Does there exist k ≥ 1, and 1 ≤ i1, . . . , ik ≤ n such that
ui1 . . . . uik

= vi1 . . . vik
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Undecidability

Post Correspondence Problem

Input A sequence of tiles (u0, v0) (u1, v1) . . . (un, vn) with
ui , vi ∈ {a, b}∗.

Output Does there exist k ≥ 1, and 1 ≤ i1, . . . , ik ≤ n such that
ui1 . . . . uik

= vi1 . . . vik

Example:

u1 u2 u3 u4 v1 v2 v3 v4

aba bbb aab bb a aaa abab babba

A solution is 1431. Indeed, we have that:

u1.u4.u3.u1 = aba.bb.aab.aba = a.babba.abab.a = v1.v4.v3.v1

No solution if we remove the tile (u4, v4).
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Undecidability

Post Correspondence Problem

Input A sequence of tiles (u0, v0) (u1, v1) . . . (un, vn) with
ui , vi ∈ {a, b}∗.

Output Does there exist k ≥ 1, and 1 ≤ i1, . . . , ik ≤ n such that
ui1 . . . . uik

= vi1 . . . vik

Example:

u1 u2 u3 u4 v1 v2 v3 v4

aba bbb aab bb a aaa abab babba

A solution is 1431. Indeed, we have that:

u1.u4.u3.u1 = aba.bb.aab.aba = a.babba.abab.a = v1.v4.v3.v1

No solution if we remove the tile (u4, v4).

Proposition: The PCP is undecidable.
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Undecidability proof

Reduction from PCP

We built a protocol that admits an attack (s is revealed) if, and only if,
PCP has a solution.
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Undecidability proof

Reduction from PCP

We built a protocol that admits an attack (s is revealed) if, and only if,
PCP has a solution.

We encode words and concatenation using pairs

babba is encoded as 〈〈〈〈b, a〉, b〉, b〉, a〉,

x · (babba) is encoded as 〈〈〈〈〈x , b〉, a〉, b〉, b〉, a〉
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Undecidability proof

Reduction from PCP

We built a protocol that admits an attack (s is revealed) if, and only if,
PCP has a solution.

We encode words and concatenation using pairs

babba is encoded as 〈〈〈〈b, a〉, b〉, b〉, a〉,

x · (babba) is encoded as 〈〈〈〈〈x , b〉, a〉, b〉, b〉, a〉

Initialisation: out(senc(〈u1, v1〉, k)) . . . out(senc(〈un, vn〉, k))
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Undecidability proof

Reduction from PCP

We built a protocol that admits an attack (s is revealed) if, and only if,
PCP has a solution.

We encode words and concatenation using pairs

babba is encoded as 〈〈〈〈b, a〉, b〉, b〉, a〉,

x · (babba) is encoded as 〈〈〈〈〈x , b〉, a〉, b〉, b〉, a〉

Initialisation: out(senc(〈u1, v1〉, k)) . . . out(senc(〈un, vn〉, k))

Building words

! in(senc(〈x , y〉, k)).out(senc(〈x · u1, y · v1〉, k))

. . .

! in(senc(〈x , y〉, k)).out(senc(〈x · u1, y · v1〉, k))
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Undecidability proof

Reduction from PCP

We built a protocol that admits an attack (s is revealed) if, and only if,
PCP has a solution.

We encode words and concatenation using pairs

babba is encoded as 〈〈〈〈b, a〉, b〉, b〉, a〉,

x · (babba) is encoded as 〈〈〈〈〈x , b〉, a〉, b〉, b〉, a〉

Initialisation: out(senc(〈u1, v1〉, k)) . . . out(senc(〈un, vn〉, k))

Building words

! in(senc(〈x , y〉, k)).out(senc(〈x · u1, y · v1〉, k))

. . .

! in(senc(〈x , y〉, k)).out(senc(〈x · u1, y · v1〉, k))

Revealing the secret s: in(senc(〈z , z〉, k)).out(s)

Back
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ProVerif

ProVerif is a verifier for cryptographic protocols that may prove that a
protocol is secure or exhibit attacks.

Online demo available at: http://proverif.rocq.inria.fr/

Sources available on Bruno Blanchet’s webpage

Advantages

fully automatic, and quite efficient

A rich process algebra: replication, else branches, . . .

Handles many cryptographic primitives

Proves various security properties: secrecy, correspondences,
equivalences
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ProVerif

ProVerif is a verifier for cryptographic protocols that may prove that a
protocol is secure or exhibit attacks.

Online demo available at: http://proverif.rocq.inria.fr/

Sources available on Bruno Blanchet’s webpage

Advantages

fully automatic, and quite efficient

A rich process algebra: replication, else branches, . . .

Handles many cryptographic primitives

Proves various security properties: secrecy, correspondences,
equivalences

No miracle

Termination is not guaranteed and sometimes the tool is not able to
conclude.
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Experimental results

−→ still, ProVerif works well in practice.

Protocol Result ms

Needham-Schroeder shared key Attack 52
Needham-Schroeder shared key corrected Secure 109
Denning-Sacco Attack 6
Denning-Sacco corrected Secure 7
Otway-Rees Secure 10
Otway-Rees, variant of Paulson98 Attack 12
Yahalom Secure 10
Simpler Yahalom Secure 11
Main mode of Skeme Secure 23

Pentium III, 1 GHz.

Back
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