Verification of security protocols from confidentiality to privacy

Stéphanie Delaune

LSV, CNRS & ENS Cachan, France

Wednesday, August 26th, 2015

This talk: formal methods for protocol verification

This talk: formal methods for protocol verification

Two main tasks

- Modelling cryptographic protocols and their security properties
- Obsigning verification algorithms

Would you be able to find the attack on the well-known Needham-Schroeder protocol?

$$\begin{array}{ll} A \rightarrow B : & \{A, N_a\}_{\mathsf{pub}(B)} \\ B \rightarrow A : & \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A \rightarrow B : & \{N_b\}_{\mathsf{pub}(B)} \end{array}$$

To help you:

http://www.lsv.ens-cachan.fr/~delaune/VTSA/proverif.pdf

• $A \rightarrow B$: $\{A, N_a\}_{pub(B)}$ $B \rightarrow A$: $\{N_a, N_b\}_{pub(A)}$ $A \rightarrow B$: $\{N_b\}_{pub(B)}$

 $\begin{array}{lll} A & \rightarrow B : & \{A, N_a\}_{\mathsf{pub}(B)} \\ \bullet & B & \rightarrow A : & \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A & \rightarrow B : & \{N_b\}_{\mathsf{pub}(B)} \end{array}$

$$\begin{array}{ll} A & \to B : & \{A, N_a\}_{\mathsf{pub}(B)} \\ B & \to A : & \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A & \to B : & \{N_b\}_{\mathsf{pub}(B)} \end{array}$$

Α	$\rightarrow B$:	$\{A, N_a\}_{pub(B)}$
В	$\rightarrow A$:	$\{N_a, N_b\}_{\text{pub}(A)}$
Α	$\rightarrow B$:	$\{N_b\}_{pub(B)}$

Questions

- Is N_b secret between A and B?
- When B receives $\{N_b\}_{pub(B)}$, does this message really comes from A?

Questions

- Is N_b secret between A and B?
- When B receives $\{N_b\}_{pub(B)}$, does this message really comes from A?

Attack

An attack was found 17 years after its publication! [Lowe 96]

Attack

• involving 2 sessions in parallel,

• an honest agent has to initiate a session with C.

$$\begin{array}{lll} \mathsf{A} \to \mathsf{B} & : \; \{\mathsf{A}, \mathsf{N}_a\}_{\mathsf{pub}(B)} \\ \mathsf{B} \to \mathsf{A} & : \; \{\mathsf{N}_a, \mathsf{N}_b\}_{\mathsf{pub}(A)} \\ \mathsf{A} \to \mathsf{B} & : \; \{\mathsf{N}_b\}_{\mathsf{pub}(B)} \end{array}$$

$$\begin{array}{lll} \mathsf{A} \to \mathsf{B} & : \ \{A, N_a\}_{\mathsf{pub}(B)} \\ \mathsf{B} \to \mathsf{A} & : \ \{N_a, N_b\}_{\mathsf{pub}(A)} \\ \mathsf{A} \to \mathsf{B} & : \ \{N_b\}_{\mathsf{pub}(B)} \end{array}$$

Agent A

Attacker C

$$\begin{array}{lll} \mathsf{A} \to \mathsf{B} & : \; \{\mathsf{A}, \mathsf{N}_a\}_{\mathsf{pub}(\mathsf{B})} \\ \mathsf{B} \to \mathsf{A} & : \; \{\mathsf{N}_a, \mathsf{N}_b\}_{\mathsf{pub}(\mathsf{A})} \\ \mathsf{A} \to \mathsf{B} & : \; \{\mathsf{N}_b\}_{\mathsf{pub}(\mathsf{B})} \end{array}$$

Agent A

Attacker C

Attack

- the intruder knows N_b,
- When B finishes his session (apparently with A), A has never talked with B.

$$\begin{array}{lll} \mathsf{A} \to \mathsf{B} & : \ \{A, N_a\}_{\mathsf{pub}(B)} \\ \mathsf{B} \to \mathsf{A} & : \ \{N_a, N_b\}_{\mathsf{pub}(A)} \\ \mathsf{A} \to \mathsf{B} & : \ \{N_b\}_{\mathsf{pub}(B)} \end{array}$$

A fixed version of the Needham Schroeder public key protocol.

$$\begin{array}{l} \mathsf{A} \to \mathsf{B} & : \ \{A, N_a\}_{\mathsf{pub}(B)} \\ \mathsf{B} \to \mathsf{A} & : \ \{N_a, N_b, \frac{B}{B}\}_{\mathsf{pub}(A)} \\ \mathsf{A} \to \mathsf{B} & : \ \{N_b\}_{\mathsf{pub}(B)} \end{array}$$

 \longrightarrow the responder's identity has been added to the second message

Security problem for a bounded number of sessions \longrightarrow *i.e.* processes with no replication

... using the constraint solving approach

Two main kind of security properties:

- **1** trace-based security properties (*e.g.* secrecy, authentication, ...)
- equivalence-based security properties (*e.g.* anonymity, untraceability, ...)

Running examples:

- Needham-Schroeder protocol
- BAC protocol used in the e-passport application

7 / 54

Part I

Trace-based security properties

Syntax :
$$P, Q$$
 := 0null process $in(c, x).P$ input $out(c, u).P$ outputif $u = v$ then P else Q conditional $P \mid Q$ parallel composition $!P$ replicationnew $n.P$ fresh name generation

Confidentiality for process P w.r.t. secret s

For all processes A such that $A \mid P \rightarrow^* Q$, we have that Q is not of the form C[out(c, s), Q'] with c public.

 \longrightarrow In other word, s should not be deducible by the attacker

Confidentiality using the constraint solving approach

 \longrightarrow for a bounded number of sessions

Two main steps:

A decision procedure for deciding whether a constraint system has a solution or not.

 \longrightarrow this algorithm works quite well

Confidentiality via constraint solving

Constraint systems are used to specify confidentiality under a particular scenario.

(

Protocol rules
- a particular interleaving in(u1);
 out(v1); in(u2);
 ...
 out(vn)

Constraint System

$$C = \begin{cases} \begin{array}{c} ? \\ T_0 \vdash u_1 \\ ? \\ T_0, v_1 \vdash u_2 \\ \dots \\ T_0, v_1, \dots, v_n \vdash s \end{array} \end{cases}$$

Confidentiality via constraint solving

Constraint systems are used to specify confidentiality under a particular scenario.

Protocol rulesConstraint System- a particular interleaving -
in(u_1);
out(v_1); in(u_2);
...
out(v_n) $\mathcal{C} = \begin{cases} T_0 \stackrel{?}{\vdash} u_1 \\ T_0, v_1 \stackrel{?}{\vdash} u_2 \\ ... \\ T_0, v_1, ..., v_n \stackrel{?}{\vdash} s \end{cases}$

Solution of a constraint system \mathcal{C}

A substitution σ such that

for every $T \stackrel{?}{\vdash} u \in C$, $u\sigma$ is deducible from $T\sigma$. for every $u = v \in C$ (resp. $u \neq v$), $u\sigma =_{\mathsf{E}} v\sigma$ (resp. $u\sigma \neq_{\mathsf{E}} v\sigma$)

Role A played by *a* with the attacker *c*:

new n_a . out $(\{a, n_a\}_{pub(c)})$. in $(\{n_a, x_{n_b}\}_{pub(a)})$. out $(\{x_{n_b}\}_{pub(c)})$

Role B played by b (apparently) with a:

 $in(\{a, y_{n_a}\}_{pub(b)}). \quad new \ n_b. \quad out(\{y_{n_a}, n_b\}_{pub(a)})$

Role A played by *a* with the attacker *c*: *new* n_a . out($\{a, n_a\}_{pub(c)}$). in($\{n_a, x_{n_b}\}_{pub(a)}$). out($\{x_{n_b}\}_{pub(c)}$) 1 4 5 Role B played by *b* (apparently) with *a*: in($\{a, y_{n_a}\}_{pub(b)}$). *new* n_b . out($\{y_{n_a}, n_b\}_{pub(a)}$) 2 3

Role A played by *a* with the attacker *c*: *new* n_a . out($\{a, n_a\}_{pub(c)}$). in($\{n_a, x_{n_b}\}_{pub(a)}$). out($\{x_{n_b}\}_{pub(c)}$) 1 4 5 Role B played by *b* (apparently) with *a*: in($\{a, y_{n_a}\}_{pub(b)}$). *new* n_b . out($\{y_{n_a}, n_b\}_{pub(a)}$) Constraint system: (secrecy of n_b) with $T_0 = \{a, b, c, priv(c)\}$:

Role A played by *a* with the attacker *c*: *new* n_a . out($\{a, n_a\}_{pub(c)}$). in($\{n_a, x_{n_b}\}_{pub(a)}$). out($\{x_{n_b}\}_{pub(c)}$) 1 4 5 Role B played by *b* (apparently) with *a*: in($\{a, y_{n_a}\}_{pub(b)}$). *new* n_b . out($\{y_{n_a}, n_b\}_{pub(a)}$) 2 Constraint system: (secrecy of n_b) with $T_0 = \{a, b, c, priv(c)\}$: $T_0, \{a, n_a\}_{pub(c)}$

Role A played by *a* with the attacker *c*: *new* n_a . out($\{a, n_a\}_{pub(c)}$). in($\{n_a, x_{n_b}\}_{pub(a)}$). out($\{x_{n_b}\}_{pub(c)}$) 1 4 5 Role B played by *b* (apparently) with *a*: in($\{a, y_{n_a}\}_{pub(b)}$). *new* n_b . out($\{y_{n_a}, n_b\}_{pub(a)}$) 2 3 Constraint system: (secrecy of n_b) with $T_0 = \{a, b, c, priv(c)\}$: $T_0, \{a, n_a\}_{pub(c)} \stackrel{?}{\vdash} \{a, y_{n_a}\}_{pub(b)}$

Role A played by *a* with the attacker *c*: new n_a . out $(\{a, n_a\}_{pub(c)})$. in $(\{n_a, x_{n_b}\}_{pub(a)})$. out $(\{x_{n_b}\}_{pub(c)})$ 1 4 5 Role B played by b (apparently) with a: in({a, y_{n_a} }_{pub(b)}). new n_b . out({ y_{n_a}, n_b }_{pub(a)}) 2 3 Constraint system: (secrecy of n_b) with $T_0 = \{a, b, c, priv(c)\}$: $T_0, \{a, n_a\}_{\text{pub}(c)} \vdash \{a, y_{n_a}\}_{\text{pub}(b)}$ $T_0, \{a, n_a\}_{pub(c)}, \{y_{n_a}, n_b\}_{pub(a)}$

 $(a, a) \operatorname{pub}(c), (f a, b) \operatorname{pub}(c)$

Role A played by *a* with the attacker *c*: new n_a . out $(\{a, n_a\}_{pub(c)})$. in $(\{n_a, x_{n_b}\}_{pub(a)})$. out $(\{x_{n_b}\}_{pub(c)})$ 1 4 5 Role B played by b (apparently) with a: $T_{0}, \{a, n_{a}\}_{pub(c)} \vdash \{a, y_{n_{a}}\}_{pub(b)}$ $T_{0}, \{a, n_{a}\}_{pub(c)}, \{y_{n_{a}}, n_{b}\}_{pub(a)} \vdash \{n_{a}, x_{n_{b}}\}_{pub(a)}$

Role A played by *a* with the attacker *c*: new n_a . out $(\{a, n_a\}_{pub(c)})$. in $(\{n_a, x_{n_b}\}_{pub(a)})$. out $(\{x_{n_b}\}_{pub(c)})$ 1 4 5 Role B played by b (apparently) with a: in({a, y_{n_a} }_{pub(b)}). new n_b . out({ y_{n_a}, n_b }_{pub(a)}) 2 3 Constraint system: (secrecy of n_b) with $T_0 = \{a, b, c, priv(c)\}$: $T_0, \{a, n_a\}_{\mathsf{pub}(c)} \vdash \{a, y_{n_a}\}_{\mathsf{pub}(b)}$ $T_0, \{a, n_a\}_{pub(c)}, \{y_{n_a}, n_b\}_{pub(a)} \stackrel{\cdot}{\vdash} \{n_a, x_{n_b}\}_{pub(a)}$ $T_0, \{a, n_a\}_{pub(c)}, \{y_{n_a}, n_b\}_{pub(a)}, \{x_{n_b}\}_{pub(c)}$

Role A played by *a* with the attacker *c*:

new n_a . out $(\{a, n_a\}_{pub(c)})$. in $(\{n_a, x_{n_b}\}_{pub(a)})$. out $(\{x_{n_b}\}_{pub(c)})$

Role B played by *b* (apparently) with *a*: in({*a*, *y*_{na}}_{pub(b)}). *new n*_b. out({*y*_{na}, *n*_b}_{pub(a)}) Constraint system: (secrecy of *n*_b) with $T_0 = \{a, b, c, priv(c)\}$: $T_0, \{a, n_a\}_{pub(c)} \vdash \{a, y_{na}\}_{pub(b)}$ $T_0, \{a, n_a\}_{pub(c)}, \{y_{na}, n_b\}_{pub(a)} \vdash \{n_a, x_{n_b}\}_{pub(a)}$ $T_0, \{a, n_a\}_{pub(c)}, \{y_{n_a}, n_b\}_{pub(a)}, \{x_{n_b}\}_{pub(c)} \vdash n_b$

Role A played by *a* with the attacker *c*:

new n_a . out $(\{a, n_a\}_{pub(c)})$. in $(\{n_a, x_{n_b}\}_{pub(a)})$. out $(\{x_{n_b}\}_{pub(c)})$

Role B played by b (apparently) with a: $in(\{a, y_{n_a}\}_{pub(b)}). \quad new \ n_b. \quad out(\{y_{n_a}, n_b\}_{pub(a)})$ Constraint system: (secrecy of n_b) with $T_0 = \{a, b, c, priv(c)\}$: $T_0, \ \{a, n_a\}_{pub(c)} \stackrel{?}{\vdash} \ \{a, y_{n_a}\}_{pub(b)}$ $T_0, \ \{a, n_a\}_{pub(c)}, \ \{y_{n_a}, n_b\}_{pub(a)} \stackrel{?}{\vdash} \ \{n_a, x_{n_b}\}_{pub(a)}$ $T_0, \ \{a, n_a\}_{pub(c)}, \ \{y_{n_a}, n_b\}_{pub(a)}, \ \{x_{n_b}\}_{pub(c)} \stackrel{?}{\vdash} \ n_b$

Does this constraint system have a solution?

Role A played by *a* with the attacker *c*:

new n_a . out $(\{a, n_a\}_{pub(c)})$. in $(\{n_a, x_{n_b}\}_{pub(a)})$. out $(\{x_{n_b}\}_{pub(c)})$

Role B played by b (apparently) with a: in({a, y_{n_a} }_{pub(b)}). new n_b . out({ y_{n_a}, n_b }_{pub(a)}) Constraint system: (secrecy of n_b) with $T_0 = \{a, b, c, priv(c)\}$: $T_0, \{a, n_a\}_{pub(c)} \stackrel{?}{\vdash} \{a, y_{n_a}\}_{pub(b)}$ $T_0, \{a, n_a\}_{pub(c)}, \{y_{n_a}, n_b\}_{pub(a)} \stackrel{?}{\vdash} \{n_a, x_{n_b}\}_{pub(a)}$ $T_0, \{a, n_a\}_{pub(c)}, \{y_{n_a}, n_b\}_{pub(a)}, \{x_{n_b}\}_{pub(c)} \stackrel{?}{\vdash} n_b$

Does this constraint system have a solution? \rightarrow Yes ! $\sigma = \{y_a \mapsto a, y_{n_a} \mapsto n_a, x_{n_b} \mapsto n_b\}$ S. Delaune (LSV)Verification of security protocols26th August 201512 / 54

Going back to the Denning Sacco protocol

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x, ska), pk(skb))); out(senc(s, x))

Going back to the Denning Sacco protocol

One possible interleaving:

 $\begin{aligned} & \mathsf{out}(\mathsf{aenc}(\mathsf{sign}(k, ska), \mathsf{pk}(skc))) \\ & \mathsf{in}(\mathsf{aenc}(\mathsf{sign}(x, ska), \mathsf{pk}(skb))); \mathsf{out}(\mathsf{senc}(s, x)) \end{aligned}$

The associated constraint system is:

 $T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) \stackrel{?}{\vdash} \operatorname{aenc}(\operatorname{sign}(x, ska), \operatorname{pk}(skb))$ $T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)); \operatorname{senc}(s, x) \stackrel{?}{\vdash} s$ with $T_{0} = \{\operatorname{pk}(ska), \operatorname{pk}(skb); skc\}.$

Going back to the Denning Sacco protocol

One possible interleaving:

 $\begin{aligned} & \mathsf{out}(\mathsf{aenc}(\mathsf{sign}(k, ska), \mathsf{pk}(skc))) \\ & \mathsf{in}(\mathsf{aenc}(\mathsf{sign}(x, ska), \mathsf{pk}(skb))); \mathsf{out}(\mathsf{senc}(s, x)) \end{aligned}$

The associated constraint system is:

$$T_0; \text{ aenc}(\text{sign}(k, ska), \text{pk}(skc))) \stackrel{?}{\vdash} \text{ aenc}(\text{sign}(x, ska), \text{pk}(skb))$$

$$T_0; \text{ aenc}(\text{sign}(k, ska), \text{pk}(skc)); \text{ senc}(s, x) \stackrel{?}{\vdash} s$$

2

with $T_0 = \{ pk(ska), pk(skb); skc \}$.

Does this constraint system have a solution?
Going back to the Denning Sacco protocol

One possible interleaving:

out(aenc(sign(k, ska), pk(skc))) in(aenc(sign(x, ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

 $T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc))) \stackrel{?}{\vdash} \operatorname{aenc}(\operatorname{sign}(x, ska), \operatorname{pk}(skb))$ $T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)); \operatorname{senc}(s, x) \stackrel{?}{\vdash} s$

with $T_0 = \{ pk(ska), pk(skb); skc \}$.

Does this constraint system have a solution?			
Yes ! $x \to k$			
S. Delaune (LSV)	Verification of security protocols	26th August 2015	13 / 54

The general case: is the constraint system $\mathcal C$ satisfiable?

Main idea: simplify them until reaching \perp or solved forms

Constraint system in solved form

$$C = \begin{cases} T_0 \stackrel{?}{\vdash} \mathbf{x}_0 \\ T_0 \cup T_1 \stackrel{?}{\vdash} \mathbf{x}_1 \\ \dots \\ T_0 \cup T_1 \dots \cup T_n \stackrel{?}{\vdash} \mathbf{x}_n \end{cases}$$

Question

Is there a solution to such a system ?

The general case: is the constraint system $\mathcal C$ satisfiable?

Main idea: simplify them until reaching \perp or solved forms

Constraint system in solved form

$$C = \begin{cases} T_0 \stackrel{?}{\vdash} \mathbf{x}_0 \\ T_0 \cup T_1 \stackrel{?}{\vdash} \mathbf{x}_1 \\ \dots \\ T_0 \cup T_1 \dots \cup T_n \stackrel{?}{\vdash} \mathbf{x}_n \end{cases}$$

Question

Is there a solution to such a system ?

Of course, yes ! Choose $u_0 \in T_0$, and consider the substitution:

$$\sigma = \{x_0 \mapsto u_0, \ldots, x_n \mapsto u_0\}$$

 \rightarrow these rules deal with pairs and symmetric encryption only

$$\mathsf{R}_{\mathsf{ax}}: \quad \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \mathcal{C} \quad \text{ if } T \cup \{x \mid T' \stackrel{?}{\vdash} x \in \mathcal{C}, T' \subsetneq T\} \vdash u$$

$$\begin{array}{rcl} \mathsf{R}_{\mathsf{unif}}: & \mathcal{C} \land T \stackrel{?}{\vdash} u & \rightsquigarrow_{\sigma} & \mathcal{C} \sigma \land T \sigma \stackrel{?}{\vdash} u \sigma \\ & \text{if } \sigma = \mathsf{mgu}(t_1, t_2) \text{ where } t_1, t_2 \in st(T) \cup \{u\} \end{array}$$

$$\mathsf{R}_{\mathsf{fail}}: \quad \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \bot \qquad \text{if } \mathsf{vars}(T \cup \{u\}) = \emptyset \text{ and } T \not\vdash u$$

$$\mathsf{R}_{\mathsf{f}}: \quad \mathcal{C} \land T \stackrel{?}{\vdash} f(u_1, u_2) \rightsquigarrow \mathcal{C} \land T \stackrel{?}{\vdash} u_1 \land T \stackrel{?}{\vdash} u_2 f \in \{\langle\rangle, \mathsf{senc}\}$$

$$\mathsf{R}_{\mathsf{f}}: \ \mathcal{C} \land \ \mathcal{T} \stackrel{?}{\vdash} \stackrel{\mathsf{f}}{\mathsf{(}} u_1, u_2) \ \leadsto \ \mathcal{C} \land \ \mathcal{T} \stackrel{?}{\vdash} u_1 \land \ \mathcal{T} \stackrel{?}{\vdash} u_2$$

Example:

 T_0 ; aenc(sign(k, ska), pk(skc)) $\stackrel{?}{\vdash}$ aenc(sign(x, ska), pk(skb))

$$\mathsf{R}_{\mathsf{f}}: \ \mathcal{C} \land \ T \stackrel{?}{\vdash} \frac{\mathsf{f}}{\mathsf{(}} u_1, u_2) \ \leadsto \ \mathcal{C} \land \ T \stackrel{?}{\vdash} u_1 \land \ T \stackrel{?}{\vdash} u_2$$

Example:

$$T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) \stackrel{?}{\vdash} \operatorname{aenc}(\operatorname{sign}(x, ska), \operatorname{pk}(skb))$$

$$\xrightarrow{} \begin{cases} T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) \stackrel{?}{\vdash} \operatorname{sign}(x, ska) \\ T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) \stackrel{?}{\vdash} \operatorname{pk}(skb) \end{cases}$$

$$\mathsf{R}_{\mathsf{unif}}: \ \mathcal{C} \land \ T \stackrel{?}{\vdash} u \ \rightsquigarrow_{\sigma} \ \mathcal{C} \sigma \land \ T \sigma \stackrel{?}{\vdash} u \sigma$$

if $\sigma = \mathsf{mgu}(t_1, t_2)$ where $t_1, t_2 \in st(T) \cup \{u\}$

Example:

$$\begin{array}{c} T_0; \text{ aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) & \stackrel{?}{\vdash} & \operatorname{sign}(x, ska) \\ T_0; \text{ aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) & \stackrel{?}{\vdash} & \operatorname{pk}(skb) \end{array}$$

17 / 54

$$\mathsf{R}_{\mathsf{unif}}: \ \mathcal{C} \land \ T \stackrel{?}{\vdash} u \ \rightsquigarrow_{\sigma} \ \mathcal{C} \sigma \land \ T \sigma \stackrel{?}{\vdash} u \sigma$$

if $\sigma = \mathsf{mgu}(t_1, t_2)$ where $t_1, t_2 \in st(T) \cup \{u\}$

17 / 54

$$\mathsf{R}_{\mathsf{ax}}: \quad \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \mathcal{C} \qquad \text{if } T \cup \{x \mid T' \stackrel{?}{\vdash} x \in \mathcal{C}, T' \subsetneq T\} \vdash u$$

Example: (assuming that skc and pk(skb) are in T_0)

 $\begin{cases} T_0; \text{ aenc}(\text{sign}(k, ska), \text{pk}(skc)) \stackrel{?}{\vdash} \text{sign}(k, ska) \\ T_0; \text{ aenc}(\text{sign}(k, ska), \text{pk}(skc)) \stackrel{?}{\vdash} \text{pk}(skb) \end{cases}$

$$\mathsf{R}_{\mathsf{ax}}: \quad \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \mathcal{C} \qquad \text{if } T \cup \{x \mid T' \stackrel{?}{\vdash} x \in \mathcal{C}, T' \subsetneq T\} \vdash u$$

Example: (assuming that skc and pk(skb) are in T_0)

$$\begin{cases} T_0; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) \stackrel{?}{\vdash} \operatorname{sign}(k, ska) \\ T_0; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) \stackrel{?}{\vdash} \operatorname{pk}(skb) \\ \rightsquigarrow \begin{cases} T_0; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) \stackrel{?}{\vdash} \operatorname{sign}(k, ska) \end{cases} \end{cases}$$

$$\mathsf{R}_{\mathsf{ax}}: \quad \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \mathcal{C} \qquad \text{if } T \cup \{x \mid T' \stackrel{?}{\vdash} x \in \mathcal{C}, T' \subsetneq T\} \vdash u$$

Example: (assuming that skc and pk(skb) are in T_0)

$$\begin{cases} T_0; \text{ aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) \stackrel{?}{\vdash} \operatorname{sign}(k, ska) \\ T_0; \text{ aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) \stackrel{?}{\vdash} \operatorname{pk}(skb) \\ \rightsquigarrow \begin{cases} T_0; \text{ aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) \stackrel{?}{\vdash} \operatorname{sign}(k, ska) \end{cases}$$

 $\rightsquigarrow \emptyset$ (empty constraint system)

Exercise

7

Reach a solved form starting with the constraint system:

$$T_0; \text{ aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) \stackrel{?}{\vdash} \operatorname{aenc}(\operatorname{sign}(x, ska), \operatorname{pk}(skb))$$

$$T_0; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)); \operatorname{senc}(s, x) \stackrel{?}{\vdash} s$$

Results on the simplification rules

$$\begin{aligned} \mathsf{R}_{\mathsf{ax}} : & \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \mathcal{C} \quad \text{if } T \cup \{x \mid T' \stackrel{?}{\vdash} x \in \mathcal{C}, T' \subsetneq T\} \vdash u \\ \mathsf{R}_{\mathsf{unif}} : & \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow_{\sigma} \quad \mathcal{C}\sigma \land T\sigma \stackrel{?}{\vdash} u\sigma \\ & \text{if } \sigma = \mathsf{mgu}(t_1, t_2) \text{ where } t_1, t_2 \in st(T) \cup \{u\} \\ \mathsf{R}_{\mathsf{fail}} : & \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \bot \qquad \text{if } vars(T \cup \{u\}) = \emptyset \text{ and } T \nvDash u \\ \mathsf{R}_{\mathsf{f}} : & \mathcal{C} \land T \stackrel{?}{\vdash} f(u_1, u_2) \rightsquigarrow \mathcal{C} \land T \stackrel{?}{\vdash} u_1 \land T \stackrel{?}{\vdash} u_2 f \in \{\langle\rangle, \mathsf{senc}\} \end{aligned}$$

Given a (well-formed) constraint system \mathcal{C} :

Soundness

If $\mathcal{C} \rightsquigarrow_{\sigma}^{*} \mathcal{C}'$ and θ solution of \mathcal{C}' then $\sigma \theta$ is a solution of \mathcal{C} .

 \rightarrow easy to show

Results on the simplification rules

$$\begin{aligned} \mathsf{R}_{\mathsf{ax}} : & \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \mathcal{C} \quad \text{if } T \cup \{x \mid T' \stackrel{?}{\vdash} x \in \mathcal{C}, T' \subsetneq T\} \vdash u \\ \mathsf{R}_{\mathsf{unif}} : & \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow_{\sigma} \quad \mathcal{C} \sigma \land T \sigma \stackrel{?}{\vdash} u \sigma \\ & \text{if } \sigma = \mathsf{mgu}(t_1, t_2) \text{ where } t_1, t_2 \in st(T) \cup \{u\} \\ \mathsf{R}_{\mathsf{fail}} : & \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \bot \qquad \text{if } vars(T \cup \{u\}) = \emptyset \text{ and } T \nvDash u \\ \mathsf{R}_{\mathsf{f}} : & \mathcal{C} \land T \stackrel{?}{\vdash} f(u_1, u_2) \, \rightsquigarrow \, \mathcal{C} \land T \stackrel{?}{\vdash} u_1 \land T \stackrel{?}{\vdash} u_2 \, f \in \{\langle\rangle, \mathsf{senc}\} \end{aligned}$$

Given a (well-formed) constraint system \mathcal{C} :

Termination

There is no infinite chain
$$\mathcal{C} \leadsto_{\sigma_1} \mathcal{C}_1 \ldots \leadsto_{\sigma_n} \mathcal{C}_n$$
.

 \rightarrow using the lexicographic order (number of var, size of rhs)

Results on the simplification rules

$$\begin{aligned} \mathsf{R}_{\mathsf{ax}} : & \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \mathcal{C} \quad \text{if } T \cup \{x \mid T' \stackrel{?}{\vdash} x \in \mathcal{C}, T' \subsetneq T\} \vdash u \\ \mathsf{R}_{\mathsf{unif}} : & \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow_{\sigma} \quad \mathcal{C}\sigma \land T\sigma \stackrel{?}{\vdash} u\sigma \\ & \text{if } \sigma = \mathsf{mgu}(t_1, t_2) \text{ where } t_1, t_2 \in st(T) \cup \{u\} \\ \mathsf{R}_{\mathsf{fail}} : & \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \bot \qquad \text{if } vars(T \cup \{u\}) = \emptyset \text{ and } T \nvDash u \\ \mathsf{R}_{\mathsf{f}} : & \mathcal{C} \land T \stackrel{?}{\vdash} f(u_1, u_2) \rightsquigarrow \mathcal{C} \land T \stackrel{?}{\vdash} u_1 \land T \stackrel{?}{\vdash} u_2 \ f \in \{\langle\rangle, \mathsf{senc}\} \end{aligned}$$

Given a (well-formed) constraint system C:

Completeness

If θ is a solution of C then there exists C' and θ' such that $C \rightsquigarrow_{\sigma}^* C'$, θ' is a solution of C', and $\theta = \sigma \theta'$.

\longrightarrow more involved to show

Procedure for solving a constraint system

Main idea of the procedure:

 \rightarrow this gives us a symbolic representation of all the solutions.

Theorem

Deciding confidentiality for a bounded number of sessions is decidable for classical primitives (actually in co-NP).

Exercise: NP-hardness can be shown by encoding 3-SAT

Theorem

Deciding confidentiality for a bounded number of sessions is decidable for classical primitives (actually in co-NP).

Exercise: NP-hardness can be shown by encoding 3-SAT

Some extensions that already exist:

- disequality tests (protocol with else branches)
- e more primitives: asymmetric encryption, blind signature, exclusive-or,

Avantssar platform

This approach has been implemented in the Avantssar Platform.

http://www.avantssar.eu

 \longrightarrow Typically concludes within few seconds over the flawed protocols of the Clark/Jacob library .

S. Delaune (LSV)

Part II

Equivalence-based security properties

 \longrightarrow studied in [Arapinis *et al.*, 10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

- the information printed on your passport,
- a JPEG copy of your picture.

25 / 54

 \longrightarrow studied in [Arapinis *et al.*, 10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

- the information printed on your passport,
- a JPEG copy of your picture.

The Basic Access Control (BAC) protocol is a key establishment protocol that has been designed to also ensure unlinkability.

ISO/IEC standard 15408

Unlinkability aims to ensure that a user may make multiple uses of a service or resource without others being able to link these uses together.

26 / 54

26 / 54

Cryptographic primitives are modelled using function symbols

- encryption/decryption: senc/2, sdec/2
- concatenation/projections: $\langle , \rangle/2$, proj₁/1, proj₂/1
- mac construction: mac/2

 \longrightarrow sdec(senc(x, y), y) = x, proj₁($\langle x, y \rangle$) = x, proj₂($\langle x, y \rangle$) = y. Nonces n_r , n_p , and keys k_r , k_p , k_e , k_m are modelled using names

27 / 54

Cryptographic primitives are modelled using function symbols

- encryption/decryption: senc/2, sdec/2
- concatenation/projections: $\langle , \rangle/2$, proj₁/1, proj₂/1
- mac construction: mac/2

 \longrightarrow sdec(senc(x, y), y) = x, proj₁($\langle x, y \rangle$) = x, proj₂($\langle x, y \rangle$) = y. Nonces n_r , n_p , and keys k_r , k_p , k_e , k_m are modelled using names

Modelling Passport's role

$$\begin{split} P_{\mathsf{BAC}}(\textit{k}_{\textit{E}},\textit{k}_{\textit{M}}) &= \textit{new } n_{P}.\textit{new } k_{P}.\textit{out}(n_{P}).\textit{in}(\langle z_{\textit{E}},z_{\textit{M}}\rangle).\\ &\text{if } z_{\textit{M}} = \textit{mac}(z_{\textit{E}},\textit{k}_{\textit{M}}) \textit{ then } \textit{if } n_{P} = \textit{proj}_{1}(\textit{proj}_{2}(\textit{sdec}(z_{\textit{E}},\textit{k}_{\textit{E}})))\\ &\text{ then } \textit{out}(\langle m,\textit{mac}(m,\textit{k}_{\textit{M}})\rangle)\\ &\text{ else } 0\\ &\text{ else } 0\\ \end{split}$$

w

Informally, an observer/attacker can not observe the difference between the two following situations:

- a situation where the same passport may be used twice (or even more);
- a situation where each passport is used at most once.

Informally, an observer/attacker can not observe the difference between the two following situations:

- a situation where the same passport may be used twice (or even more);
- a situation where each passport is used at most once.

More formally,

(we still have to formalize the notion of equivalence)

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, $P \approx Q$

for all processes A, we have that:

 $(A \mid P) \Downarrow_c$ if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, $P \approx Q$

for all processes A, we have that:

 $(A \mid P) \Downarrow_c$ if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Example 1:

$$\operatorname{out}(a, \mathbf{s}) \stackrel{?}{\approx} \operatorname{out}(a, \mathbf{s}')$$

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P pprox Q

for all processes A, we have that:

 $(A \mid P) \Downarrow_c$ if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Example 1:

$$\operatorname{out}(a, \mathbf{s}) \not\approx \operatorname{out}(a, \mathbf{s}')$$

 \longrightarrow A = in(a, x).if x = s then out(c, ok)

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, $P \approx Q$

for all processes A, we have that:

$$(A \mid P) \Downarrow_c$$
 if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Example 2:

$$\begin{array}{c} \textit{new s.out}(a, \texttt{senc}(\textit{s}, k)).\texttt{out}(a, \texttt{senc}(\textit{s}, k')) \\ \stackrel{?}{\approx} \\ \textit{new s, s'.out}(a, \texttt{senc}(\textit{s}, k)).\texttt{out}(a, \texttt{senc}(\textit{s'}, k')) \end{array}$$
Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, $P \approx Q$

for all processes A, we have that:

$$(A \mid P) \Downarrow_c$$
 if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Example 2:

$$new \ s.out(a, senc(s, k)).out(a, senc(s, k')) \\ \approx \\ new \ s, s'.out(a, senc(s, k)).out(a, senc(s', k')) \end{cases}$$

 $\longrightarrow A = in(a, x).in(a, y).if (sdec(x, k) = sdec(y, k')) then out(c, ok)$

Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P pprox Q

for all processes A, we have that:

 $(A \mid P) \Downarrow_c$ if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Exercise: Are the two following processes in testing equivalence?

new s.out(a, s)
$$\stackrel{?}{\approx}$$
 new s.new k.out(a, enc(s, k))

French electronic passport

 \rightarrow the passport must reply to all received messages.

French electronic passport

 \longrightarrow the passport must reply to all received messages.

French electronic passport

 \longrightarrow the passport must reply to all received messages.

30 / 54

BAC protocol (French version) as a process

Cryptographic primitives are modelled as usual using function symbols \rightarrow sdec(senc(x, y), y) = x, proj₁($\langle x, y \rangle$) = x, proj₂($\langle x, y \rangle$) = y. Nonces n_r , n_p , and keys k_r , k_p , k_e , k_m are modelled using names Error messages are modelled using constants *mac error* and *nonce error*.

BAC protocol (French version) as a process

Cryptographic primitives are modelled as usual using function symbols \rightarrow sdec(senc(x, y), y) = x, proj₁($\langle x, y \rangle$) = x, proj₂($\langle x, y \rangle$) = y. Nonces n_r , n_p , and keys k_r , k_p , k_e , k_m are modelled using names Error messages are modelled using constants mac_error and nonce_error.

Modelling Passport's role

$$\begin{aligned} P_{\text{BAC}}(k_E, k_M) &= new \; n_P.new \; k_P.\text{out}(n_P).\text{in}(\langle z_E, z_M \rangle). \\ &\text{if } z_M = \text{mac}(z_E, k_M) \; \text{then if } n_P = \text{proj}_1(\text{proj}_2(\text{sdec}(z_E, k_E))) \\ &\quad \text{then out}(\langle m, \text{mac}(m, k_M) \rangle) \\ &\quad \text{else out}(nonce_error) \\ &\quad \text{else out}(mac_error) \\ &\text{ere } m = \text{senc}(\langle n_P, \langle \text{proj}_1(z_F), k_P \rangle \rangle, k_F). \end{aligned}$$

wh

Attack against unlinkability

[Chothia & Smirnov, 10]

An attacker can track a French passport, provided he has once witnessed a successful authentication.

Attack against unlinkability

[Chothia & Smirnov, 10]

An attacker can track a French passport, provided he has once witnessed a successful authentication.

Part 1 of the attack. The attacker eavesdropes on Alice using her passport and records message M.

S. Delaune (LSV)

Part 2 of the attack.

The attacker replays the message M and checks the error code he receives.

Part 2 of the attack.

The attacker replays the message M and checks the error code he receives.

$$\implies \text{MAC check failed} \implies K'_M \neq K_M \implies ???? \text{ is not Alice}$$

S. Delaune (LSV) Verification of security protocols 26th August 2015 32 /

54

Part 2 of the attack.

The attacker replays the message M and checks the error code he receives.

 $\implies MAC check succeeded \implies K'_M = K_M \implies ???? is Alice$ S. Delaune (LSV) Verification of security protocols 26th August 2015 32 / 54

Attack !

The equivalence does not hold: $P_{\text{same}} \not\approx P_{\text{diff}}$.

More formally,

$$\begin{array}{l} P_{\mathsf{same}} \stackrel{\mathsf{def}}{=} !new \; ke.new \; km.(!P_{\mathsf{BAC}} \mid !R_{\mathsf{BAC}}) \\ \approx \\ P_{\mathsf{diff}} \stackrel{\mathsf{def}}{=} !new \; ke.new \; km.(\; P_{\mathsf{BAC}} \mid !R_{\mathsf{BAC}}) \end{array}$$

Attack !

The equivalence does not hold: $P_{\text{same}} \not\approx P_{\text{diff}}$.

More formally,

$$\begin{array}{l} P_{\mathsf{same}} \stackrel{\mathsf{def}}{=} ! \textit{new ke.new km.} (!P_{\mathsf{BAC}} \mid !R_{\mathsf{BAC}}) \\ \approx \\ P_{\mathsf{diff}} \stackrel{\mathsf{def}}{=} ! \textit{new ke.new km.} (P_{\mathsf{BAC}} \mid !R_{\mathsf{BAC}}) \end{array}$$

Exercise: Exhibit the process *A* that witnesses the fact that these two processes are not in testing equivalence.

Attack !

The equivalence does not hold: $P_{\text{same}} \not\approx P_{\text{diff}}$.

More formally,

$$\begin{array}{l} P_{\mathsf{same}} \stackrel{\mathsf{def}}{=} !new \; ke.new \; km.(!P_{\mathsf{BAC}} \mid !R_{\mathsf{BAC}}) \\ \approx \\ P_{\mathsf{diff}} \stackrel{\mathsf{def}}{=} !new \; ke.new \; km.(P_{\mathsf{BAC}} \mid !R_{\mathsf{BAC}}) \end{array}$$

Exercise: Exhibit the process *A* that witnesses the fact that these two processes are not in testing equivalence.

$$\rightarrow A = in(c, x).out(c, x).in(c, y).if y = nonce_error then out(ok, _)$$

Some other equivalence-based security properties

The notion of testing equivalence can be used to express:

Vote privacy

the fact that a particular voted in a particular way is not revealed to anyone

Strong secrecy

the fact that an adversary cannot see any difference when the value of the secret changes

 \longrightarrow stronger than the notion of secrecy as non-deducibility.

Login:	
Username	
Password:	
+****	

Guessing attack

the fact that an adversary can not learn the value of passwords even if he knows that they have been choosen in a particular dictionary.

State of the art in a nutshell (1/2)

for analysing equivalence-based security properties for an unbounded number of sessions

for analysing equivalence-based security properties for an unbounded number of sessions

- undecidable in general even for some fragment for which confidentiality is decidable [Chrétien, Cortier & D., 13]
- some recent decidability results for some restricted fragment *e.g.* tagged protocol, no nonces, a particular set of primitives ... [Chrétien, Cortier & D., Icalp'13, Concur'14, CSF'15]
- ProVerif: a tool that does not correspond to any decidability result for analysing the notion of diff-equivalence (too strong)

[Blanchet, Abadi & Fournet, 05]

None of these results is suitable to to analyse vote-privacy, or unlinkability of the BAC protocol.

State of the art in a nutshell (2/2)

for analysing equivalence-based security properties for a bounded number of sessions

for analysing equivalence-based security properties for a bounded number of sessions

A "recent" result

[Cheval, Comon & D., 11]

A procedure for deciding testing equivalence for a large class of processes for a bounded number of sessions.

Our class of processes:

- \bullet + non-trivial else branches, private channels, and non-deterministic choice:
- – a fixed set of cryptographic primitives (signature, encryption, hash function, mac).

Similar results (for different classes of processes) have been obtained by [Baudet, 05], [Dawson& Tiu, 10], [Chevalier & Rusinowitch, 10], ...

Two main steps:

- A decision procedure for deciding (symbolic) equivalence between sets of constraint systems

 \longrightarrow this algorithm works quite well

Deciding symbolic equivalence

Main idea: We rewrite pairs (Σ, Σ') of sets of constraint systems (extended to keep track of some information) until a trivial failure or a trivial success is found.

Termination

Applying blindly the simplification rules does not terminate but there is a particular strategy S that allows us to ensure termination.

Soundness/Completeness

Let (Σ_0, Σ'_0) be pair of sets of constraint systems, and consider a binary tree obtained by applying our simplification rule following a strategy S.

- soundness: If all leaves of the tree are labeled with (\bot, \bot) or (solved, solved), then $\Sigma_0 \approx_s \Sigma'_0$.
- ② completeness: if $\Sigma_0 \approx_s \Sigma'_0$, then all leaves of the tree are labeled with (\bot, \bot) or (*solved*, *solved*).

Theorem

Deciding testing equivalence between processes without replication for classical primitives is decidable.

S. Delaune (LSV)

APTE- Algorithm for Proving Testing Equivalence

 $\label{eq:http://projects.lsv.ens-cachan.fr/APTE (Ocaml - 12 KLocs) \\ \longrightarrow developed by Vincent Cheval [Cheval, TACAS'14]$

APTE Agorithm for Proving Trace Equivalence

AUTHOR ARCHIVES: Vincent Cneval

P Search

40 / 54

APTE- Algorithm for Proving Testing Equivalence

 $\label{eq:http://projects.lsv.ens-cachan.fr/APTE (Ocaml - 12 KLocs) \\ \longrightarrow developed by Vincent Cheval [Cheval, TACAS'14]$

APTE Agorithm for Proving Trace Equivalence

AUTHOR ARCHIVES: Vincent Cheval

9 Search

 \longrightarrow but a limited practical impact because it scales badly

40 / 54

Partial order reduction for security protocols

part of the PhD thesis of L. Hirschi

Main objective

to develop POR techniques that are suitable for analysing security protocols (especially testing equivalence)

54

Partial order reduction for security protocols

part of the PhD thesis of L. Hirschi

Main objective

to develop POR techniques that are suitable for analysing security protocols (especially testing equivalence)

Example: $in(c_1, x_1).out(c_1, ok) | in(c_2, x_2).out(c_2, ok)$

We propose two optimizations:

- compression: we impose a simple strategy on the exploration of the available actions (roughly outputs are performed first and using a fixed arbitrary order)
- reduction: we avoid exploring some redundant traces taking into account the data that are exchanged

Practical impact of our optimizations (in APTE)

 \rightarrow Each optimisation brings an exponential speedup.

Practical impact of our optimizations (in APTE)

 \rightarrow Each optimisation brings an exponential speedup.

Protocol	reference	with POR
Yahalom (3-party)	4	5
Needham Schroeder (3-party)	4	7
Private Authentication (2-party)	4	7
E-Passport PA (2-party)	4	9
Denning-Sacco (3-party)	5	10
Wide Mouthed Frog (3-party)	6	13

Maximum number of parallel processes verifiable in 20 hours.

 \rightarrow Our optimisations make Apte much more useful in practice for investigating interesting scenarios.

S. Delaune (LSV)

Verification of security protocols

26th August 2015

42 / 54

Electronic voting

Elections are a security-sensitive process which is the cornerstone of modern democracy

Advantages:

- convenient (you can vote from home)
- efficient for recording and tallying

"It's not who votes that counts. It's who counts the votes."

... but risk of large scale, undetected fraud !

 \rightarrow Our goal: a precise modelling of protocols and security properties which allow a rigorous analysis, and to explicit trust assumptions.

54

A variety of security properties

Eligibility: only legitimate voters can vote, and only once

No early results: no early results can be obtained which could influence the remaining voters

Vote-privacy/Receipt-freeness/Coercion-resistance: the fact that a particular voted in a particular way is not revealed to anyone

Individual/Universal verifiability:

a voter can verify that her vote was really counted, and that the published outcome is the sum of all the votes

 \rightarrow e-voting protocols are often complex, rely on non classical cryptographic primitives (*e.g.* blind signature, homomorphic encryption), and only satisfy a subset of the security properties mentioned above.

\longrightarrow developed by Ben Adida *et al.*

		willing a	direct in	100	00.03.00	·C Sat	13 NOV	
fit View History Bookmarks Tor	Is Help		inero				le	-
~ 🧲 💿 🏠 🗑 http://vote	heliosvoting.org/helios/elections/a083298c-ef3c-11df-8	8ee-12	3 ~	8	Google	2	e	
	helios							
Helios Demo — Vol Registration is Open. search:	ers and Ballot Tracking Center (b	ack to	elect	tion]				
Helios Demo — Vol Registration is Open. search: 2 cast votes Voters 1 - 3 (of 3)	ers and Ballot Tracking Center (b)	ack to	elect	tion]				
Helios Demo — Vol Registration is Open. search: 2 cast votes Votes 1 - 3 (of 3) Name	ers and Ballot Tracking Center () week	ack to	elect	tion]				
Helios Demo — Vol Registration is Open. search: 2 cast votes Voters 1 - 3 (of 3) Name E ten Smyth	ers and Ballot Tracking Center (b)	ack to	elect	tion				
Helios Demo — Vol Registration is Open. search: 2 cast votes Voters 1 - 3 (of 3) Name Ben Smyth Monte Rusinowitch	ers and Ballot Tracking Center ()	Track	elect er vissi	tion]				

 \longrightarrow already in use: election at UCL (Belgium) and Princeton university, election of the IACR board (major association in cryptography), \ldots

https://vote.heliosvoting.org

54

Behavior of Helios (simplified)

Voting phase: vote 0 or 1 using randomized encryption Bulletin board

 $\begin{array}{c|c} Alice & \{v_A\}_{pub(S)}^{r_A} \\ Bob & \{v_B\}_{pub(S)}^{r_B} \\ Chris & \{v_C\}_{pub(S)}^{r_C} \end{array}$

Voting phase: vote 0 or 1 using randomized encryption

Bulletin boardAlice $\{v_A\}_{pub(S)}^{r_A}$ Bob $\{v_B\}_{pub(S)}^{r_B}$ Chris $\{v_C\}_{pub(S)}^{r_C}$

$$\{\mathbf{v_D}\}^{r_D} \mathsf{pub}(S)$$

Voting phase: vote 0 or 1 using randomized encryption Bulletin board

Alice	$\{v_A\}_{pub(S)}^{r_A}$
Bob	$\{v_B\}_{pub(S)}^{r_B}$
Chris	$\{v_C\}_{pub(S)}^{r_C}$
David	$\{\mathbf{v}_{D}\}_{\mathrm{pub}(S)}^{r_{D}}$

Voting phase: vote 0 or 1 using randomized encryption Bulletin board

Tallying phase: using homomorphic encryption

$$\{v_A\}_{\mathsf{pub}(S)}^{r_A} \times \{v_B\}_{\mathsf{pub}(S)}^{r_B} \times \ldots = \{v_A + v_B + \ldots\}_{\mathsf{pub}(S)}^{f(r_A, r_B, \ldots)}$$

 \longrightarrow Only the final result needs to be decrypted !

Voting phase: vote 0 or 1 using randomized encryption Bulletin board

Tallying phase: using homomorphic encryption

$$\{v_A\}_{\mathsf{pub}(S)}^{r_A} \times \{v_B\}_{\mathsf{pub}(S)}^{r_B} \times \ldots = \{v_A + v_B + \ldots\}_{\mathsf{pub}(S)}^{f(r_A, r_B, \ldots)}$$

 \longrightarrow Only the final result needs to be decrypted !

A malicious voter can cheat !

Voting phase: vote 0 or 1 using randomized encryption Bulletin board

Tallying phase: using homomorphic encryption

$$\{v_A\}_{\mathsf{pub}(S)}^{r_A} \times \{v_B\}_{\mathsf{pub}(S)}^{r_B} \times \ldots = \{v_A + v_B + \ldots\}_{\mathsf{pub}(S)}^{f(r_A, r_B, \ldots)}$$

 \longrightarrow Only the final result needs to be decrypted !

A malicious voter can cheat !

 $\{v_D\}_{pub(S)}$ " + " proof of knowledge that v_D is equal to 0 or 1

Classically anonymity properties are modeled using testing equivalences between two slightly different processes, but

- changing the identity does not work, as identities are revealed
- changing the vote does not work, as the votes are revealed at the end
- a correct protocol respecting privacy may in some situation reveal how a participant voted: the case of unanimity

Classically anonymity properties are modeled using testing equivalences between two slightly different processes, but

- changing the identity does not work, as identities are revealed
- changing the vote does not work, as the votes are revealed at the end
- a correct protocol respecting privacy may in some situation reveal how a participant voted: the case of unanimity

Vote privacy

[Kremer and Ryan, 2005]

$$S[V_A(yes)| V_B(no)] \approx_t S[V_A(no)| V_B(yes)]$$

$$\uparrow \qquad \uparrow$$
A votes yes
B votes no
B votes yes
B votes yes

Individual and universal verifiability

Helios satisfies a priori the verifiability properties.

Individual and universal verifiability

Helios satisfies a priori the verifiability properties.

Vote-privacy, receipt-freeness, coercion resistance

- Helios has not beed designed to satisfy receipt-freeness and coercion-resistance
 - \rightarrow it is possible to obtain a receipt of his vote, namely (v_D, r_D) .

Individual and universal verifiability

Helios satisfies a priori the verifiability properties.

Vote-privacy, receipt-freeness, coercion resistance

- Helios has not beed designed to satisfy receipt-freeness and coercion-resistance
 - \rightarrow it is possible to obtain a receipt of his vote, namely (v_D, r_D) .

• Helios does not satisfy vote-privacy !

Description of the attack:

51 / 54

Description of the attack:

 \rightarrow Charlies simply copies Alice's vote !

54

Description of the attack:

 \longrightarrow Charlies simply copies Alice's vote !

Video of the attack at http://www.youtube.com/watch?v=fWv19uJgpc0

In conclusion (few words)

Limitations of the symbolic approach

- the algebraic properties of the primitives are abstracted away
 → no guarantee if the protocol relies on an encryption that satisfies some additional properties (*e.g.* RSA, ElGamal)
- Only the specification is analysed and not the implementation
 → most of the passports are actually linkable by a carefull analysis of
 time or message length.

http://www.loria.fr/~glondu/epassport/attaque-tailles.html

when the analysis is done for a bounded number of sessions, not all scenario are checked
 → no guarantee if the protocol is used one more time !

54

A need of formal methods in verification of security protocols. Regarding confidentiality (or authentication), powerful tool support that are nowdays used by industrials and security agencies.

It remains a lot to do for analysing privacy-type properties:

• formal definitions of some sublte security properties;

 \longrightarrow receipt-freeness, coercion-resistance in e-voting

- algorithms (and tools!) for checking automatically testing equivalence for various cryptographic primitives;
 - \longrightarrow homomorphic encryption used in e-voting,
- more composition results.

 \longrightarrow Could we derive some security guarantees of the whole e-passport application from the analysis performed on each subprotocol in isolation?