
Verification of security protocols
from confidentiality to privacy

Stéphanie Delaune

LSV, CNRS & ENS Cachan, France

Wednesday, August 26th, 2015

S. Delaune (LSV) Verification of security protocols 26th August 2015 1 / 54

This talk: formal methods for protocol verification

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?

S. Delaune (LSV) Verification of security protocols 26th August 2015 2 / 54

This talk: formal methods for protocol verification

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?

Two main tasks

1 Modelling cryptographic protocols and their security properties

2 Designing verification algorithms

S. Delaune (LSV) Verification of security protocols 26th August 2015 2 / 54

Challenge

Would you be able to find the attack on the well-known
Needham-Schroeder protocol?

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

To help you:
http://www.lsv.ens-cachan.fr/~delaune/VTSA/proverif.pdf

S. Delaune (LSV) Verification of security protocols 26th August 2015 3 / 54

http://www.lsv.ens-cachan.fr/~delaune/VTSA/proverif.pdf

Needham-Schroeder’s Protocol (1978)

• A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

S. Delaune (LSV) Verification of security protocols 26th August 2015 4 / 54

Needham-Schroeder’s Protocol (1978)

A → B : {A,Na}pub(B)

• B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

S. Delaune (LSV) Verification of security protocols 26th August 2015 4 / 54

Needham-Schroeder’s Protocol (1978)

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)

• A → B : {Nb}pub(B)

S. Delaune (LSV) Verification of security protocols 26th August 2015 4 / 54

Needham-Schroeder’s Protocol (1978)

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

S. Delaune (LSV) Verification of security protocols 26th August 2015 4 / 54

Needham-Schroeder’s Protocol (1978)

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

Questions

Is Nb secret between A and B ?

When B receives {Nb}pub(B), does this message really comes from A ?

S. Delaune (LSV) Verification of security protocols 26th August 2015 4 / 54

Needham-Schroeder’s Protocol (1978)

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

Questions

Is Nb secret between A and B ?

When B receives {Nb}pub(B), does this message really comes from A ?

Attack

An attack was found 17 years after its publication! [Lowe 96]

S. Delaune (LSV) Verification of security protocols 26th August 2015 4 / 54

Man in the middle attack

Agent A Attacker C Agent B

Attack

involving 2 sessions in parallel,

an honest agent has to initiate a
session with C.

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

S. Delaune (LSV) Verification of security protocols 26th August 2015 5 / 54

Man in the middle attack

Agent A Attacker C Agent B

{A,Na}pub(C) {A,Na}pub(B)

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

S. Delaune (LSV) Verification of security protocols 26th August 2015 5 / 54

Man in the middle attack

Agent A Attacker C Agent B

{A,Na}pub(C) {A,Na}pub(B)

{Na,Nb}pub(A){Na,Nb}pub(A)

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

S. Delaune (LSV) Verification of security protocols 26th August 2015 5 / 54

Man in the middle attack

Agent A Attacker C Agent B

{A,Na}pub(C) {A,Na}pub(B)

{Na,Nb}pub(A){Na,Nb}pub(A)

{Nb}pub(C) {Nb}pub(B)

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

S. Delaune (LSV) Verification of security protocols 26th August 2015 5 / 54

Man in the middle attack

Agent A Attacker C Agent B

{A,Na}pub(C) {A,Na}pub(B)

{Na,Nb}pub(A){Na,Nb}pub(A)

{Nb}pub(C) {Nb}pub(B)

Attack

the intruder knows Nb,

When B finishes his session
(apparently with A), A has never
talked with B.

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

S. Delaune (LSV) Verification of security protocols 26th August 2015 5 / 54

Needham Schroeder Lowe protocol

A fixed version of the Needham Schroeder public key protocol.

A → B : {A,Na}pub(B)

B → A : {Na,Nb,B}pub(A)

A → B : {Nb}pub(B)

−→ the responder’s identity has been added to the second message

S. Delaune (LSV) Verification of security protocols 26th August 2015 6 / 54

Outline for today

Security problem for a bounded number of sessions
−→ i.e. processes with no replication

. . . using the constraint solving approach

Two main kind of security properties:

1 trace-based security properties (e.g. secrecy, authentication, . . .)

2 equivalence-based security properties (e.g. anonymity,
untraceability, . . .)

Running examples:

1 Needham-Schroeder protocol

2 BAC protocol used in the e-passport application

S. Delaune (LSV) Verification of security protocols 26th August 2015 7 / 54

Part I

Trace-based security properties

S. Delaune (LSV) Verification of security protocols 26th August 2015 8 / 54

Reminder

Syntax : P ,Q := 0 null process
in(c , x).P input
out(c , u).P output
if u = v then P else Q conditional
P | Q parallel composition
!P replication
new n.P fresh name generation

Confidentiality for process P w.r.t. secret s

For all processes A such that A | P →∗ Q, we have that Q is not of the
form C [out(c , s).Q ′] with c public.

−→ In other word, s should not be deducible by the attacker
S. Delaune (LSV) Verification of security protocols 26th August 2015 9 / 54

Confidentiality using the constraint solving approach

−→ for a bounded number of sessions

Two main steps:

1 A symbolic exploration of all the possible traces

The infinite number of possible traces (i.e. experiment) are represented
by a finite set of constraint systems

−→ this set can be huge (exponential on the number of sessions) ...
but some optimizations are used to reduce this number

2 A decision procedure for deciding whether a constraint system has a
solution or not.

−→ this algorithm works quite well

S. Delaune (LSV) Verification of security protocols 26th August 2015 10 / 54

Confidentiality via constraint solving

Constraint systems are used to specify confidentiality under a particular
scenario.

Protocol rules

- a particular interleaving -

in(u1);

out(v1); in(u2);

. . .

out(vn)

Constraint System

C =

T0

?
⊢ u1

T0, v1

?
⊢ u2

...

T0, v1, .., vn

?
⊢ s

S. Delaune (LSV) Verification of security protocols 26th August 2015 11 / 54

Confidentiality via constraint solving

Constraint systems are used to specify confidentiality under a particular
scenario.

Protocol rules

- a particular interleaving -

in(u1);

out(v1); in(u2);

. . .

out(vn)

Constraint System

C =

T0

?
⊢ u1

T0, v1

?
⊢ u2

...

T0, v1, .., vn

?
⊢ s

Solution of a constraint system C

A substitution σ such that

for every T
?
⊢ u ∈ C, uσ is deducible from Tσ.

for every u = v ∈ C (resp. u 6= v), uσ =E vσ (resp. uσ 6=E vσ)

S. Delaune (LSV) Verification of security protocols 26th August 2015 11 / 54

Going back to the Needham-Schroeder’s protocol

Role A played by a with the attacker c :

new na. out({a, na}pub(c)). in({na, xnb
}pub(a)). out({xnb

}pub(c))

Role B played by b (apparently) with a:

in({a, yna
}pub(b)). new nb. out({yna

, nb}pub(a))

S. Delaune (LSV) Verification of security protocols 26th August 2015 12 / 54

Going back to the Needham-Schroeder’s protocol

Role A played by a with the attacker c :

new na. out({a, na}pub(c)). in({na, xnb
}pub(a)). out({xnb

}pub(c))

1 4 5

Role B played by b (apparently) with a:

in({a, yna
}pub(b)). new nb. out({yna

, nb}pub(a))

2 3

S. Delaune (LSV) Verification of security protocols 26th August 2015 12 / 54

Going back to the Needham-Schroeder’s protocol

Role A played by a with the attacker c :

new na. out({a, na}pub(c)). in({na, xnb
}pub(a)). out({xnb

}pub(c))

1 4 5

Role B played by b (apparently) with a:

in({a, yna
}pub(b)). new nb. out({yna

, nb}pub(a))

2 3
Constraint system: (secrecy of nb) with T0 = {a, b, c , priv(c)}:

S. Delaune (LSV) Verification of security protocols 26th August 2015 12 / 54

Going back to the Needham-Schroeder’s protocol

Role A played by a with the attacker c :

new na. out({a, na}pub(c)). in({na, xnb
}pub(a)). out({xnb

}pub(c))

1 4 5

Role B played by b (apparently) with a:

in({a, yna
}pub(b)). new nb. out({yna

, nb}pub(a))

2 3
Constraint system: (secrecy of nb) with T0 = {a, b, c , priv(c)}:

T0, {a, na}pub(c)

S. Delaune (LSV) Verification of security protocols 26th August 2015 12 / 54

Going back to the Needham-Schroeder’s protocol

Role A played by a with the attacker c :

new na. out({a, na}pub(c)). in({na, xnb
}pub(a)). out({xnb

}pub(c))

1 4 5

Role B played by b (apparently) with a:

in({a, yna
}pub(b)). new nb. out({yna

, nb}pub(a))

2 3
Constraint system: (secrecy of nb) with T0 = {a, b, c , priv(c)}:

T0, {a, na}pub(c)

?
⊢ {a, yna

}pub(b)

S. Delaune (LSV) Verification of security protocols 26th August 2015 12 / 54

Going back to the Needham-Schroeder’s protocol

Role A played by a with the attacker c :

new na. out({a, na}pub(c)). in({na, xnb
}pub(a)). out({xnb

}pub(c))

1 4 5

Role B played by b (apparently) with a:

in({a, yna
}pub(b)). new nb. out({yna

, nb}pub(a))

2 3
Constraint system: (secrecy of nb) with T0 = {a, b, c , priv(c)}:

T0, {a, na}pub(c)

?
⊢ {a, yna

}pub(b)

T0, {a, na}pub(c), {yna
, nb}pub(a)

S. Delaune (LSV) Verification of security protocols 26th August 2015 12 / 54

Going back to the Needham-Schroeder’s protocol

Role A played by a with the attacker c :

new na. out({a, na}pub(c)). in({na, xnb
}pub(a)). out({xnb

}pub(c))

1 4 5

Role B played by b (apparently) with a:

in({a, yna
}pub(b)). new nb. out({yna

, nb}pub(a))

2 3
Constraint system: (secrecy of nb) with T0 = {a, b, c , priv(c)}:

T0, {a, na}pub(c)

?
⊢ {a, yna

}pub(b)

T0, {a, na}pub(c), {yna
, nb}pub(a)

?
⊢ {na, xnb

}pub(a)

S. Delaune (LSV) Verification of security protocols 26th August 2015 12 / 54

Going back to the Needham-Schroeder’s protocol

Role A played by a with the attacker c :

new na. out({a, na}pub(c)). in({na, xnb
}pub(a)). out({xnb

}pub(c))

1 4 5

Role B played by b (apparently) with a:

in({a, yna
}pub(b)). new nb. out({yna

, nb}pub(a))

2 3
Constraint system: (secrecy of nb) with T0 = {a, b, c , priv(c)}:

T0, {a, na}pub(c)

?
⊢ {a, yna

}pub(b)

T0, {a, na}pub(c), {yna
, nb}pub(a)

?
⊢ {na, xnb

}pub(a)

T0, {a, na}pub(c), {yna
, nb}pub(a), {xnb

}pub(c)

S. Delaune (LSV) Verification of security protocols 26th August 2015 12 / 54

Going back to the Needham-Schroeder’s protocol

Role A played by a with the attacker c :

new na. out({a, na}pub(c)). in({na, xnb
}pub(a)). out({xnb

}pub(c))

Role B played by b (apparently) with a:

in({a, yna
}pub(b)). new nb. out({yna

, nb}pub(a))

Constraint system: (secrecy of nb) with T0 = {a, b, c , priv(c)}:

T0, {a, na}pub(c)

?
⊢ {a, yna

}pub(b)

T0, {a, na}pub(c), {yna
, nb}pub(a)

?
⊢ {na, xnb

}pub(a)

T0, {a, na}pub(c), {yna
, nb}pub(a), {xnb

}pub(c)

?
⊢ nb

S. Delaune (LSV) Verification of security protocols 26th August 2015 12 / 54

Going back to the Needham-Schroeder’s protocol

Role A played by a with the attacker c :

new na. out({a, na}pub(c)). in({na, xnb
}pub(a)). out({xnb

}pub(c))

Role B played by b (apparently) with a:

in({a, yna
}pub(b)). new nb. out({yna

, nb}pub(a))

Constraint system: (secrecy of nb) with T0 = {a, b, c , priv(c)}:

T0, {a, na}pub(c)

?
⊢ {a, yna

}pub(b)

T0, {a, na}pub(c), {yna
, nb}pub(a)

?
⊢ {na, xnb

}pub(a)

T0, {a, na}pub(c), {yna
, nb}pub(a), {xnb

}pub(c)

?
⊢ nb

Does this constraint system have a solution?

S. Delaune (LSV) Verification of security protocols 26th August 2015 12 / 54

Going back to the Needham-Schroeder’s protocol

Role A played by a with the attacker c :

new na. out({a, na}pub(c)). in({na, xnb
}pub(a)). out({xnb

}pub(c))

Role B played by b (apparently) with a:

in({a, yna
}pub(b)). new nb. out({yna

, nb}pub(a))

Constraint system: (secrecy of nb) with T0 = {a, b, c , priv(c)}:

T0, {a, na}pub(c)

?
⊢ {a, yna

}pub(b)

T0, {a, na}pub(c), {yna
, nb}pub(a)

?
⊢ {na, xnb

}pub(a)

T0, {a, na}pub(c), {yna
, nb}pub(a), {xnb

}pub(c)

?
⊢ nb

Does this constraint system have a solution?

−→ Yes ! σ = {ya 7→ a, yna
7→ na, xnb

7→ nb}

S. Delaune (LSV) Verification of security protocols 26th August 2015 12 / 54

Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

One possible interleaving:

out(aenc(sign(k , ska), pk(skc)))
in(aenc(sign(x , ska), pk(skb))); out(senc(s, x))

S. Delaune (LSV) Verification of security protocols 26th August 2015 13 / 54

Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

One possible interleaving:

out(aenc(sign(k , ska), pk(skc)))
in(aenc(sign(x , ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

T0; aenc(sign(k , ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

T0; aenc(sign(k , ska), pk(skc)); senc(s, x)
?
⊢ s

with T0 = {pk(ska), pk(skb); skc}.

S. Delaune (LSV) Verification of security protocols 26th August 2015 13 / 54

Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

One possible interleaving:

out(aenc(sign(k , ska), pk(skc)))
in(aenc(sign(x , ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

T0; aenc(sign(k , ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

T0; aenc(sign(k , ska), pk(skc)); senc(s, x)
?
⊢ s

with T0 = {pk(ska), pk(skb); skc}.

Does this constraint system have a solution?

S. Delaune (LSV) Verification of security protocols 26th August 2015 13 / 54

Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

One possible interleaving:

out(aenc(sign(k , ska), pk(skc)))
in(aenc(sign(x , ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

T0; aenc(sign(k , ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

T0; aenc(sign(k , ska), pk(skc)); senc(s, x)
?
⊢ s

with T0 = {pk(ska), pk(skb); skc}.

Does this constraint system have a solution?

Yes ! x → k

S. Delaune (LSV) Verification of security protocols 26th August 2015 13 / 54

The general case: is the constraint system C satisfiable?

Main idea: simplify them until reaching ⊥ or solved forms

Constraint system in solved form

C =

T0

?
⊢ x0

T0 ∪ T1

?
⊢ x1

...

T0 ∪ T1 . . . ∪ Tn

?
⊢ xn

Question

Is there a solution to such a system ?

S. Delaune (LSV) Verification of security protocols 26th August 2015 14 / 54

The general case: is the constraint system C satisfiable?

Main idea: simplify them until reaching ⊥ or solved forms

Constraint system in solved form

C =

T0

?
⊢ x0

T0 ∪ T1

?
⊢ x1

...

T0 ∪ T1 . . . ∪ Tn

?
⊢ xn

Question

Is there a solution to such a system ?

Of course, yes ! Choose u0 ∈ T0, and consider the substitution:

σ = {x0 7→ u0, . . . , xn 7→ u0}

S. Delaune (LSV) Verification of security protocols 26th August 2015 14 / 54

Simplification rules

−→ these rules deal with pairs and symmetric encryption only

Rax : C ∧ T
?
⊢ u C if T ∪ {x | T ′

?
⊢ x ∈ C,T ′ (T} ⊢ u

Runif : C ∧ T
?
⊢ u σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T) ∪ {u}

Rfail : C ∧ T
?
⊢ u ⊥ if vars(T ∪ {u}) = ∅ and T 6⊢ u

Rf : C ∧ T
?
⊢ f (u1, u2) C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2 f ∈ {〈〉, senc}

S. Delaune (LSV) Verification of security protocols 26th August 2015 15 / 54

Applying rule Rf

Rf : C ∧ T
?
⊢ f(u1, u2) C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2

Example:

T0; aenc(sign(k , ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

S. Delaune (LSV) Verification of security protocols 26th August 2015 16 / 54

Applying rule Rf

Rf : C ∧ T
?
⊢ f(u1, u2) C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2

Example:

T0; aenc(sign(k , ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(x , ska)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ pk(skb)

S. Delaune (LSV) Verification of security protocols 26th August 2015 16 / 54

Applying rule Runif

Runif : C ∧ T
?
⊢ u σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T) ∪ {u}

Example:

T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(x , ska)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ pk(skb)

S. Delaune (LSV) Verification of security protocols 26th August 2015 17 / 54

Applying rule Runif

Runif : C ∧ T
?
⊢ u σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T) ∪ {u}

Example:

T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(x , ska)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ pk(skb)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(k , ska)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ pk(skb)

S. Delaune (LSV) Verification of security protocols 26th August 2015 17 / 54

Applying rule Rax

Rax : C ∧ T
?
⊢ u C if T ∪ {x | T ′

?
⊢ x ∈ C,T ′ (T} ⊢ u

Example: (assuming that skc and pk(skb) are in T0)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(k , ska)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ pk(skb)

S. Delaune (LSV) Verification of security protocols 26th August 2015 18 / 54

Applying rule Rax

Rax : C ∧ T
?
⊢ u C if T ∪ {x | T ′

?
⊢ x ∈ C,T ′ (T} ⊢ u

Example: (assuming that skc and pk(skb) are in T0)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(k , ska)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ pk(skb)

{

T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(k , ska)

S. Delaune (LSV) Verification of security protocols 26th August 2015 18 / 54

Applying rule Rax

Rax : C ∧ T
?
⊢ u C if T ∪ {x | T ′

?
⊢ x ∈ C,T ′ (T} ⊢ u

Example: (assuming that skc and pk(skb) are in T0)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(k , ska)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ pk(skb)

{

T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(k , ska)

 ∅ (empty constraint system)

S. Delaune (LSV) Verification of security protocols 26th August 2015 18 / 54

Exercice - still about the Denning Sacco protocol

Exercise

Reach a solved form starting with the constraint system:

T0; aenc(sign(k , ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

T0; aenc(sign(k , ska), pk(skc)); senc(s, x)
?
⊢ s

S. Delaune (LSV) Verification of security protocols 26th August 2015 19 / 54

Results on the simplification rules

Rax : C ∧ T
?
⊢ u C if T ∪ {x | T ′

?
⊢ x ∈ C,T ′ (T} ⊢ u

Runif : C ∧ T
?
⊢ u σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T) ∪ {u}

Rfail : C ∧ T
?
⊢ u ⊥ if vars(T ∪ {u}) = ∅ and T 6⊢ u

Rf : C ∧ T
?
⊢ f (u1, u2) C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2 f ∈ {〈〉, senc}

Given a (well-formed) constraint system C:

Soundness

If C ∗

σ
C′ and θ solution of C′ then σθ is a solution of C.

−→ easy to show

S. Delaune (LSV) Verification of security protocols 26th August 2015 20 / 54

Results on the simplification rules

Rax : C ∧ T
?
⊢ u C if T ∪ {x | T ′

?
⊢ x ∈ C,T ′ (T} ⊢ u

Runif : C ∧ T
?
⊢ u σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T) ∪ {u}

Rfail : C ∧ T
?
⊢ u ⊥ if vars(T ∪ {u}) = ∅ and T 6⊢ u

Rf : C ∧ T
?
⊢ f (u1, u2) C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2 f ∈ {〈〉, senc}

Given a (well-formed) constraint system C:

Termination

There is no infinite chain C σ1 C1 . . . σn
Cn.

−→ using the lexicographic order (number of var, size of rhs)

S. Delaune (LSV) Verification of security protocols 26th August 2015 20 / 54

Results on the simplification rules

Rax : C ∧ T
?
⊢ u C if T ∪ {x | T ′

?
⊢ x ∈ C,T ′ (T} ⊢ u

Runif : C ∧ T
?
⊢ u σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T) ∪ {u}

Rfail : C ∧ T
?
⊢ u ⊥ if vars(T ∪ {u}) = ∅ and T 6⊢ u

Rf : C ∧ T
?
⊢ f (u1, u2) C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2 f ∈ {〈〉, senc}

Given a (well-formed) constraint system C:

Completeness

If θ is a solution of C then there exists C′ and θ′ such that C ∗

σ
C′, θ′ is a

solution of C′, and θ = σθ′.

−→ more involved to show

S. Delaune (LSV) Verification of security protocols 26th August 2015 20 / 54

Procedure for solving a constraint system

Main idea of the procedure:

C =

T0

?
⊢ u1

T0, v1

?
⊢ u2

. . .

T0, v1, . . . , vn

?
⊢ s

C1 C2 C3

⊥ C4 solved ⊥

−→ this gives us a symbolic representation of all the solutions.

S. Delaune (LSV) Verification of security protocols 26th August 2015 21 / 54

Main result

Theorem

Deciding confidentiality for a bounded number of sessions is decidable for
classical primitives (actually in co-NP).

Exercise: NP-hardness can be shown by encoding 3-SAT

S. Delaune (LSV) Verification of security protocols 26th August 2015 22 / 54

Main result

Theorem

Deciding confidentiality for a bounded number of sessions is decidable for
classical primitives (actually in co-NP).

Exercise: NP-hardness can be shown by encoding 3-SAT

Some extensions that already exist:

1 disequality tests (protocol with else branches)

2 more primitives: asymmetric encryption, blind signature, exclusive-or,
. . .

S. Delaune (LSV) Verification of security protocols 26th August 2015 22 / 54

Avantssar platform

This approach has been implemented in the Avantssar Platform.

http://www.avantssar.eu

−→ Typically concludes within few seconds over the flawed protocols of the
Clark/Jacob library .

S. Delaune (LSV) Verification of security protocols 26th August 2015 23 / 54

Part II

Equivalence-based security properties

S. Delaune (LSV) Verification of security protocols 26th August 2015 24 / 54

Electronic passport

−→ studied in [Arapinis et al., 10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

the information printed on your passport,

a JPEG copy of your picture.

S. Delaune (LSV) Verification of security protocols 26th August 2015 25 / 54

Electronic passport

−→ studied in [Arapinis et al., 10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

the information printed on your passport,

a JPEG copy of your picture.

The Basic Access Control (BAC) protocol is a key establishment protocol
that has been designed to also ensure unlinkability.

ISO/IEC standard 15408

Unlinkability aims to ensure that a user may make multiple uses of a service
or resource without others being able to link these uses together.

S. Delaune (LSV) Verification of security protocols 26th August 2015 25 / 54

BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

S. Delaune (LSV) Verification of security protocols 26th August 2015 26 / 54

BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

S. Delaune (LSV) Verification of security protocols 26th August 2015 26 / 54

BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

S. Delaune (LSV) Verification of security protocols 26th August 2015 26 / 54

BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR}KE
, MACKM

({NR , NP , KR}KE
)

S. Delaune (LSV) Verification of security protocols 26th August 2015 26 / 54

BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR}KE
, MACKM

({NR , NP , KR}KE
)

{NP , NR ,KP}KE
, MACKM

({NP ,NR , KP}KE
)

S. Delaune (LSV) Verification of security protocols 26th August 2015 26 / 54

BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR}KE
, MACKM

({NR , NP , KR}KE
)

{NP , NR ,KP}KE
, MACKM

({NP ,NR , KP}KE
)

K
seed

= KP ⊕ KR K
seed

= KP ⊕ KR

S. Delaune (LSV) Verification of security protocols 26th August 2015 26 / 54

BAC protocol as a process

Cryptographic primitives are modelled using function symbols

encryption/decryption: senc/2, sdec/2

concatenation/projections: 〈 , 〉/2, proj1/1, proj2/1

mac construction: mac/2

−→ sdec(senc(x , y), y) = x , proj1(〈x , y〉) = x , proj2(〈x , y〉) = y .

Nonces nr , np , and keys kr , kp, ke , km are modelled using names

S. Delaune (LSV) Verification of security protocols 26th August 2015 27 / 54

BAC protocol as a process

Cryptographic primitives are modelled using function symbols

encryption/decryption: senc/2, sdec/2

concatenation/projections: 〈 , 〉/2, proj1/1, proj2/1

mac construction: mac/2

−→ sdec(senc(x , y), y) = x , proj1(〈x , y〉) = x , proj2(〈x , y〉) = y .

Nonces nr , np , and keys kr , kp, ke , km are modelled using names

Modelling Passport’s role

PBAC(kE , kM) = new nP .new kP .out(nP).in(〈zE , zM〉).
if zM = mac(zE , kM) then if nP = proj1(proj2(sdec(zE , kE)))

then out(〈m,mac(m, kM)〉)
else 0

else 0

where m = senc(〈nP , 〈proj1(zE), kP 〉〉, kE).

S. Delaune (LSV) Verification of security protocols 26th August 2015 27 / 54

What does unlinkability mean?

Informally, an observer/attacker can not observe the difference between the
two following situations:

1 a situation where the same passport may be
used twice (or even more);

2 a situation where each passport is used at
most once.

S. Delaune (LSV) Verification of security protocols 26th August 2015 28 / 54

What does unlinkability mean?

Informally, an observer/attacker can not observe the difference between the
two following situations:

1 a situation where the same passport may be
used twice (or even more);

2 a situation where each passport is used at
most once.

More formally,

!new ke.new km.(!PBAC | !RBAC)
?
≈ !new ke.new km.(PBAC | !RBAC)

↑ ↑

many sessions

for each passport

only one session
for each passport

(we still have to formalize the notion of equivalence)

S. Delaune (LSV) Verification of security protocols 26th August 2015 28 / 54

Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

S. Delaune (LSV) Verification of security protocols 26th August 2015 29 / 54

Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Example 1: out(a, s)
?
≈ out(a, s ′)

S. Delaune (LSV) Verification of security protocols 26th August 2015 29 / 54

Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Example 1: out(a, s) 6≈ out(a, s ′)

−→ A = in(a, x).if x = s then out(c , ok)

S. Delaune (LSV) Verification of security protocols 26th August 2015 29 / 54

Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Example 2:

new s.out(a, senc(s, k)).out(a, senc(s, k ′))
?
≈

new s, s ′.out(a, senc(s, k)).out(a, senc(s ′, k ′))

S. Delaune (LSV) Verification of security protocols 26th August 2015 29 / 54

Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Example 2:

new s.out(a, senc(s, k)).out(a, senc(s, k ′))
6≈

new s, s ′.out(a, senc(s, k)).out(a, senc(s ′, k ′))

−→ A = in(a, x).in(a, y).if (sdec(x , k) = sdec(y , k ′)) then out(c , ok)

S. Delaune (LSV) Verification of security protocols 26th August 2015 29 / 54

Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Exercise: Are the two following processes in testing equivalence?

new s.out(a, s)
?
≈ new s.new k .out(a, enc(s, k))

S. Delaune (LSV) Verification of security protocols 26th August 2015 29 / 54

French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR}KE
, MACKM

({NR , NP , KR}KE
)

S. Delaune (LSV) Verification of security protocols 26th August 2015 30 / 54

French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR}KE
, MACKM

({NR , NP , KR}KE
)

If MAC check fails

mac_error

S. Delaune (LSV) Verification of security protocols 26th August 2015 30 / 54

French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR}KE
, MACKM

({NR , NP , KR}KE
)

If MAC check
succeeds

If nonce check fails

nonce_error

S. Delaune (LSV) Verification of security protocols 26th August 2015 30 / 54

BAC protocol (French version) as a process

Cryptographic primitives are modelled as usual using function symbols

−→ sdec(senc(x , y), y) = x , proj1(〈x , y〉) = x , proj2(〈x , y〉) = y .

Nonces nr , np , and keys kr , kp, ke , km are modelled using names

Error messages are modelled using constants mac_error and nonce_error .

S. Delaune (LSV) Verification of security protocols 26th August 2015 31 / 54

BAC protocol (French version) as a process

Cryptographic primitives are modelled as usual using function symbols

−→ sdec(senc(x , y), y) = x , proj1(〈x , y〉) = x , proj2(〈x , y〉) = y .

Nonces nr , np , and keys kr , kp, ke , km are modelled using names

Error messages are modelled using constants mac_error and nonce_error .

Modelling Passport’s role

PBAC(kE , kM) = new nP .new kP .out(nP).in(〈zE , zM〉).
if zM = mac(zE , kM) then if nP = proj1(proj2(sdec(zE , kE)))

then out(〈m,mac(m, kM)〉)
else out(nonce_error)

else out(mac_error)

where m = senc(〈nP , 〈proj1(zE), kP 〉〉, kE).

S. Delaune (LSV) Verification of security protocols 26th August 2015 31 / 54

An attack on the French passport

Attack against unlinkability [Chothia & Smirnov, 10]

An attacker can track a French passport, provided he has once witnessed a
successful authentication.

S. Delaune (LSV) Verification of security protocols 26th August 2015 32 / 54

An attack on the French passport

Attack against unlinkability [Chothia & Smirnov, 10]

An attacker can track a French passport, provided he has once witnessed a
successful authentication.

Part 1 of the attack. The attacker eavesdropes on Alice using her passport
and records message M.

Alice’s Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

M = {NR , NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)

S. Delaune (LSV) Verification of security protocols 26th August 2015 32 / 54

An attack on the French passport

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

get_challenge

N
′

P
, K

′

P

N
′

P

M = {NR , NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)

S. Delaune (LSV) Verification of security protocols 26th August 2015 32 / 54

An attack on the French passport

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

get_challenge

N
′

P
, K

′

P

N
′

P

M = {NR , NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)

mac_error

=⇒ MAC check failed =⇒ K ′

M 6= KM =⇒ ???? is not Alice
S. Delaune (LSV) Verification of security protocols 26th August 2015 32 / 54

An attack on the French passport

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

get_challenge

N
′

P
, K

′

P

N
′

P

M = {NR , NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)

nonce_error

=⇒ MAC check succeeded =⇒ K ′

M = KM =⇒ ???? is Alice
S. Delaune (LSV) Verification of security protocols 26th August 2015 32 / 54

An attack on the French passport

Attack !

The equivalence does not hold: Psame 6≈ Pdiff .

More formally,

Psame
def
=!new ke.new km.(!PBAC | !RBAC)

6≈

Pdiff
def
=!new ke.new km.(PBAC | !RBAC)

S. Delaune (LSV) Verification of security protocols 26th August 2015 33 / 54

An attack on the French passport

Attack !

The equivalence does not hold: Psame 6≈ Pdiff .

More formally,

Psame
def
=!new ke.new km.(!PBAC | !RBAC)

6≈

Pdiff
def
=!new ke.new km.(PBAC | !RBAC)

Exercise: Exhibit the process A that witnesses the fact that these two
processes are not in testing equivalence.

S. Delaune (LSV) Verification of security protocols 26th August 2015 33 / 54

An attack on the French passport

Attack !

The equivalence does not hold: Psame 6≈ Pdiff .

More formally,

Psame
def
=!new ke.new km.(!PBAC | !RBAC)

6≈

Pdiff
def
=!new ke.new km.(PBAC | !RBAC)

Exercise: Exhibit the process A that witnesses the fact that these two
processes are not in testing equivalence.

−→ A = in(c , x).out(c , x).in(c , y).if y = nonce_error then out(ok ,_)

S. Delaune (LSV) Verification of security protocols 26th August 2015 33 / 54

Some other equivalence-based security properties

The notion of testing equivalence can be used to express:

Vote privacy
the fact that a particular voted in a particular way
is not revealed to anyone

Strong secrecy
the fact that an adversary cannot see any difference when the value of the
secret changes
−→ stronger than the notion of secrecy as non-deducibility.

Guessing attack
the fact that an adversary can not learn the value
of passwords even if he knows that they have been
choosen in a particular dictionary.

S. Delaune (LSV) Verification of security protocols 26th August 2015 34 / 54

State of the art in a nutshell (1/2)

for analysing equivalence-based security properties
for an unbounded number of sessions

S. Delaune (LSV) Verification of security protocols 26th August 2015 35 / 54

State of the art in a nutshell (1/2)

for analysing equivalence-based security properties
for an unbounded number of sessions

undecidable in general even for some fragment for which confidentiality
is decidable [Chrétien, Cortier & D., 13]

some recent decidability results for some restricted fragment e.g.
tagged protocol, no nonces, a particular set of primitives . . .

[Chrétien, Cortier & D., Icalp’13, Concur’14, CSF’15]

ProVerif: a tool that does not correspond to any decidability result for
analysing the notion of diff-equivalence (too strong)

[Blanchet, Abadi & Fournet, 05]

None of these results is suitable to to analyse vote-privacy, or unlinkability
of the BAC protocol.

S. Delaune (LSV) Verification of security protocols 26th August 2015 35 / 54

State of the art in a nutshell (2/2)

for analysing equivalence-based security properties
for a bounded number of sessions

S. Delaune (LSV) Verification of security protocols 26th August 2015 36 / 54

State of the art in a nutshell (2/2)

for analysing equivalence-based security properties
for a bounded number of sessions

A “recent” result [Cheval, Comon & D., 11]

A procedure for deciding testing equivalence for a large class of processes
for a bounded number of sessions.

Our class of processes:

+ non-trivial else branches, private channels, and non-deterministic
choice;

– a fixed set of cryptographic primitives (signature, encryption, hash
function, mac).

Similar results (for different classes of processes) have been obtained by
[Baudet, 05], [Dawson& Tiu, 10], [Chevalier & Rusinowitch, 10], . . .

S. Delaune (LSV) Verification of security protocols 26th August 2015 36 / 54

Privacy using the constraint solving approach

Two main steps:

1 A symbolic exploration of all the possible traces

The infinite number of possible traces (i.e. experiment) are represented
by a finite set of constraint systems

−→ this set can be huge (exponential on the number of sessions) !

2 A decision procedure for deciding (symbolic) equivalence between sets
of constraint systems

−→ this algorithm works quite well

S. Delaune (LSV) Verification of security protocols 26th August 2015 37 / 54

Deciding symbolic equivalence

Main idea: We rewrite pairs (Σ,Σ′) of sets of constraint systems (extended
to keep track of some information) until a trivial failure or a trivial success
is found.

(Σ,Σ′)

(Σ1,Σ
′

1) (Σ2,Σ
′

2)

(⊥,⊥) (Σ3,Σ
′

3) (solved,solved)(⊥,solved)

S. Delaune (LSV) Verification of security protocols 26th August 2015 38 / 54

Results on the simplification rules

Termination
Applying blindly the simplification rules does not terminate but there is a
particular strategy S that allows us to ensure termination.

Soundness/Completeness
Let (Σ0,Σ

′

0) be pair of sets of constraint systems, and consider a binary
tree obtained by applying our simplification rule following a strategy S.

1 soundness: If all leaves of the tree are labeled with (⊥,⊥) or
(solved , solved), then Σ0 ≈s Σ

′

0.

2 completeness: if Σ0 ≈s Σ
′

0, then all leaves of the tree are labeled with
(⊥,⊥) or (solved , solved).

Theorem

Deciding testing equivalence between processes without replication for
classical primitives is decidable.

S. Delaune (LSV) Verification of security protocols 26th August 2015 39 / 54

APTE- Algorithm for Proving Testing Equivalence

http://projects.lsv.ens-cachan.fr/APTE (Ocaml - 12 KLocs)

−→ developed by Vincent Cheval [Cheval, TACAS’14]

S. Delaune (LSV) Verification of security protocols 26th August 2015 40 / 54

http://projects.lsv.ens-cachan.fr/APTE

APTE- Algorithm for Proving Testing Equivalence

http://projects.lsv.ens-cachan.fr/APTE (Ocaml - 12 KLocs)

−→ developed by Vincent Cheval [Cheval, TACAS’14]

−→ but a limited practical impact because it scales badly

S. Delaune (LSV) Verification of security protocols 26th August 2015 40 / 54

http://projects.lsv.ens-cachan.fr/APTE

Partial order reduction for security protocols

part of the PhD thesis of L. Hirschi

Main objective

to develop POR techniques that are suitable for analysing security protocols
(especially testing equivalence)

S. Delaune (LSV) Verification of security protocols 26th August 2015 41 / 54

Partial order reduction for security protocols

part of the PhD thesis of L. Hirschi

Main objective

to develop POR techniques that are suitable for analysing security protocols
(especially testing equivalence)

Example: in(c1, x1).out(c1, ok) | in(c2, x2).out(c2, ok)

We propose two optimizations:

1 compression: we impose a simple strategy on the exploration of the
available actions (roughly outputs are performed first and using a fixed
arbitrary order)

2 reduction: we avoid exploring some redundant traces taking into
account the data that are exchanged

S. Delaune (LSV) Verification of security protocols 26th August 2015 41 / 54

Practical impact of our optimizations (in APTE)

Toy example Denning Sacco protocol

−→ Each optimisation brings an exponential speedup.

S. Delaune (LSV) Verification of security protocols 26th August 2015 42 / 54

Practical impact of our optimizations (in APTE)

Toy example Denning Sacco protocol

−→ Each optimisation brings an exponential speedup.

Protocol reference with POR

Yahalom (3-party) 4 5
Needham Schroeder (3-party) 4 7
Private Authentication (2-party) 4 7
E-Passport PA (2-party) 4 9
Denning-Sacco (3-party) 5 10
Wide Mouthed Frog (3-party) 6 13

Maximum number of parallel processes verifiable in 20 hours.

−→ Our optimisations make Apte much more useful in practice for
investigating interesting scenarios.

S. Delaune (LSV) Verification of security protocols 26th August 2015 42 / 54

Electronic voting

S. Delaune (LSV) Verification of security protocols 26th August 2015 43 / 54

Electronic voting

Elections are a security-sensitive process which
is the cornerstone of modern democracy

Advantages:

convenient (you can vote from home)

efficient for recording and tallying

... but risk of large scale, undetected fraud !

−→ Our goal: a precise modelling of protocols and security properties
which allow a rigorous analysis, and to explicit trust assumptions.

S. Delaune (LSV) Verification of security protocols 26th August 2015 44 / 54

A variety of security properties

Eligibility: only legitimate voters can vote,
and only once

No early results: no early results can be ob-
tained which could influence the remaining
voters

Vote-privacy/Receipt-freeness/Coercion-resistance: the fact that a
particular voted in a particular way is not revealed to anyone

Individual/Universal verifiability:
a voter can verify that her vote was really counted,
and that the published outcome is the sum of all
the votes

S. Delaune (LSV) Verification of security protocols 26th August 2015 45 / 54

A variety of security properties

Eligibility

Fairness
Individual verifiability

Universal verifiability

Coercion resistance

Vote privacy

Receipt freeness

S. Delaune (LSV) Verification of security protocols 26th August 2015 46 / 54

A variety of security properties

Eligibility

Fairness
Individual verifiability

Universal verifiability

Coercion resistance

Vote privacy

Receipt freeness

−→ e-voting protocols are often complex, rely on non classical
cryptographic primitives (e.g. blind signature, homomorphic encryption),
and only satisfy a subset of the security properties mentioned above.

S. Delaune (LSV) Verification of security protocols 26th August 2015 46 / 54

Helios

−→ developed by Ben Adida et al.

−→ already in use: election at UCL (Belgium) and Princeton university,
election of the IACR board (major association in cryptography), . . .

https://vote.heliosvoting.org

S. Delaune (LSV) Verification of security protocols 26th August 2015 47 / 54

https://vote.heliosvoting.org

Behavior of Helios (simplified)

Voting phase: vote 0 or 1 using randomized encryption
Bulletin board

Alice {vA}
rA
pub(S)

Bob {vB}
rB
pub(S)

Chris {vC}
rC
pub(S)

S. Delaune (LSV) Verification of security protocols 26th August 2015 48 / 54

Behavior of Helios (simplified)

Voting phase: vote 0 or 1 using randomized encryption
Bulletin board

Alice {vA}
rA
pub(S)

Bob {vB}
rB
pub(S)

Chris {vC}
rC
pub(S)

{vD}
rD pub(S)

S. Delaune (LSV) Verification of security protocols 26th August 2015 48 / 54

Behavior of Helios (simplified)

Voting phase: vote 0 or 1 using randomized encryption
Bulletin board

Alice {vA}
rA
pub(S)

Bob {vB}
rB
pub(S)

Chris {vC}
rC
pub(S)

David {vD}
rD
pub(S)

S. Delaune (LSV) Verification of security protocols 26th August 2015 48 / 54

Behavior of Helios (simplified)

Voting phase: vote 0 or 1 using randomized encryption
Bulletin board

Alice {vA}
rA
pub(S)

Bob {vB}
rB
pub(S)

Chris {vC}
rC
pub(S)

David {vD}
rD
pub(S)

Tallying phase: using homomorphic encryption

{vA}
rA
pub(S) × {vB}

rB
pub(S) × . . . = {vA + vB + . . .}

f (rA,rB ,...)
pub(S)

−→ Only the final result needs to be decrypted !

S. Delaune (LSV) Verification of security protocols 26th August 2015 48 / 54

Behavior of Helios (simplified)

Voting phase: vote 0 or 1 using randomized encryption
Bulletin board

Alice {vA}
rA
pub(S)

Bob {vB}
rB
pub(S)

Chris {vC}
rC
pub(S)

David {vD}
rD
pub(S)

Tallying phase: using homomorphic encryption

{vA}
rA
pub(S) × {vB}

rB
pub(S) × . . . = {vA + vB + . . .}

f (rA,rB ,...)
pub(S)

−→ Only the final result needs to be decrypted !

A malicious voter can cheat !

S. Delaune (LSV) Verification of security protocols 26th August 2015 48 / 54

Behavior of Helios (simplified)

Voting phase: vote 0 or 1 using randomized encryption
Bulletin board

Alice {vA}
rA
pub(S)

Bob {vB}
rB
pub(S)

Chris {vC}
rC
pub(S)

David {vD}
rD
pub(S)

Tallying phase: using homomorphic encryption

{vA}
rA
pub(S) × {vB}

rB
pub(S) × . . . = {vA + vB + . . .}

f (rA,rB ,...)
pub(S)

−→ Only the final result needs to be decrypted !

A malicious voter can cheat !

{vD}pub(S) ” + ” proof of knowledge that vD is equal to 0 or 1

S. Delaune (LSV) Verification of security protocols 26th August 2015 48 / 54

Modelling vote-privacy

Classically anonymity properties are modeled using testing equivalences
between two slightly different processes, but

changing the identity does not work, as identities are revealed

changing the vote does not work, as the votes are revealed at the end

a correct protocol respecting privacy may in some situation reveal how
a participant voted: the case of unanimity

S. Delaune (LSV) Verification of security protocols 26th August 2015 49 / 54

Modelling vote-privacy

Classically anonymity properties are modeled using testing equivalences
between two slightly different processes, but

changing the identity does not work, as identities are revealed

changing the vote does not work, as the votes are revealed at the end

a correct protocol respecting privacy may in some situation reveal how
a participant voted: the case of unanimity

Vote privacy [Kremer and Ryan, 2005]

S[VA(yes)| VB(no)] ≈t S[VA(no)| VB(yes)]
↑ ↑

A votes yes

B votes no

A votes no
B votes yes

S. Delaune (LSV) Verification of security protocols 26th August 2015 49 / 54

Helios

Individual and universal verifiability

Helios satisfies a priori the verifiability properties.

S. Delaune (LSV) Verification of security protocols 26th August 2015 50 / 54

Helios

Individual and universal verifiability

Helios satisfies a priori the verifiability properties.

Vote-privacy, receipt-freeness, coercion resistance

Helios has not beed designed to satisfy receipt-freeness and
coercion-resistance
−→ it is possible to obtain a receipt of his vote, namely (vD , rD).

Bulletin board

. . .
David {vD}

rD
pub(S)

{vD}
rD
pub(S)

S. Delaune (LSV) Verification of security protocols 26th August 2015 50 / 54

Helios

Individual and universal verifiability

Helios satisfies a priori the verifiability properties.

Vote-privacy, receipt-freeness, coercion resistance

Helios has not beed designed to satisfy receipt-freeness and
coercion-resistance
−→ it is possible to obtain a receipt of his vote, namely (vD , rD).

Bulletin board

. . .
David {vD}

rD
pub(S)

{vD}
rD
pub(S)

Helios does not satisfy vote-privacy !

[Cortier & Smyth, 11]
S. Delaune (LSV) Verification of security protocols 26th August 2015 50 / 54

Vote-privacy in Helios

S[VA(yes)| VB(no)] ≈t S[VA(no)| VB(yes)]
↑ ↑

A votes yes

B votes no

A votes no
B votes yes

Description of the attack:

Bulletin board

Alice {yes}rA
pub(S)

Bob {no}rB
pub(S)

Bulletin board

Alice {no}rA
pub(S)

Bob {yes}rB
pub(S)

S. Delaune (LSV) Verification of security protocols 26th August 2015 51 / 54

Vote-privacy in Helios

S[VA(yes)| VB(no)] ≈t S[VA(no)| VB(yes)]
↑ ↑

A votes yes

B votes no

A votes no
B votes yes

Description of the attack:

Bulletin board

Alice {yes}rA
pub(S)

Bob {no}rB
pub(S)

Charlie

Bulletin board

Alice {no}rA
pub(S)

Bob {yes}rB
pub(S)

Charlie

−→ Charlies simply copies Alice’s vote !

S. Delaune (LSV) Verification of security protocols 26th August 2015 51 / 54

Vote-privacy in Helios

S[VA(yes)| VB(no)] ≈t S[VA(no)| VB(yes)]
↑ ↑

A votes yes

B votes no

A votes no
B votes yes

Description of the attack:

Bulletin board

Alice {yes}rA
pub(S)

Bob {no}rB
pub(S)

Charlie {yes}rA
pub(S)

Bulletin board

Alice {no}rA
pub(S)

Bob {yes}rB
pub(S)

Charlie {no}rA
pub(S)

−→ Charlies simply copies Alice’s vote !

Video of the attack at http://www.youtube.com/watch?v=fWvl9uJgpc0

S. Delaune (LSV) Verification of security protocols 26th August 2015 51 / 54

http://www.youtube.com/watch?v=fWvl9uJgpc0

In conclusion

(few words)

S. Delaune (LSV) Verification of security protocols 26th August 2015 52 / 54

Limitations of the symbolic approach

1 the algebraic properties of the primitives are abstracted away
−→ no guarantee if the protocol relies on an encryption that satisfies
some additional properties (e.g. RSA, ElGamal)

2 only the specification is analysed and not the implementation
−→ most of the passports are actually linkable by a carefull analysis of
time or message length.

http://www.loria.fr/~glondu/epassport/attaque-tailles.html

3 when the analysis is done for a bounded number of sessions, not all
scenario are checked
−→ no guarantee if the protocol is used one more time !

S. Delaune (LSV) Verification of security protocols 26th August 2015 53 / 54

http://www.loria.fr/~glondu/epassport/attaque-tailles.html

Conclusion

A need of formal methods in verification of security protocols.

Regarding confidentiality (or authentication), powerful tool support that are
nowdays used by industrials and security agencies.

It remains a lot to do for analysing privacy-type properties:

formal definitions of some sublte security properties;
−→ receipt-freeness, coercion-resistance in e-voting

algorithms (and tools!) for checking automatically testing equivalence
for various cryptographic primitives;
−→ homomorphic encryption used in e-voting,

more composition results.
−→ Could we derive some security guarantees of the whole e-passport
application from the analysis performed on each subprotocol in
isolation?

S. Delaune (LSV) Verification of security protocols 26th August 2015 54 / 54

