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Introduction

-

B (Craig) Interpolant for an ordered pair (4, B) of formulae s.t.
ANBEr L (or: AlE=7 —B) isaformulals.t.

IA:T[
" ABErl (I

m All the uninterpreted (in ") symbols of /
are shared between 4 and B

m \Why are interpolants useful?

® Overapproximation of 4 relative to B

— —B)

~B

® Overapprox. of H{ng}f-A

= “Local” explanation of why 4 is inconsistent with B



Importance of interpolation =X

Several important applications in formal verification:

B Approximate image computation for model checking of
Infinite-state systems

B Predicate discovery for Counterexample-Guided Abstraction
Refinement

B Approximation of transition relation for infinite-state systems

B An alternative to (lazy) predicate abstraction for program
verification

B Automatic generation of loop invariants
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Background

Symbolic transition systems

= State variables X
= |nitial states formula (X))
= Transition relation formula T'( X, X')

- D(

® A state o is an assignment to the state vars /\,, cx Ti = Vi

B A path of the system S Is a sequence of states o0g,...,0

such that og

B A k-step (sym

— | and g;,

/
0,11

=3

polic) unrolling of S is a formula

I(X%) A NIZ) T(X, X

® Encodes all possible paths of length up to k

B A state property is a formula P over X
— P

® Encodes all the states 0 suchthat o




Forward reachability checking

B Forward image computation

® Compute all states reachable from o In one transition:

Img(a (X)) := IX.0(X) AT(X, X')[X/X']

® Prove that a set of states Bad(X) is not reachable:

Bad(X)

-

Img(R(X))

=<
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B Forward image computation
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Forward reachability checking

B Forward image computation

® Compute all states reachable from o In one transition:

Img(a (X)) := IX.0(X) AT(X, X')[X/X']

® Prove that a set of states Bad(X) is not reachable:
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Forward reachabil Ity checki ng

B Forward image computation

® Compute all states reachable from o in one transition:
Img(o(X)) :=3dX.0(X) AT (X, X)X/ X']

B Prove that a set of states Bad(X) is not reachable:




Forward reachability checking

B Forward image computation

® Compute all states reachable from o In one transition:

Img(a (X)) := IX.0(X) AT(X, X')[X/X']

® Prove that a set of states Bad(X) is not reachable:
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Forward reachability checking : ety

B Forward image computation

® Compute all states reachable from o in one transition:
Img(o(X)) :=3dX.0(X) AT (X, X)X/ X']

B Prove that a set of states Bad(X) is not reachable:

R(X) :




Interpolation-based reachability =<

B |[mage computation requires quantifier elimination, which is
typically very expensive (both in theory and in practice)

B |[nterpolation-based algorithm (McMillan CAV'03): use
Interpolants to overapproximate image computation

® much more efficient than the previous algorithm

B nterpolation is often much cheaper than quantifier elimination
B abstraction (overapproximation) accelerates convergence

® termination is still guaranteed for finite-state systems



Interpolation-based reachability REN

m Set R(X) := I(X)
® Check satisfiability of Ry A A"~} T} A Bad,

Q- ~-O-@




Interpolation-based reachability BEN

m Set R(X) := I(X)
® Check satisfiability of Ry A A"~} T} A Bad,

Q- ~-O-@

B |f SAT:

" |f R = I, return REACHABLE | the unrolling hits Bad
® else, increase k and repeat




Interpolation-based reachability BEN
= Set R(X) := I(X)
® Check satisfiability of Ry A A"~} T} A Bad,

Q- ~OO-@
A B

B |f UNSAT:
= Set p(X) := Interpolant(A, B)[ X'/ X]|

@ IS an abstraction of the forward image
guided by the property




Interpolation-based reachability BEN
= Set R(X) := I(X)
® Check satisfiability of Ry A A"~} T} A Bad,

Q- ~O-@
A B

B |f UNSAT:
= Set p(X) := Interpolant(A, B)[ X'/ X]|

@ IS an abstraction of the forward image
guided by the property

" If o = R, return UNREACHABLE  fixpoint found
= else, set R(X) := R(X) V ¢(X) and continue




Interpolation-based Abstraction Refinement X

(Lazy) Predicate abstraction
® Given a Transition System S := (I,T) and predicates P

B Abstract initial states

I(X)p = 3X.(I(X) A Aep(p ¢+ p(X))[P(X) /)
B Apstract forward image
En\g(SO(X))P = 3X, X', 2. ((X) AT(X, X7) A
Npep(@p < p(X) Ay, < p(X7))[p(X) /2]

B Standard technique applied in many

verification tools ?
® |n conjunction with counterexample-guided \Wg

refinement (CEGAR)

® Extract new predicates from spurious counterexamples and compute
a more precise abstraction



Interpolation-based Abstraction Refinement -

(Lazy) Predicate abstraction

® Given a Transition System S —~ - -auadawadicatac I

The strongest boolean combination
m Abstract initial states gf Firedi%ate(ég )IP’ that is implied
TV y lmgle
I(X)IP T EIX(I(X)/\/\pE A = S V™ T Y & By =
B Abstract forward image /

I?n\g(gp(X))p = 3X, X', 2. ((X) AT(X, X7) A
Npep(@p < P(X) Az, < p(X7))[p(X) /2]

B Standard technique applied in many
verification tools

® |n conjunction with counterexample-guided \Wg

refinement (CEGAR)

® Extract new predicates from spurious counterexamples and compute
a more precise abstraction




Interpolation-based Abstraction Refinement A

(Lazy) Predicate abstraction
® Given a Transition System S := (I,T) and predicates P

B Abstract initial states

I(X)p = 3X.(I(X) A Aep(p ¢+ p(X))[P(X) /)
B Apstract forward image
I?n\g(gp(X))p = 3X, X', 2. ((X) AT(X, X7) A
Npep(@p < p(X) Ay, < p(X7))[p(X) /2]

B Standard technique applied in many
verification tools

® |n conjunction with counterexample-guided
refinement (CEGAR)

® Extract new predicates from spurious counterexamples and compute
a more precise abstraction



Interpolation-based Abstraction Refinement =X

(Lazy) Predicate abstraction
® Given a Transition System S := (I,T) and predicates P

B Abstract initial states

I(X)p = 3X.(I(X) A Aep(p ¢+ p(X))[P(X) /)
B Apstract forward image
En\g(SO(X))P = 3X, X', 2. ((X) AT(X, X7) A
Npep(@p < p(X) Ay, < p(X7))[p(X) /2]

B Standard technique applied in many

verification tools @?5)

® |n conjunction with counterexample-guided
refinement (CEGAR)

® Extract new predicates from spurious counterexamples and compute
a more precise abstraction



Interpolation-based Abstraction Refinement _:’(

® An abstract cex path og, ..., 0, (wrt. P) might be spurious

B Because abstraction is overapproximating

To,_>1 A A Tk—1+—>k
O —  —» P %




Interpolation-based Abstraction Refinement _:’(

® An abstract cex path og, ..., 0, (wrt. P) might be spurious

B Because abstraction is overapproximating

To,_>1 A A Tk—1+—>k
O —  —» P %

B Compute a sequence of interpolants ©o, ..., Pr—1

such that Ti,_>7;_|_1 N ©; = Qi1 for all 7 € [O, k — 1)




Interpolation-based Abstraction Refinement

® An abstract cex path og, ..., 0, (wrt. P) might be spurious

B Because abstraction is overapproximating

= ™
A R T
[ @ ot e T Mi %
y,
Ap By
B Compute a sequence of interpolants o, ..., Pk—1

such that 715 ;11 A ;

= ;11 for alli € [0,k — 1)



Interpolation-based Abstraction Refinement _:’(

® An abstract cex path og, ..., 0, (wrt. P) might be spurious

B Because abstraction is overapproximating

N

N
T . . T 15k
0 @k
_ y
A
1 B

B Compute a sequence of interpolants o, ..., Pk—1

such that Ti,_>7;_|_1 N ©; = Qi1 for all 7 € [O, k — ].)




Interpolation-based Abstraction Refinement _:’(

® An abstract cex path og, ..., 0, (wrt. P) might be spurious

|
D -

J

B Because abstraction is overapproximating

\

(
@ To—s1 « n Ti—1—k
—_— 0] = — 0k >

Ag_1 kBk_l

B Compute a sequence of interpolants o, ..., Pk—1

such that Ti,_>7;_|_1 N ©; = Qi1 for all 7 € [O, k — ].)




Interpolation-based Abstraction Refinement _?<

® An abstract cex path og, ..., 0, (wrt. P) might be spurious

B Because abstraction is overapproximating

T, I A
O—1 A A k—1—k
Q- — —u @
§ y,
Ap_
k=1 B, 4
B Compute a sequence of interpolants o, ..., Pk—1

such that Ti,_>7;_|_1 N ©; = Qi1 for all 7 € [O, k — ].)
" Let Prew
BSetP :=PUPpew

® Theorem: gy, ...,0) is not an abstract cex path wrt. P’

be the set of all the predicates in ¥o,- .-, Pr—1




Proof sketch BN

B ¥ Is an overapproximation of the states reachable In | steps,
compatible with the abstract trace g, - . . , 0;

B ©; Is also incompatible with the rest of the abstract trace
Oi+1,---,0k (SINCe it is an interpolant)

® By the requirement that 15,11 N\ ©; F @it
it follows that Img(gpz) — ;11

® Therefore, Img( ... ITmg(yg)) E pr_1 and Img(pr_1) E L

k—2 (since the trace IS spurious)

® Since we add all the atomic predicates of ©o,...,Pr—1
to P’ and the abstraction is precise wrt. P/, then

Img(_. .. Img(po)r )p = L
k—1



Outline

Introduction
Interpolants in Formal Verification

Computing interpolants in SMT

|

D
FONDAZIONE
BRUNO KESSLER




Efficient interpolation in SAT =3¢

B |Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

B Traverse the resolution proof, annotating each node with a
partial interpolant /

® The partial interpolant for the root node (the empty clause) is the
computed interpolant
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B |Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

B Traverse the resolution proof, annotating each node with a
partial interpolant /

® The partial interpolant for the root node (the empty clause) is the
computed interpolant

B McMillan's annotation rules (others exist):




Efficient interpolation in SAT =3¢

B |Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

B Traverse the resolution proof, annotating each node with a
partial interpolant /

® The partial interpolant for the root node (the empty clause) is the
computed interpolant

B McMillan's annotation rules (others exist):

® For each leaf node (input clause) C in the proof:

mifC e A,set I :=\/{leC|var(l) € B}
® Otherwise (C' € B),set I :=T




Efficient interpolation in SAT =€

B |Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

B Traverse the resolution proof, annotating each node with a
partial interpolant /

® The partial interpolant for the root node (the empty clause) is the
computed interpolant

B McMillan's annotation rules (others exist):

® For each leaf node (input clause) C in the proof:
mifC e A,set I :=\/{leC|var(l) € B}
B Otherwise (C' € B),set [ := T

® For each inner node (resolution) with parents ¢ V [ and ¢ V —l
and annotations /; and I

m f var(l) € B,set [ := [ A I, ; otherwise, set [ := [, V I,




Example

A= (xV-yr) A (72 V —y2) Ay
B = (_‘yl \/yg) /\ (yl V Z) N\ —z

REN

TV Y1 =z V Y
Y1 VY2 Y1
Y2 Y1 VY2
Y1V 2 Y1
2 -z




Example

A=
. ((:1:\/ —y1) A (mx VvV —y2) Ayr
Y1 Vy2) A (Y1 V z) Az

U \/ —1y2 —|y2

Y1 V Y2

Y1

Y1

(my1 V —y2) Ay

Y1 V Y2

-1 (my1 V ye) Ay

(my1 V —y2) Ays

1 (=
(—y1 V —y2) Ay




Proof of correctness

® By induction on the structure of the resolution refutation

® | emma: for each annotated node C' [I], we have
NAEITIV\{leC|var(l) ¢ B}
BANIT EVV{leC|var(l) € B}
3) I contains only variables that occur in both A and B

® Then as a corollary, for the root L [I], I is an interpolant

® The lemma trivially holds for leaf nodes (check)



Proof of correctness - resolution steps

14

Resolution step with parents (¢ V1) [I1] and (¢ V ) [I2]
m Case var(l) € B

1) By ind. hyp A
A

Therefore A

=11 V\{p €y | var(p) ¢ B} and
= I, V\/{p € v | var(p) € B}

= (I1 N12) V\{p € oA |var(p) € B}

2) By inductive hypotesis B A I = \/{p € o VI | var(p) € B}

which means

BE-LVV{pepVl]|var(p) € B}

Similarly, B = —1s V \/{p € ¥ V —l | var(p) € B}
By resolution on var(l), then
B :_Ill\/_llg\/\/{pe 0V Y | V&I‘(p) S B}

3) Trivial by the inductive hypothesis



Proof of correctness - resolution steps

Resolution step with parents (¢ V1) [I1] and (¢ V ) [I2]
m Case var(l) ¢ B

1)Byind.hyp AL V\{pepVl|var(p) € B} and
AELV\{peyV~l|var(p) ¢ B}
By resolution onvar([), then

AE (V) VV{pE€pVy | var(p) ¢ B}

2)Byind.hyp B = —I; vV \/{p € ¢ | var(p) € B} and
Bl vV \{p €| var(p) € B}
Therefore B = -1 vV \/{p € ¢ V¥ | var(p) € B} and

BE-ILLbVV{peypVy | var(p) € B}
andso BA (I V1) EV{pepVy | var(p) € B}

3) Trivial by the inductive hypothesis

14



Interpolants in SMT

B Resolution refutations in SMT:

Boolean part T-specific part for conjunctions

(ground resolution) of constraints (negated T-lemmas)




Interpolants in SMT

B Resolution refutations in SMT:

Boolean part T-specific part for conjunctions
(ground resolution) of constraints (negated T-lemmas)

Standard Boolean T-specific interpolation
Interpolation for conjunctions only

Theory interpolation only for sets of T-literals




Interpolants in SMT

B Resolution refutations in SMT:

Boolean part T-specific part for conjunctions
(ground resolution) of constraints (negated T-lemmas)

Standard Boolean T-specific interpolation
Interpolation for conjunctions only

Theory interpolation only for sets of T-literals

® Annotation for a T-lemma C:
I:= T—interpolant(/\{l c -C | var(l) ¢ B},

A{l € ~C | var(l) € B})




Equality (EUF)
B |Interpolants from coloured congruence graphs
® Nodes with [ if term occurs in A M if term is shared
colours: B ifterm occursin B

® Edges with colours of the nodes they connect

B Uncolorable edge: connects nodes of two different colours
® Always possible to obtain a coloured graph

® (by introducing new nodes)

=<




Equality (EUF) BEN

B [nterpolants from coloured congruence graphs

® Nodes with B ifterm occursin A B iftermis shared
colours: B ifterm occursin B

® Edges with colours of the nodes they connect

B Uncolorable edge: connects nodes of two different colours
® Always possible to obtain a coloured graph

® (by introducing new nodes)

A = (u _ g(s)) A (g(t) _ x)/\ L Uncolourable
(f(u,y) = 2) D om ﬂ@ ®f(z,v) 2

-
-
-
-
-
-
-
-
-
-
-
-
=
-
-
-
~
-
~
R
<
&
W
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Equality (EUF)
B [nterpolants from coloured congruence graphs
® Nodes with [ if term occurs in A M if term is shared
colours: B ifterm occursin B

® Edges with colours of the nodes they connect

B Uncolorable edge: connects nodes of two different colours
® Always possible to obtain a coloured graph

® (by introducing new nodes)

Ve f(xay) T




Interpolation algorithm (sketch)

B Start from disequality edge .
B Compute summaries for A-paths with shared endpoints

4 | | 4—m----4 | M

——
A A and H A

-



Interpolation algorithm (sketch) X

B Start from disequality edge .
B Compute summaries for A-paths with shared endpoints

4 = | 4—®----4 | M

——
A A and H A

B |f an A-summary involves a congruence edge, compute
summaries recursively on function arguments

B Use B-summaries as premises for the A-summary

B

y ] y | y y
— —
=N 4 4

S




Interpolation algorithm (sketch)

B Start from disequality edge .
B Compute summaries for A-paths with shared endpoints

4 | | 4—m----4 | M

——
A A and H A

B |f an A-summary involves a congruence edge, compute
summaries recursively on function arguments

B Use B-summaries as premises for the A-summary

B

y ] y | y y
— —
= --E—m 4

S

B (Several cases to consider)



Example
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® Start from —(f(x,v) = 2)

B A-summaries for —m-} z= f(z,y)



=14
Exam P @

B:=(v=y)A(s=1t)A .
~(f(z,v) =2 x

® Start from —(f(x,v) = 2)

B A-summaries for —m-} z= f(z,y)
" Recurse on edge [JONN} -- - -TICEN)
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®m Start from —(f(x,v) = 2) EL J

B A-summaries for —m-} z= f(z,y)
" Recurse on edge [JONN} -- - -TICEN)

= Recurse on edge B}
= Path @—@l, B-summary: (s = t)




B:=(v=y)A(s=1t)A .
~(f(z,v) =2 x

® Start from —(f(x,v) = 2)

B A-summaries for —m-} z= f(z,y)
" Recurse on edge [JONN} -- - -TICEN)

= Recurse on edge B}
= Path @—@l, B-summary: (s = t)

B |nterpolant: (s =t) = (z = f(z,y))




Linear Rational Arithmetic (LRA) =3¢

B [nterpolants from proofs of unsatisfiability of a system of
inequalities ) . a;z; <c

B Proof of unsatisfiability: linear combination of inequalities with
positive coefficients to derive a contradiction (0 < ¢ withe < 0)

B [nterpolant obtained out of the proof by combining inequalities
from A (using the same coefficients)

B Proof of unsatisfiability generated from the Simplex



tableau

S1 — 35132 — 1
S2 T1 + T2
S3 r3 — 2T
S4 = 23

VANRVANVANRVAS

B = (3 S Xr3 — 25131), (233‘3 S 1)

=

J/

VAR VAN VAN VAN

s3 S4

candidate solution 3
r1 — 0
o +— 0
3 +— 0
s1 — 0
So — 0
s3 +— 0
sy — 0



=<

S1 S92 S3 S4
tableau bounds candidate solution 5
L3 = —%81+%82+83 —00_ S < 1 T, — —1
_ 1 1 0 < < o0 1
— _1 3 < < o0 2
Ll — TA51 7T 452 = = T3 3
S4 = —81+ 389+ 283 =X < < 1 S1 > 1
So 0
S3 = 3
Sq4 5

No suitable variable for pivoting!
Conflict




=<

A=0Bxy—21<1),(0<z14+22) B:=(3<x3—211),(223<1)

J/

N N Vs Y

S1 S92 S3 S4
tableau bounds candidate solution 5
1 _
L3 = —§S1+%82+83 00 < 1 T, — —1
S I 0 < < i
L9 481 452 — — o — 4
L1 151 T 452 = — T3 3
S4 = —81+ 389+ 283 =X < < 1 S1 > 1
Proof: §2 g
S3 =
1-(2x2 <1 1- (30 —x1 <1
(223 <1) (3w — 2y < 1) sy B

(2$3+3£B2—$1§2) S(OSZL’l—l—CIZ’Q)

(2563 — 45131 < 2) 2 - (3 < L3 — 25131)
(0 < —4)
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A=0Bxy—21<1),(0<z14+22) B:=(3<x3—211),(223<1)

J/

S1 S92 S3 S4
tableau bounds candidate solution 5]
L3 = —%81+%82+83 —00_ S < 1 i o= —1
_ 1 1 0 < 59 < oc ! 1
_ _1 3 < < o0 2
Ll = T751 T 452 = — T3 3
S4 = —81+ 389+ 283 =X < < 1 S1 > 1
Interpolant: S22 g

S3 =

— 1-(3x0 —x1 <1
( : L= ) S4 > 5
(ng—ﬂflgl) 3(O§$1—|—ZIZ’2)
(-4&3‘1 S 1) —
(—4181 S 1)




Linear Integer Arithmetic (LIA) =2

B Constraints of the form
>.icixi e, el =}

B |n general, no quantifier-free interpolation for LIA
Example: A:=(y—2x=0) B:=(y—2z—1=0)
The only interpolant is: Jw.(y = 2w)

B Solution: extend the signature to include modular equations
(divisibility predicates)

(t+c=¢q0)=Tw.(t+c=d-w), dezZ"

The interpolant now becomes: (y =2 0)




SMT(LIA) with modular equations

® Modular equations can be eliminated via preprocessing:

" Replace every atom a := (t + ¢ =4 0)
with a fresh Boolean variable pq

® Add the 4 clauses
Pa — (t+c¢c—dw; =0)
—pg — (t+ ¢ — dwy — wgy = 0)
(—we +1<0)
(wa —d+1 <0)

where w;i, wo are fresh integer variables

REN




Interpolants from LIA-proofs X

B Cutting-plane proof system: complete proof system for LIA

— t1 <0 to <0
Hyp —— Comb — —— ¢c1,¢c2 > 0
ypt<0 Cl°t1—|—62°t2§0 b2

ZZCZZIZ‘Z—FCSO

Div = . :
Zi T T (E—‘ <0

d > 0 divides the ¢;’s




Interpolants from LIA-proofs : R

B Cutting-plane proof system: complete proof system for LIA

— t1 <0 ta <0
Hyp —— Comb = ——.¢c1,c0 >0
ypt<0 Cl°t1—|—62°t2§0 b2

 CiTi +¢ <0 .
M Div ZZZC - +i ,d > 0 divides the ¢;’s
> grit g1 <0



Interpolants from LIA-proofs X

B Cutting-plane proof system: complete proof system for LIA

— t1 <0 to <0
Hyp —— Comb — —— ¢c1,¢c2 > 0
ypt<0 Cl°t1—|—62°t2§0 b2

> .cixi+c<0

S comit d- (%W = O,d > ( divides the ¢;’s

Strenghten



Interpolants from LIA-proofs =3¢

B Cutting-plane proof system: complete proof system for LIA

— t1 <0 to <0
Hyp —— Comb — ——— . c1,c2 > 0
ypt<0 Cl°t1—|—62°t2§0 b2

> .cixi+c<0

S+ d- 5] < O,d > (0 divides the ¢;’s

Strenghten

B [nterpolation by annotating proof rules
= Annotation: a set of pairs {(t; <0, \.(t;; = 0))}
® When | is derived, then
I = Vz(t@ S 0 A /\j EXIStEhm(ZBZ Q/ B)(tw — O))
IS the computed interpolant




Interpolants from cutting-plane proofs

® Annotations for Hyp and Comb from McMillan
(same as LRA)

Hyp

Comb

qp 22iCi%i T €S0 1€ <0, T)}]

t ft<0e A

t<0[{

[t <0,

)] t/:{ 0 ift<0€B

t1 <0 [[1]

to <0 |I2]

c1-t1+co-1to <0 [I]
I :={{c1t] +02t; <0,E;\NE;) |, E;) €I, <t;-,Ej> c Ir}
B K-Strengthen rule of [Brillout et al. IJCAR'10]

> iCi%i+d- | 5] <0 [I]

- D(

,d > 0 divides the ¢;’s

I={{((t+n<0), ((t+n=0)]0<n<d-[5] —c}U
{E+d-[g]—c<0),T)}



Interpolants from cutting-plane proofs

® Annotations for Hyp and Comb from McMillan
(same as LRA)

Hyp

Comb

qp 22iCi%i T €S0 1€ <0, T)}]

t ft<0ec A

t <0 [{

(0 <0,

t1 <0 [[1]

)] t/:{ 0 ift<0€B
to <0 [I5]

c1-t1+co-1to <0 [I]
I :={{c1t] +02t; <0,E;\NE;) |, E;) €I, <t;-,Ej> c Ir}
B K-Strengthen rule of [Brillout et al. IJCAR'10]

> iCi%i+d- | 5] <0 [I]

- D(

,d > 0 divides the ¢;’s

I={{((t+n<0), ((t+n=0)]0<n<d-[5] —c}U
{E+d-[g]—c<0),T)}



REN

Example
A — —y—4r—-1<0 B —y—42+1<0
]l y+42 <0 ]l y+42—-2<0

y+4xr <0 —y—42z+1<0

dr —4z+1 <0
—y—4dr—-1<0 y+4+42-2<0

4r —4z+1+3 <0 —4r+42—-3<0




Example - with annotations =X

A — —y—4r—-1<0 B —y—42+1<0
]l y+42 <0 ]l y+42—-2<0

y+4xr <0 —y—42z+1<0
{y+4z <0, T)} [{{0<0,T)}]

dr —4z+1 <0
{{y +42 <0, T)}]

—y—4r—1<0 y+42—-2<0
{(—y—4z—-1<0,T)}] [{{0<0,T)}

4r —4z+1+3 <0 —4r+42—-3<0

{{y+4zx+n<0,y+4x+n=0) | {(—y —4x —1<0,T)}
0<n<3}U{{y+4z+2<0,T)}

(1<0)=1
{(n—1<0,y+42+n=0)|0<n<3tU{(2-1<0,T)}



Example — with annotations X

A — —y—4r—-1<0 B —y—42+1<0
]l y+42 <0 ]l y+42—-2<0

y+4xr <0 —y—42z+1<0
{y+4z <0, T)} [{{0<0,T)}]

dr —4z+1 <0
{{y +42 <0, T)}]

—y—4r—1<0 y+42—-2<0
{(—y—4z—-1<0,T)}] [{{0<0,T)}

4r —4z+1+3 <0 —4r+42—-3<0

{{y+4zx+n<0,y+4x+n=0) | {(—y —4x —1<0,T)}
0<n<3}U{{y+4z+2<0,T)}

(1<0)=1
{(n—1<0,y+4x+n=0)|0<n<3}U{(2—-1<0,T)}
Interpolant: (y =4 0) V (y + 1 =4 0)




Drawback of Strengthen REN

B |nterpolation of Strengthen creates potentially very big
disjunctions

C
= Linear in the strengthening factor k := d[ =] — c
® Can be exponential in the size of the proof

EXiTPI_& —y—dr—1<0 B —y—4z+1<0
) y+4x <0 Tl y+42—2<0

Interpolant: (y =4 0) V (y +1 =4 0)




Drawback of Strengthen REN

B |nterpolation of Strengthen creates potentially very big
disjunctions

C
= Linear in the strengthening factor k := d[ =] — c
® Can be exponential in the size of the proof

Exafrln.pl_e: —y_an_n_l_lSOB._ —y —2nz+1<90
|l y+2nz <0 -l y+2ne—n<0

Interpolant: (y =2, 0) V(y +1=2,0) V...V (y =2, n—1)




Drawback of Strengthen BEN

B |nterpolation of Strengthen creates potentially very big
disjunctions

C
= Linear in the strengthening factor k := d[ =] — c
® Can be exponential in the size of the proof

Exafrln.pl_e: —y—2naj—n—|-1SOB,_ —y —2nz+1<90
|l y+2nz <0 -l y+2ne—n<0

Interpolant: (y =2, 0) V(y +1=2,0) V...V (y =2, n—1)

® The problem are AB-mixed cuts:
2 zigB Cili Ty g CiY; <0
ingB CiTi ZngzA ¢y +d-[g] <0

Strengthen



Interpolation with ceilings

B |dea: use a different extension of the signature of LIA, and
extend also its domain

® Introduce the ceiling function [-] [Pudlak '97]
= Allow non-variable terms to be non-integers (e.g. %)

B Much simpler interpolation procedure

= Proof annotations are single inequalities (¢t < 0)



Interpolation with ceilings REN

B |dea: use a different extension of the signature of LIA, and
extend also its domain

® Introduce the ceiling function [-] [Pudlak '97]
= Allow non-variable terms to be non-integers (e.g. %)
B Much simpler interpolation procedure

= Proof annotations are single inequalities (¢t < 0)

— t1 <0 [t] <0 to <0 [t;, < 0]
Hyp C b 1 = 1 = 2 = 2 =
t <0 [t <0 ot c1-t1+co-ta<0cy -t +cy-t), <O
ZngB a;y; + szng b2k + Dy canp CiTi tC
oy ! /
Div [ZngzB a;Yj + 2 picanp Ci%i T 1]

. A 7;
ZngB %yj + ZZkEB Ekzk + Za:iEAﬂB %ZUZ T |_§—|

1 Z.CU,L M C;xi_‘_t/
[, ¢p Sy + [Zmcane ST

d > 0 divides a;, bi., c;




Interpolation with ceilings - example REN

® No blowup of interpolants wrt. the size of the proofs

A — —y—2nr—n—+1<0 B.— —y —2nz+1<90
]l y+2nz <0 ]l y+2nz—n<0

y+2ne <0 —y—2nz+1<0

2nr —2nz+1 <0
—y—2nr—m+1<0 y+2nz—nm<40

2n-(r—z+1<0) —2nr+2nz—2n+1<0




Interpolation with ceilings - example REN

® No blowup of interpolants wrt. the size of the proofs

A — —y—2nr—n—+1<0 B.— —y —2nz+1<90
]l y+2nz <0 ]l y+2nz—n<0

y+2ne <0 —y—2nz+1<0
ly + 2nx < 0] 0 < 0]

2nr —2nz+1 <0

—y—2nr—m+1<0 y+2nz—nm<40

[y + 2nz < 0] [~y —2nz—n+1<0  [0<0]

2n-(r—z+1<0) —2nr+2nz—2n+1<0

[z + |55 < 0] [~y —2nz —n+1<0)
(1<0)=_1

2nfep]l —y—n+1<0)



Interpolation with ceilings - example BEN

® No blowup of interpolants wrt. the size of the proofs

e —y—2nr—n—+1<0 5. —y—2nz+1<0
|l y+2nxe <0 )l y+2nz—n<0

y+2ne <0 —y—2nz+1<0
ly + 2nx < 0] 0 < 0]

2nr —2nz+1 <0

—y—2nr—nmn+1<0 y+2nz—m<90

[y + 2nz < 0] [~y —2nz—n+1<0  [0<0]

2n-(r—z+1<0) —2nr+2nz—2n+1<0

[z + |55 < 0] [~y —2nz —n+1<0)
(1<0)=_1

Interpolant: 2n[s-] —y —n+1 <0




SMT(LIA) with ceilings REN

B | ke modular equations, also ceilings can be eliminated via
preprocessing

" Replace every term ||
with a fresh integer variable Z¢]

= Add the 2 unit clauses
(encoding the meaning of ceiling: [t]| — 1 <t < [t])

(l-:ljfﬂ —1-t+1<0)
(l-t—l-xm <0)

where [ is the least common multiple of the denominators of the
coefficients in ¢



Bit-vectors (BV) X

B [nterpolation for bit-vectors is hard

® Only some limited work done so far

B Most efficient solvers use eager encoding into SAT, which is
efficient but not good for interpolation

® Easy in principle, but not very useful interpolants

B Try to exploit lazy bit-blasting to incorporate BV into DPLL(T)



Interpolation via Bit-Blasting =3¢

B [nterpolation via bit-blasting Is easy...

® From Agyand By generate ABool and BBool
Each var x of width n encoded with n Boolean vars b7 ... b7

® Generate a Boolean interpolant Iggot for (ABool, BBool)

= Replace every variable b7 in /Boolwith the bit-selection 7]
and every Boolean connective with the corresponding bit-wise
connective: A +— &, Vi |, -~

B but quite impractical

® Generates “ugly” interpolants
® Word-level structure of the original problem completely lost
® How to apply word-level simplifications?



Interpolation via Bit-Blasting - Example .
A= (ags) * bs) = 15(5)) A (as) = 3(g))
B < ﬂ(b[g] %uC[8] — 1[8]) A\ (6[8] — 2[8])

A word-level interpolant is:

def

I = (big) * 3;3) = 15(g))

...but with bit-blasting we get:

I' = (big[0] = 1p17) A ((bysy[0]& ~ ((((((~ bys)[T]& ~ byg[6])&
~ big)[5])& ~ bg)[4])& ~ big)[3])&big)[2])& ~ bgi[1])) = Opy)



Alternative: Iazy bit-blasting and DPLL(T)

B Exploit lazy bit-blasting

B Bit-blast only BV-atoms, not the whole formula

® Boolean skeleton of the formula handled by the “main” DPLL, like
in DPLL(T)

® Conjunctions of BV-atoms handled (via bit-blasting) by a “sub”-
DPLL (DPLL-BV) that acts as a BV-solver

Standard BV-specific Interpolation
Boolean Interpolation for conjunctions of constraints




Interpolation for BV constraints

B A layered approach

B Apply in sequence a chain of procedures of increasing
generality and cost

" |nterpolation in EUF

¥ |nterpolation via equality inlining

® |nterpolation via Linear Integer Arithmetic encoding
" nterpolation via bit-blasting

REN




Interpolation in EUF A
B Treat all the BV-operators as uninterpreted functions

B Exploit cheap, efficient algorithms for solving and
Interpolating modulo EUF

B Possible because we avoid bit-blasting upront!

oR
@
=h

Example: A (331[32] — 3[32]) A (5133 [32] = L1[32] * L2 [32])
B

f

Q.
)

(5134 (32] — 5132[32]) A\ ($5[32] — 3[32] g [32])/\
ﬁ($3[32] — 45 [32])

IUF = z3 = f(f3, 22)

Iy = L3[32] = 3[32] " L2[32]




Interpolation via Equality Inlining '°<

B [nterpolation via quantifier elimination: given (A, B) an
Interpolant can be computed by eliminating quantifiers from
dzgpA orfrom d,24—-B

B |[n general, this can be very expensive for BV

= Might require bit-blasting and can cause blow-up of the formula
B Cheap case: non-common variables occurring in “definitional”

equalities

Example: (x=¢e)Ap and x does not occurin e, then

B((z=e) Np) = ¢z — €



Interpolation via Equality Inlining REN

B [nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

® Try both from A and — B
® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] 5¢ (374[8] y 335[8]) <s (0[24] 18] — 1[32]))/\
(332[8] — 561[8]) A\ (374[8] — 192[8]) A\ (CIZ‘5 8] = 128[8])

Q.
)
H-;

(w318 - T6[s]) = (— (0247 =2 T215)))[7 = O])A
r378] <u Lig]) A (O1s) <u T3781) N (Te[s] = 1is)

—~
]




Interpolation via Equality Inlining

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

" Try both from 4 and — B
® |f one of them succeeds, we have an interpolant

FONDAZIONE
BRUNO KE

def

Example: A = (0[24] ¢ ($4[8] . 375[8]) SS (0[24] B 371[8] — 1[32]))/\

(CIBQ[g] — 581[8]) A\ (554[8] — 192[8]) A\ (375[8] — 128[8])

S —

Definitional equalities




Interpolation via Equality Inlining

=

B [nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

® Try both from A and — B

® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] ¢ (334[8] . 335[8]) SS (0[24] 5 331[8] — 1[32]))/\

($2[8] = $1[8])

N (zas) = 192(g)) A (25[5) = 1285))

Q.

ef

B = ((z3(s] - T6[s]) = (—(0j24) :: Z2(8]))[7 : O])A
(

r378] <u Lig]) A (O1s) <u 3781) N (T6[8] = 1is)




Interpolation via Equality Inlining REN

B [nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

® Try both from A and — B
® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] .e (374[8] . 335[8]) <s (0[24] » L2[8] — 1[32]))/\
A\ (334[8] — 192[8]) A\ (375[8] — 128[8])

Q.

ef

B = ((z3(s] - z6[s)) = (— (0241 1 T2(8]))[7 : O)A
(z318) <u Lig)) A (Ops) <u z3(5)) N (z6[8) = 1g))




Interpolation via Equality Inlining BEN

B [nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

® Try both from A and — B
® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] .e (334[8] . 335[8]) <s (0[24] w L2[8] — 1[32]))/\
A\ (374[8] — 192[8]) A\ (375[8] — 128[8])

Q.

ef

B = ((z3(s] - z6[s)) = (— (0241 1 T2(8]))[7 : O)A
(z318) <u Lig)) A (Ops) <u z3(5)) N (z6[8) = 1g))




Interpolation via Equality Inlining REN

B [nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

® Try both from A and — B
® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] : (192[8] - 128[8]) <s (0[24] 2 X2(8] 1[32]))
A A

Q.

ef

B = ((z3(s] - z6[s)) = (— (0241 1 T2(8]))[7 : O)A
(z318) <u Lig)) A (Ops) <u z3(5)) N (z6[8) = 1g))




Interpolation via Equality Inlining

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

" Try both from 4 and — B
® |f one of them succeeds, we have an interpolant

def

Example: A = (0247 :: (192(g) - 128g)) <5 (Oj2q] :: T2[8] — 1132]))

B = ((z3(s] - z6[s)) = (— (0241 1 T2(8]))[7 : O)A
(z3(8] <u 1[s7) A (O8] <u Z3[8)) A (T6[5) = 1[5)




Interpolation via LIA Encoding

B Simple idea (in principle):
® Encode a set of BV-constraints into an SMT(LIA)-formula

® Generate a LIA-interpolant using existing algorithms
= Map back to a BV-interpolant

B However, several problems to solve:
= Efficiency
® More importantly, soundness

|
D
FONDAZIONE
U ',;,'."J‘ CIUNE
BRUNO KESSLER




Encoding BV into LIA =€

B Use well-known encodings from BV to SMT(LIA)

= Encode each BV term ¢, as an integer variable x; and the
constraints (0 < z,) A (zy < 27 — 1)

® Encode each BV operation as a LIA-formula.

Examples: | |
ticgin) = bl s 5] ™ (20 =m) A (2, = 27 h+ 27m + DA
1€[0,2)Ame 0,277 Y AR 0,27 1)

def

tn] = tipn] T l2[n] ™ (2 =24, + 20, —2"0) A (0 <0 < 1)

tin) = tif) - K ) (v =k -z, —2"0) N (0 <0 <k)




From LIA-interpolants to BV-interpolants _:’(

B “Invert” the LIA encoding to get a BV interpolant

B Unsound in general

¥ |ssues due to overflow and (un)signedness of operations

B Our (very simple) solution: check the interpolants

® Given a candidate interpolant I, use our SMT(BV) solver to
check the unsatisfiability of (A A —I)V (B A )

= If successful, then ] is an Interpolant



From LIA- to BV-interpolants: examples B

A= (11 18] = Ys[4] * ?15[4]) A (Y1 (8] — Z/2[8]) A (95[4] — 1[4])
B= ~(Yag) + Lig) <w Y218)) A (Yajg) = i)

Encoding into LIA:

def

ArL1a :(:zij = 162y, + szys) /\ (:Eyl — wa) A (wy5 = 1)A
(wyl < [07 28)) A (xyz < [Ov 28)) A (.Cl?y5 < [07 24))

Bria d:ef_'(xy4-|-1 < ny) A ($y4—|—1 = Ty, T+ 1 — QSU)A
(CCy4 — 1)/\

(Tya+1 € [0,27)) A (2y, € [0,2%)) AN (0 < 0 < 1)



From LIA- to BV-interpolants: examples - R

A= (11 8] = Ys[4] y5[4]) A (Y1 8] = y2[8]) A (95[4] — 1[4])
B= =(Yarg) + Lig) <u Y2i8)) N (Yajs) = i)

LIA-Interpolant:

def

ILIA — (17 S £Uy2)

BV-interpolant:

def

I'= (178) <u Y2(s)




From LIA- to BV-interpolants: examples REN

A =(ya1g = 81g)) A (y3(8) = Ors)) A (Yajg) = Y2[s))

def

B = (y13[16] — 0[8] . y4[8]) A (255[16] <u Y13[16] - (0[8] ‘e y3[8]))

Encoding into LIA:
Avia d:ef(xyz = 81) A (Tys = 0) A\ (Ty, = Ty, )A
(2, €0,2%)) A (24, € [0,2%)) A (2, € [0,2°))

Lyi1z = 28 -0+ CCiy4) A (255 < xyls—l—(O::ys))/\

(

(xy13+(0::y3) = Ty;3 t+ 2°.0+ Lys — 2160)/\
(ajy13 S [Ov 216)) A\ (:’Uy13—|—(012y3) S [07 216))/\
(



- =<
From LIA- to BV-interpolants: examples

A =(ya1g = 81g)) A (y3(8) = Ors)) A (Yajg) = Y2[s))

def

B = (y13[16] — 0[8] . y4[8]) A (255[16] <u Y13[16] - (0[8] ‘e y3[8]))

LIA-Interpolant:

def

Itia = (xys + Ty, < 81)

BV-interpolant:

I= (y3[8] + Ya[g] Su 81[8])




From LIA- to BV-interpolants: examples

A dzef(yz[S] = 81(g)) A (ysg) = Ops)) A (Yajs) = Y218))

def

B = (y13p16) = Ojg) =t yas)) N (2557116) <w y13716] + (O[g) = Y357))

LIA-Interpolant:

def

Iria = ($y3 + Ty, < 81)

Addition might

overflow in BV!

BV-interpolant:

I %{s} + Yajs) Fu 8lig))




- =€
From LIA- to BV-interpolants: examples

A =(ya1g = 81g)) A (y3(8) = Ors)) A (Yajg) = Y2[s))

def

B = (y13[16] — 0[8] . y4[8]) A (255[16] <u Y13[16] - (0[8] ‘e y3[8]))

LIA-Interpolant:

def

Itia = (xys + Ty, < 81)

Addition might
overflow in BV!

BV-interpolant:

A correct interpolant would be
def

I = (0[1] .. yg[g] + 0[1] . y4[8] Su 8]-[9])




From LIA- to BV-interpolants: examples REN

A d:efﬂ(yzl[g] + 151 <u y3[8]) A (2 8] = Y4[g] T 1[8])
def

B =(y21s) + Lig) <u Y3s)) A (Yr(s) = 318)) A (Yr[8) = Y25 + Ljg))
Encoding into LIA:

def
Aria :_‘(wy4—|—1 < wys) A (.CIZy2 — Cli‘y4_|_1)/\

(Tys41 = Ty, +1—2%01)A
(Tys € [0,2%)) A (2ys € [0,2%)) A (zy, € [0,2%))A
(2401 € 0,29) A (0 < 0y < 1)

Q.

ef

Bria = Lyo+1 < a:y?,) A (xw — 3) A ($y7 — CIJy2_|_1)/\

(
(Tyotr1 = Ty, +1 — 28‘72)/\
(x?ﬁ < [0728)) A (CEy2_|_1 < [0728)) A (0 < 02 < 1)



From LIA- to BV-interpolants: examples REN

A d:efﬂ(yzl[g] + 151 <u y3[8]) A (Y2 8] = Ya[g] T Lis))
B =(y215) + 1is] <u y3(s) A (yris) = 3i81) A (Wris) = vas) + Lis))
LIA-Interpolant:

def

ILIA = ( 259 < Lyy — Lys

256 )

BV-interpolant:  (after fixing overflows)
=, def

I' = (65281 16) <u (Org) :: Y2(8 ]) — (O :: y3[8])_|_
256(16] - (6553516) - (O[s] :: Y2(s])/u 25614)))



From LIA- to BV-interpolants: examples _:’(

A dzefﬂ(yzl[g] + 181 <u y3[8]) A (2 8] = Y4[g] T 1[8])
def

B =(y2(s) + L8] <u Ys[g)) A (Y718) = 3i81) A (Y7(8) = Y2(s) + Lig))
LIA-Interpolant:

Tiia = (=255 <z, — 3y, + 256{—1;35?%”

BV-interpolant:  (after fixing overflows)

= (65281[1[8] :: Yarg)) — (Ofg) = Yspg))+
256(16) - (655°

In this case, the problem

IS also the sign



From LIA- to BV-interpolants: examples REN

A d:efﬂ(yzl[g] + 151 <u y3[8]) A (Y2 8] = Ya[g] T Lis))
B =(y21s) + 1is) <u y3ps) A (Yr1s) = 31s)) A Wrs) = y2ps) + 1))
LIA-Interpolant:

def CEy2

ILIA = (—255 S $y2 — ili‘y3 —+ 250 L—1256J)

BV-interpolant:

def

I = (6528116 <s (Ojg] :: y2rg)) — (Ofg) == Ysjg))+
256(16] - (6553516 - (O[g] = Y2(s))/w 256(16]))

Correct interpolant



Interpolation in combined theories BN

B Delayed Theory Combination (DTC): use the DPLL engine to
perform theory combination

" Independent T, -solvers, that interact only with DPLL
® How: Boolean search space augmented with interface equalities
B Equalities between variables shared by the two theories

® Combination of theories
encoded directly in the
proof of unsatisfiability P

T2

T

T2
T T

= 7. -lemmas for the
Individual theories

T

B P contains interface
equalities




Interpolation in combined theories =X

B Problem for interpolation:
® Some interface equalities (x =y) are AB-mixed: x ¢ B, y & A
" Interpolation procedures don't work with AB-mixed terms

B Solution: Split AB-mixed equalities occurring in P, and fix the proof

= How: Split each 7T-lemma
nV (r=uy)into (nV (x =1))A
nV(t=y) with tc ANB T T

T2

using available algorithms

T

T

® 7.'s must be equality-
iInterpolating and convex

® Propagate the changes
throughout P




Interpolation in combined theories

B Problem for interpolation:

" Some interface equalities (x = y) are AB-mixed: * € B, y € A

" Interpolation procedures don't work with AB-mixed terms

- D(

B Solution: Split AB-mixed equalities occurring in P, and fix the proof

= How: Split each 7T-lemma

nV (r=uy)into (nV (x =1))A

nV(t=y) with tc ANB
using available algorithms

® 7.'s must be equality-
iInterpolating and convex

® Propagate the changes
throughout P

T

T2

1

7o

T2

T

T

Pl




Interpolation in combined theories

B Problem for interpolation:

® Some interface equalities (x = y) are AB-mixed: x ¢ B, y ¢ A

" Interpolation procedures don't work with AB-mixed terms

14

B Solution: Split AB-mixed equalities occurring in P, and fix the proof

= How: Split each 7T-lemma

Problem: splitting can
cause exponential blow-up
In P

Solution: control the kind of
proofs generated by DPLL,
so that the splitting can be
performed efficiently
(le-local proofs)

T2

1

7o

T2

T

T

Pl




L : : =3¢
Interpolation in combined theories

B After splitting AB-mixed equalities, we can compute an
Interpolant as usual

® Nothing special needed for theory combination!

® Because theory combination is encoded in the proof, we can
reuse the Boolean interpolation algorithm

B Features:

® No need of ad-hoc interpolant combination procedures
= Exploit state-of-the-art SMT solvers, based on (variants of) DTC
= Split only when necessary



Example

A=(a1=f(x1)N(z—x21=1) A (a1 +

BI:(CLQZf

N

r2)) A (z— 22 =1) A (as A
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Example

A= (a1

f(z1))

T-lemmas:
Ci=(r1=22) V(2 —21 =1)V
—(z —x9 = 1)
Cy =(a1 = az2) V =(az = f(z2))V
(a1 = f(21)) V (21 = 22)

03 E—l(al +z = O) V

—(a1 = az)

ANz—xz1=1)A
NA(z—z0 =1) A

=

—(ag +2=1)\
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xample Gl -
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A=(a1=f(x1))AN(z—x21=1)A (a1 + z=0)

o

T-lemmas: Pivot: (x, =x)

e == == mmam —
Cr=(z1=22)Va(z—x1 =1)V ( 1—|—z:O)>)3
c-aa=1) | O (r-m=1

Ca =(a1 = a2) V ~(az = f(x2))V (a1 = f(z1)) Os
(a1 = f(21) V(21 = 22) e
Cs=-(a1+2=0)V-(az+2z=1)\ (=2, =1) ©
—(a1 = as) N
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Example
A=(a1 = f(z1))AN(z—21=1)A (a1 + 2 =0)
B:=(as = f(z2))N(z—22=1)A (a2 +2z=1)
Pesubproof] @ m m m = -m-------
! !
. |
T-lemmas: ' !
Cr=(z1=22)Va(z—x1 =1)V : :
—(z—x9=1) 1 Cs Co I
Cr=(a1 = a)Vlas = f))v :
(a1 = flz1)) V(21 = 22) 1 1 Cvo
03 E_l(al—l—Z:O)\/_'(CLQ—|—Z:1):\/ \ / :
=(a1 = as) I oo o S !



Example BEN

A=(a1=f(x1)AN(z—x21=1)A (a1 + z=0)
B:=(as = f(z2))N(z—22=1)A (a2 +2z=1)

Pesubproof. m m m m m = - - - - - -

T-lemmas:
{C’l =(z1 =x2)V(z—x1 = 1)\/]
(2 —x9 = 1)
Cy =(a1 = az2) V =(az = f(z2))V
—(ar = f(21)) V (21 = 22)

C3 Eﬁ(a1+z:())\/ﬂ(a2+z:1):\/ \ /

—(a1 = as) I O, ]




Example =X

A=(a1=f(x1)AN(z—x21=1)A (a1 + z=0)
B:=(as = f(z2))N(z—22=1)A (a2 +2z=1)

Pesubproof. m m m m = = - - - - --

i
Ci=(r1=z—-1)Va(z—z1=1)v | :
—(z—x2=1) : Cs C, :
Cl=(z—1=x2)V(z—xz1=1)V 1 \ / I
Rt s A R i
2 =1 = a2 a2 = J &2 I
_'(al — f(xl)) \% _'(551 = $2) I \@/ / C! :
C3 Eﬁ(a1+z:())\/ﬂ(a2+z:1):\/ 2\ / :

=(a1 = as) I O,



Example A

A=(a1=f(x1)AN(z—x21=1)A (a1 + z=0)
B:=(as = f(z2))N(z—22=1)A (a2 +2z=1)

Cy =(a1 = az) V =(az = f(5132))\/]
=(a1 = f(x1)) V ~(21 = x2)

P subproof: A=
Ci=(r1=z—-1)Va(z—z1=1)v | ,=a,)inC,
—(z —x9 =1) : C,
Cl=(z—1=x2)V(z—xz1=1)V 1
—(z —x9 = 1) :
1

(s E—l(al + Z = O) V _'(CLQ +z = 1)I @2\ /

ﬁ(CL1 = CL2) | O
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Proof Tree Preserving Interpolation X

B [Christ, Hoenicke and Nutz, TACAS 2013]

B |nterpolants with AB-mixed literals without proof rewriting

= Replace AB-mixed terms(s < t) with(s < x) A (x < t)
In leaves, where x Is a fresh purification variable
® Eliminate the purification variable when resolving on (s < t)
C1V (s <t) [Ii(x)] C2 V(s <t) [L(x)]
C1V (s [Ig]

B Advantages:

® no need of proof rewriting
® handles also for non-convex theories
B Drawbacks:

® need T-specific interpolation rules for resolution steps
® more complex interpolation system



From Binary to Sequence Interpolants X

® An ordered sequence of formulae Fy, ..., F;,, such that
Ni b = L
® \We want a sequence of interpolants I, ..., I,,_1such that

= [, is an interpolant for (/\le F;, /\;’L:k—|—1 E)

m Fp N1 = I forall k € 2,n — 1]

® Needed in various applications (e.g. abstraction refinement)

® How to compute them?

® |n general, if we compute arbitrary binary interpolants for
(/\izl Fi, /\7-7’:1@ L Fj ), the second condition will not hold
j=k+



A simple solution

® Compute [; as an interpolant of (F7, /\;7’ 5, F)

® Compute [, as an interpolant of (I_1 A Fj, A\ F};)

1=k+1

B Claim: [, is an interpolant for (/\f“:1 [, /\?:Hl Fj)
B Proof (sketch):

= By ind. hyp I},_1 is an interpolant for (/\k 1F /\] K E)
50/\7;:1 i = 1g—1 and [ _ 1/\Fk/\/\ F; =1

1=k+1

B Advantages:

® simple to implement
® can use any off-the-shelf binary interpolation

B Drawback: requires n-1 SMT calls



A more efficient algorithm

B Compute an SMT proof of unsatisfiablity P for /\?:1 F;

® Compute each [, := Interpolant(/\le Fi, /\?:k_u Fj)

from the same proof P

® Theorem: Fi. N [i._1 = Ii




A more efficient algorithm =3¢

B Compute an SMT proof of unsatisfiablity P for /\?’:1 F;
® Compute each J;, := Interpolant(/\le F;, /\?:k—l—l F};)
from the same proof P

® Theorem: Fi. N [i._1 = Ii

B Proof (sketch) — case n=3:

® | et C be a node of P with partial interpolants /" and /" for the
partitionings (£1, F2 A F3)and (F1 A F5, F3) resp. Then we
can prove, by induction on the structure of P, that:

I'NFo =1"Vv\/{l e C|var(l) ¢ Fs}

® The theorem then follows as a corollary

® Works also for DTC-rewritten proofs
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Introduction BN

B |C3 very successful SAT-based model checking algorithm

® Incremental Construction
® of Inductive Clauses
® for Indubitable Correctness

B Key principles:

= Verification by induction

¥ |nductive invariant built incrementally
B py discovering (relatively-)inductive clauses

= Exploiting efficient SAT solvers



Introduction BN

B |C3 has been further generalized to SMT In various ways

® \We will look in some detail at one such generalization, called
|IC3 with Implicit Predicate Abstraction (IC3-1A)

= Exploits several features of modern SMT solvers that we have
discussed so far

B |ncremental solving

B Assumptions and unsatisfiable cores
B |nterpolation

B A “hands-down” approach

= We will build a (simple) real implementation on top of MathSAT




Proofs by Induction e
® Given transition system (I(X),T(X, X")) and property P(X)
® Base case (initiation):
I(X) | P(X)
¥ [nductive step (consectution):
PX)NT(X, X" E P(X')

® Typically however, P is not inductive

® Find an inductive invariant Inv(X), stronger than P
n [(X) = Inv(X)
B Inu(X)AT(X,X') = Inv(X’)
m [nu(X) = P(X)
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A (very) high level view of IC3

FONDAZ
BRUNO KESSLER

GHI ] ]

B Gilven a symbolic transition system and invariant property P,

build an inductive invariant F s.t. F

— P

B Trace of formulae Fy(X) =1,..., Fr(X) s.t:

m fori> 0, F,Is a set of clauses

overapproximation of states reachable in up to i steps

Fiir1 CF; (so F; = Fiy1)
forall s < k, F; = P




1
11

U

/\

A (very) hlgh level view of IC3 = R e

a

B Blocking phase: incrementally strengthen trace until f, = P

® Get bad cube s

® Call SAT solveron F,_{ A—=sAT A s
(i.e., checkif Fi _{ A—=s AT = —s")




A (very) hlgh level view of IC3 : R e

a

B Blocking phase: incrementally strengthen trace until f, = P

® Get bad cube s

® Call SAT solveron Fi_1{ A=s AT A s
(i.e., check if Fj_y A—s AT = —s')

}/

E Check If s Is Inductive relative to F_,
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A (very) hlgh level view of IC3

O

B Blocking phase: incrementally strengthen trace until f, = P

® Get bad cube s

® Call SAT solveron F._{ A—=sAT A s
(i.e., checkif F,_1 A—s AT = —s')




A (very) high level view of IC3 =X

O

B Blocking phase: incrementally strengthen trace until f, = P

® Get bad cube s

® Call SAT solveron F._{ A—=sAT A s
If /is reached,

B SAT: s is reachable from Fir_1 A —sin 1 step counterexample
B Get a cube c in the preimage of s and try found

(recursively) to prove it unreachable from Fj._ o, ...
® cis a counterexample to induction (CTI)



A (very) high level view of IC3

.

B Blocking phase: incrementally strengthen trace until £},

¥ Get bad cube s
m Call SAT solveron Fr._o A—=s AT N s’

O

FONDAZIONE
BRUNO KE




A (very) high level view of IC3

|
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B Blocking phase: incrementally strengthen trace until £},

" Get bad cube s
m Call SAT solveron Fr._o A—=s AT N s’
B UNSAT: —c is inductive relative to Fi.—o

Fi._o AN—=cNT

® Generalize ¢ to g and block by adding —g to Fy_1, Fr_2,..., F]




A (very) high level view of IC3

F
BRUNO KESSLER

o = .

B Blocking phase: incrementally strengthen trace until £},

" Get bad cube s
m Call SAT solveron Fr._o A—=s AT N s’
B UNSAT: —c is inductive relative to Fi.—o

Fi._o AN—=cNT

® Generalize ¢ to g and block by adding —g to Fy_1, Fr_2,..., F]




A (very) hlgh level view of IC3 FOIRATONE

o w

Propagation: extend trace to Fj,, ;and push forward clauses

For each i and each clause ¢ € F;:

Call SAT solveron F; AT A —¢
If UNSAT, add c to Fj 4

Fi/\T:C/




A (very) hlgh level view of IC3 | FOIRATONE

o i I3

Propagation: extend trace to Fj,, ;and push forward clauses

For each i and each clause ¢ € F;:

Call SAT solveron F, AT A —¢/
If UNSAT, add ¢ to F. ;

F@/\T:C/




A (very) hlgh level view of IC3 FOIRATONE

o '+ I3

Propagation: extend trace to Fj,, ;and push forward clauses

For each i and each clause ¢ € F;:

If

Call SAT solveron F; AT A —¢
If UNSAT, add c to Fj 4

Fi = Fia

Fi/\T:C/

, P Is proved,

otherwise start another round of blocking and propagation



IC3 pseudo-code

bool IC3(I, T, P):
trace = [I] # first elem of trace 1s init formula
trace.push() # add a new frame
while True:
# blocking phase
while is_sat(trace.last() & ~P):
c = extract_cube() # ¢ |= trace.last() & ~P
if not rec_block(c, trace.size()-1):
return False # counterexample found

# propagation phase
trace.push()
for i=1 to trace.size()-1:
for each cube c¢ in trace[1]:
if not 1is_sat(trace[i] & ~c & T & c'):
trace[i+1].append(c)
if trace[i] == trace[i+1]:
return True # property proved




IC3 pseudo-code

=

bool rec_block(s, 1):
if 1 ==
return False # reached initial states
while is_sat(trace[i-1] & ~S & T & s'):
c = get_predecessor(i-1, T, s')
if not rec_block(c, 1-1):
return False
g = generalize(~s, 1)
trace[1i].append(qg)
return True




Correctness (sketch) -2

® Consider the formula Fj,_; AT A s’ where s is a bad cube
= |f UNSAT, then Fj_qis strong enough to block s
= Since F; AT = F} ;.
= Since F; &= F; 1, thenwecanaddstoall F;,j <k

then s is unreachable in k steps or less




Correctness (sketch)

=

® Consider the formula Fj,_; AT A s’ where s is a bad cube
= |f UNSAT, then Fj_qis strong enough to block s

= Since F; AT = F!

o

then s is unreachable in k steps or less

= Since F; = F;,q,thenwecanaddstoall F;,j <k

® Consider now the relative induction check F,_{ A —=s AT A s

= We know that I = Fj

£~ s because [

— P (base case)

= Since F; = F;11, then we know that —s holds up to k



Correctness (sketch)

=

® Consider the formula Fj,_; AT A s’ where s is a bad cube
= |f UNSAT, then Fj_qis strong enough to block s
= Since F; AT

= Since F;

/
= F/.

then s is unreachable in k steps or less

1. thenwecanadd stoall F;, 57 <k

® Consider now the relative induction check F,_{ A —=s AT A s
= We know that I = F|y = s because [

® Since F;

— P (base case)

i+1, then we know that —s holds up to k

B Propagation: for each ¢ € F;, check F; AT N —c¢

= we know that ¢ holds up to /, if UNSAT then it holds up to /+1
it1, s NT =F;, , and F; = P,
if F; = F;,1 then the fixpoint is an inductive invariant

® since F; =




Inductive Clause Generalization =2

® Crucial step of IC3
® Given a relatively inductive clause ¢ = {l1,...,1,}

compute a generalization g € ¢ that is still inductive
Fi i ANTANgEY (1)

® Drop literals from ¢ and check that (1) still holds

= Accelerate with unsat cores returned by the SAT solver
B Using SAT under assumptions

B However, make sure the base case still holds
=if I~ c\{l;},then [;cannot be dropped




Simple iterative generalization

=

void indgen(c, 1):
done = False
for iter = 1 to max_iters:
if done:
break
done = True
for each 1 in c:
cand = ¢ \ {1}
if not 1is_sat(I & cand) and
not is_sat(trace[i] & ~cand & T & cand'):
Cc = get_unsat_core(cand)
rest = cand \ ¢
while is_sat(I & c):
11 = rest.pop()
c.add(11)
done = False
break




CTIl computation

=<

®\When F; A —s AT A s’ is satisfiable:

" s reaches — P in k-i steps

® s can be reached from F; in 1 step

® strengthen F; by blocking cubes ¢ in the preimage of s

® Extract CTI ¢ from the SAT assignment

® And generalize to represent multiple bad predecessors

® Use unsat cores, exploiting a functional encoding of the transition

relation
® |f T is functional, then ¢ A inputs A1’

:S/

® check inputs A T' A —s’ under assumptions ¢



SAT-based CTI generalization

A

vold generalize_cti(cti, inputs, next):
for 1 = 1 to max_iters:
b = is_sat(cti & inputs & T & ~next"')
assert not b # assume T to be functional
Cc = get_unsat_core(cti)
1f should_stop(c, cti):
break
cti =c




Example e

No counterexamples of length O

A [:_1331/\_I332A_I333

@ 9 % P = -2V 29
oL

[borrowed and adapted from F. Somenzi]
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Getbad cubec=xy ANxs In F1 NP

I = -1 /\ X9 /\_ICL’3
P =—-z1V —x9

Fo=1I
=T



Example

Is —¢ inductive relative to Fy ? Fog N1 N —c = —c
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I = -1 /\ X9 /\_ICL’3
P =—-z1V —x9

Fo=1
=T



Example

Yes, generalize —c = —x1 V 09

-

I = -1 /\ X9 /\_ICL’3
P =—-z1V —x9

Fo=1
=T



Example REN

Yes, generalize —c = —x1 V 09

@ - o

Fo=1I
=T

Try dropping —x»

F()/\T/\_Iilfl /J:_I.CIZ/l x




Example REN

Yes, generalize —c = —x1 V 09

@ - o

Fo=1I
=T

Try dropping —x1

Fo AT A—zs = 1h, &




Example REN

Yes, generalize —c = —x1 V 09

) | O

Fo=1I
=T

Try dropping —x1

Fo AT A—zs = 1h, &




Example BEN

Update F;

o g

I = -1 /\ X9 /\_ICL’3
P =—-z1V —x9

L

b1 = =



Example =X

Blocking done for F3i. Add F5 and propagate forward

+ = —x1 N\ Xy N\ X3
— 1 V )
FO =1

Fz

T



Example

No clause propagates from Fj to Fy

REN

I = -1 /\ X9 /\_11‘3
P =—-z1V —x9

Fo=1



Example REN

Getbad cubec=xy Axy In F5 AN =P
I = -1 N\ o N X3

e CONC P
L




Example

Is —¢ inductive relative to F; ? F1 NN\ —c = —c

=<

I = -1 /\ X9 /\_ICL’3
P =—-z1V —x9

Fo=1



Example

No, found CTI s = =21 A =22 A\ X3
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I = -1 /\ X9 /\_ICL’3
P =—-z1V —x9

Fo=1



Example BEN

Try blocking —s at level 0: Fo AT A —s = —s'

e o L
' P:_Iﬂil\/_lfli‘g
Fo=1
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Yes, generalize —-s =x1 V 22 V =23

e o L
' P:_Iﬂil\/_lfli‘g
Fo=1

Try dropping F, ; T
FoANT ANxoV —x3 b oh V —ah x




Example BEN

Yes, generalize —-s =x1 V 22 V =23

e o L
' P:_Iﬂil\/_lfli‘g
Fo=1

Try dropping o F, ; T
FoANT Az V -z Eay Vv of
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Yes, generalize —-s =x1 V 22 V =23
R RECUNCT i
' P=—-21V x5

Try dropping 3 F, ; T

I#ml x




Example

Update F3

=<

I = -1 /\ X9 /\_ICL’3
P =—-z1V —x9

Fo=1
F1 — X9 A\
(561 \/_1563)

Fo=T



Example

Return to the original bad cube c
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I = -1 /\ X9 /\_ICL’3
P =—-z1V —x9

Fo=1
F1 — X9 A\
(561 \/_1563)

Fo=T



Example

Is —¢ inductive relative to F; ? F1 NN\ —c = —c

=<

I = -1 /\ X9 /\_ICL’3
P =—-z1V —x9

Fo=1
F1 — X9 A\
(561 \/_1563)

Fo =T



Example REN

Yes, generalize —c = —x1 V —x9

@ e o (@] G
' P:_Iﬂil\/_lfli‘g

Fo=1
_ F1 — X9 N\
Try dropping —x1 (1 V —23)

Fi NT N\ —~xg = b v Fa=1



Example

Update [, and add new frame [
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I = -1 /\ X9 /\_ICL’3
P =—-z1V —x9

Fo=1

F1 — X9 N\
(561 \/_1563)

Fy = g

Fs =T



Example

Perform forward propagation

e

From Fyto F5 :
F1 AN A (5131 V _15133)

= (21 V ~r3)

v

=<

I = -1 /\ X9 /\_ICL’3
P =—-z1V —x9

Fy=1

F1 = WA
(561 \/_1563)

F2 — TXI9

Fs =T



Example X

Perform forward propagation

R R e
' P:_Iﬂil\/_lfli‘g

Fo=1
Found fixpoint! Fy = —x9 A
(1 V —x3)
F2 — X2 N
(x1 V —z3)

Fs =T



Example e

Perform forward propagation

@ e o (@] L
' P = -z V —xs

Fo=1
_ _ _ F1 — X9 YA\
Inductive invariant: (32‘1 v ﬂﬂi‘s)
FlEFQE _I.CIJQ/\(ZEl\/_wg) F2:_|.CU2 A\
(5131 V _ICE3)

Fs=T
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IC3 with SMT

® How to generalize from SAT to SMT?
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IC3 with SMT BN

® How to generalize from SAT to SMT?

B Good news: replacing the SAT solver with an SMT solver is
enough for partial correctness

B pbut what about:

® termination?
u efficiency?



IC3 with SMT BN

® How to generalize from SAT to SMT?

B Good news: replacing the SAT solver with an SMT solver is
enough for partial correctness

B pbut what about:

¥ termination?
B Easy! (answer)
® the problem is in general undecidable, so no hope here

u efficiency?



Rellnd(Fy_1,T,s) with SMT

®\When F; A —s AT A s’ is satisfiable:

® s reaches —P in k-i steps
® s can be reached from F; in 1 step
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® strengthen F; by blocking cubes c in the preimage of s

® |n the Boolean case, get ¢ from SAT assignment (and generalize)

® For SMT(LRA):

® \Would exclude a single point
In an infinite space

Single model m from SMT solver:
r=3Ny=7




Rellnd(Fy_1,T,s) with SMT

®\When F; A —s AT A s’ is satisfiable:

® s reaches —P in k-i steps
® s can be reached from F; in 1 step
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® strengthen F; by blocking cubes c in the preimage of s

B |n the Boolean case, get ¢ from SAT assignment (and generalize)

B For SMT(LRA): underapproximated guantifier elimination

B Encodes a set of predecessors
B Cheaper than full quantifier elimination

® But still potentially expensive
B Not always available
® E g for UF+LRA

underapproximated preimage:

(z<3)A(y=7)




Rellnd(Fy_1,T,s) with SMT

®m\When F; A —s AT A s’ is unsatisfiable:

® Compute a generalization g of s to block

® Block more than a single cube at a time

»

-

B |n the Boolean case, use inductive generalization algorithms

B For SMT, Boolean algorithms plus theory-specific “ad hoc”
techniques

® Based on Farkas' lemma for LRA [HB SAT'12]
= [WK DATE'13] for BV
= [KIJN FORMATS'12] for timed automata




Implicit Predicate Abstraction [Tonetta FM%]ES ?3(

B Abstract version of k-induction, avoiding explicit computation
of the abstract transition relation

® By embedding the abstraction in the SMT encoding

® Given a set of predicates P and an unrolling depth &,
the abstract path Pathy, p is

A @XM A N X < p() AT(F XF)

1<h<k pelP

EQ =
Npep(P(Y) < p(X))




IC3 with Implicit Abstraction BEN

B [ntegrate the idea of Implicit Abstraction within IC3
B Use abstract transition relation T'(X, Y') instead of T'(X, X’)
B | earn clauses only over predicates P

B Use abstract relative induction check:
AbsRellnd(F, T, s,P) :=F(X) A s(X)ANT(X, YA

A (p(X') < p(Y")) A =s(X')




IC3 with Implicit Abstraction _?<

B [ntegrate the idea of Implicit Abstraction within IC3
® Use abstract transition relation T'(X, Y’) instead of T'(X, X’)
B | earn clauses only over predicates P

B Use abstract relative induction check:
AbsRellnd(F, T, s,P) :=F(X) A s(X)ANT(X,Y")A

A @(X) < p(Y") A=s(X)

B |f UNSAT =inductive strengthening as in the Boolean case

® No theory-specific technique needed
® Theory reasoning confined within the SMT solver




IC3 with Implicit Abstraction

B [ntegrate the idea of Implicit Abstraction within IC3

|
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B Use abstract transition relation T'(X, Y') instead of T'(X, X')

B | earn clauses only over predicates P

B Use abstract relative induction check:

AbsRellnd(F, T, s, P) :=F(X) A s(X) AT(X, V')A
A (p(X') < p(Y") A =s(X')

pEeP

"c={p(X) | pePApEPX)U{pX) | p
® No quantifier elimination needed

B |[f SAT = abstract predecessor cfrom the SMT model u

~ p(X)}




Example =X

def

" T = (2] — 3z < 4xl 4+ 2x5 4+ 3) A (3x1 — 225 = 0)
B P (3 — 2o >4), (21 <3)}
ms = oz —x9 >4)A (21 < 3)
® Rellnd((,T,s) is SAT
B Compute a predecessor with Japprox ], 5. (7S AT A 8')
(3 <3z1+x2) A=(1 — 22 > 4) A (21 < 3) A (=% < 1)



Example A

def

" T = (2] — 3z < 4xl 4+ 2x5 4+ 3) A (3x1 — 225 = 0)
BPE (1 — x> 4), (21 <3)}
ms = oz —x9 >4)A (21 < 3)
® Rellnd((,T,s) is SAT
B Compute a predecessor with Japprox ], 5. (7S AT A 8')
(5 <3z +x2) Az — 22 > 4) A (21 <3)A—(—3 < 21)

" AbsRellnd(0, T, s,P) := T[X" — Y'|A
=8 A SN
(7] — 25 > 4) & (y1—ya > 4) A (27 <3) < (y1 < 3)

B Compute predecessor from SMT model u = {x1 — 0,29 — 1}

_1(331 — Ty > 4) A\ (5131 < 3)



Example A

def

" T = (2] — 3z < 4xl 4+ 2x5 4+ 3) A (3x1 — 225 = 0)
BPE (1 — x> 4), (21 <3)}
ms = oz —x9 >4)A (21 < 3)
® Rellnd((,T,s) is SAT
m Compute a predecessor with 3;ppr0x 77, 5. (75 AT A 8)
(5 <3z1 + oA (21 — 2 > 4) A (31 < 3TD(—5 < 31)

" AbsRellnd(0, T, s,P) := Z[ X" — Y'|A
—s A\ s'A
(z7 — 2 > 4) A yi—yh > 4) A (2] < 3) + (¥] < 3)

def

B Compute prede(essor from SMT model © = {z1 — 0,29 +— 1}

6(331 — Ty > 4) A\ (5131 < 3))




Abstraction Refinement

B Abstract predecessors are overapproximations

¥ Spurious counterexamples can be generated
B \We can apply standard abstraction refinement techniques

B Use seqguence interpolants to discover new predicates
® Sequence of abstract states so — S1 — ... — Sp
" SMT check on s A T9 AstA L ANTEL A sk

concrete concrete
® |f unsat, compute sequence of interpolants for

0 0
[80 /\ Tconcrete

concrete concrete

B Add all the predicates in the interpolants to [P

A ANTEL T IsEA L ATESL A s



Incrementality e

B Abstraction refinement is fully incremental
B No restart from scratch
® Can keep all the clauses of F1,..., F%

= Refinements monotonically strengthen T’
Toew = Told A N\yep,., (P(X) < p(Y)) A (p(X') < p(Y))

= AllIC3 invariants on F7y, ..., F} are preserved
Fii1CF;(soF; EFip1) &
forall s < k, F; = P ¥ 4
Es N ew F @'/4_1 S 4

B Abstract counterexample check can use incremental SMT



Example

B System S with 2 state vars ¢ and d
mnit: (d=1)A (c>d)
" Trans: (¢ =c+d)AN(d =d+1)
= Property: (d > 2) = (¢ > d)

B Predicates P
(d=1) (c>d)
(d>2) (c>d)

=



Example

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
= Trans: (C/:C—I—d)/\(d’:d—l—l) (d>2) (C>d)
= Property: (d > 2) = (¢ > d)

B Check base case: Init = Property «

=



Example

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
= Trans: (C/:C—I—d)/\(d’:d—l—l) (d>2) (C>d)
= Property: (d > 2) = (¢ > d)

B Trace: Fjy := Init
B Get bad cube F, =T

® SMT check Fi A ~Prop
® SAT with model u:= {c=10,d = 2}
® Evaluate predicates wrt. i
" Return ¢ :={—~(d=1),—~(c>d),(d > 2),~(c>d)}

14



Example REN

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
= Trans: (C/:C—I—d)/\(d’:d—l—l) (d>2) (C>d)
= Property: (d > 2) = (¢ > d)

B Trace: Fjy := Init
B Rec. block ¢ Fy =T

® Check




Example

B System S with 2 state vars ¢ and d
mnit: (d=1)A (c>d)
" Trans: (¢ =c+d)AN(d =d+1)
= Property: (d > 2) = (¢ > d)

® Rec. block ¢

" Check
AbsRelInd(Fy, T, c,P)

= Unsat core: {(d' > 2)}

= Update Fi := F1 A =(d > 2)

B Predicates P
(d=1) (c>d)
(d>2) (c>d)

B Trace: Fjy := Init
F1 = |

=



Example REN

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
= Trans: (C/:C—I—d)/\(d’:d—l—l) (d>2) (C>d)
= Property: (d > 2) = (¢ > d)

® Trace: F{ := Init
® Forward propagation Fi = —=(d > 2)

F2 = |



Example A

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
= Trans: (C/:C—I—d)/\(d’:d—l—l) (d>2) (C>d)
= Property: (d > 2) = (¢ > d)

B Trace: Fgy := Init
® Get bad cube at 2 Fi :=—(d > 2)

# ci={~(d=1),~(c > d), Fy=T
(d>2),—(c>d)}



Example e

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
= Trans: (C/:C—I—d)/\(d’:d—l—l) (d>2) (C>d)
= Property: (d > 2) = (¢ > d)

B Trace: Fgy := Init
® Rec. block ¢ Fi :=—(d > 2)

. FQ;:T

® Update Fi = Fy N\ (C > d)

" Update Fo:=Fy A (c>d)V —(d> 2)



Example REN

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
= Trans: (C/:C—I—d)/\(d’:d—l—l) (d>2) (C>d)
= Property: (d > 2) = (¢ > d)

| ® Trace: Fy := Init
® Forward propagation Fi:==(d>2)AN(c>d) N F

Fy:=(c>d)V—(d>2)
F3I:—|_



Example A

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: ( =c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d)
® Trace: Fj := Init
B Get bad cube at 3 Fri==(d>2)A(c>d)AFs
wCi= {—I(d:1),—l(62d), Fy = (C>d)\/—l(d>2)
(d>2),7(c>d)} Fy=T



Example A

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: ( =c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d)
® Trace: Fj := Init

" Rec block ¢ Fi:==(d>2)AN(c>d) N F
= Check Fr:=(c>d)V—(d>2)
AbsRel[nd(Fg,T, C, IP)) x F3 — T
= SMT model

nw:=4c=0,d=2,/=0,d =3,y. = 2,yq = 3}
® (Abstract) predecessor
s :={7(d>2),2(c>d),~(d=1),~(c=d);



Example REN

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: ( =c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d)
® Trace: Fj := Init

B Rec block s (at level 2) Fi:i=~(d>2)A(c>d)AF
_ I Fy:=(c>d)V—(d>2)
® Reached level O, abstract cex: Fy:=T
q:==(d>2),~(c>d),(d=1),(c > d)
p:==(d>2),~(c>d),~(d=1),(c >d)
s:==(d>2),~(c>d),~(d=1),~(c > d)
c:==(d=1),~(c>d),(d > 2),~(c > d)



Example REN

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: ( =c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d)
® Trace: Fj := Init

B Check abstract counterexample F,
= SMT check F5
Io AN go N1os1 Ap1 ANT1s52 N\ Sa Aday3 Acs F;

UNSAT



Example REN

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: ( =c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d)
® Trace: Fj := Init

B Check abstract counterexample F,

B Compute sequence interpolant Fy

fo A qo /N TO|—>L NP1/ IATRCWANCL WA YR WA C3 F;
Al Bl

p1 = (d1 > 2)



Example REN

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: ( =c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d)
® Trace: Fj := Init

® Check abstract counterexample F
B Compute sequence interpolant Fy
io/\go/\To,_)l/\pl/\Tl,_)i/\&SQ/\TQ,_)g/\CgJ Fy
Ay B,
p1 = (d1 > 2)



Example

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)

=

= Trans: (¢ =c+d)N(d =d+1) (d>2) (c>d)
® Property: (d > 2) — (c > d) (d = 2) (d > 3)

B Trace: Fjy := Init

B Check abstract counterexample F,
B Compute sequence interpolant Fy
]o AqoNLo—s1 Ap1 ANT1s2 N\ Sg Aday3 A cs F;
—~— —
Ag BS
= (d1 = 2)
= (d2 = 3) Update predicates [P
p3 = L



Example A

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: ( =c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d) (d=2) (d=3)
® Trace: Fj := Init
B Update abstract trans Fri==(d>2)A(c>d)AFs
B Resume IC3 from level 3 Fy:=(c>d)V—-(d>2)

u . F3 =T



Example REN

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: ( =c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d) (d=2) (d=3)
® Trace: Fj := Init

® Update abstract trans Fi:==(d>2)A(c>d) A Fy
® Resume IC3 from level 3 Fo:=(c>d)V —(d>2)N F3
I Fs:=(d=1)V (d>2)A
—(c>d) N Fy

Fy:=(c>d)V-(d>2)



Example A

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: ( =c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d) (d=2) (d=3)
® Trace: Fj := Init

® Update abstract trans Fi:==(d>2)A(c>d) A Fy
® Resume IC3 from level 3 Fo:=(c>d)V —(d>2)N F3
I Fs:=(d=1)V (d>2)A
—(c>d) N Fy

® Forward propagation by = (C > d) N ﬁ(d > 2)



Example REN

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: ( =c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d) (d=2) (d=3)
® Trace: Fj := Init

® Update abstract trans Fi:==(d>2)A(c>d) A Fy
® Resume IC3 from level 3 Fy:=(c>d)V —(d>2) A F3
I Fs:=(d=1)V (d>2)A
—(c>d) N\ Fy
" Forward propagation Fy:=(c>d)V~(d>2)

FBATp (> d)V~(d > 2)




Example REN

B System S with 2 state varscand d  ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: ( =c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d) (d=2) (d=3)
® Trace: Fj := Init

B Update abstract trans Fii==(d>2)A(c>d) A F,
® Resume IC3 from level 3 F5 := F3
. F3:=(c>d)V(d>2)A\
(d=1)V(d>2)A
® Forward propagation ﬁ(C > d) AW
Fy:=(c>d)V ~(d>2)

SAFE ¢



Implementing IC3-IA A

B Get the code at:
http://es-static.fbk.eu/people/griggio/vtsa2015/

B Open source (GPLv3) implementation on top of MathSAT
http://mathsat.fbk.eu/

B |ncremental interface
B Assumptions and unsat core
B |nterpolation

B Simple (~1700 lines of C++, including parser and statistics,
according to David A. Wheeler's 'SLOCCount') yet competitive

¥ |nput in VMT format (a simple extension of SMT-LIB)
https://nuxmv.fbk.eu/index.php?n=Languages.VMT

B | et's analyse it!



http://es-static.fbk.eu/people/griggio/vtsa2015/
http://mathsat.fbk.eu/
https://nuxmv.fbk.eu/index.php?n=Languages.VMT
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Linear Temporal Logic

B Syntax

- D(

® A (quantifier-free) first-order formula ¢
" Xy (neXty)

= Uy (@ Until )

= Fo (Finally ¢)
" GGy (Globally )

B Semantics
® Given an infinite path 7™ := Sg, S1,..., S, ...
a7 = Xpift 51,... F
s T =eUy il 47 >0.s;,... m¢pand VO < k< j.sk,... F ¢
a T =Fpiff J5.55,... = ¢
n T =Geift Vis;,...=p

u Asystem S satisfies an LTL formula ¢ (.S = ) iff all inifinite
paths of S satisfy ¢




LTL verification =>¢

B Automata-based approach:

® Given an LTL property ¢, build a transition system S
with a fairness condition fﬂsp , such that

S — iff 5 x Sﬁgp :FG—lfﬁgo

B Finite-state case:

® Jasso-shaped counterexamples, with f at least once In the
loop

" |liveness to safety transformation: absence of lasso-shaped
counterexamples as an invariant property

® Duplicate the state variables X, = {z.|z € X}
® Non-deterministically save the current state

= Remember when f_ , in extra state var triggered
® nvariant: G—(X = Xcopy A triggered)



Liveness to Safety for Inifinite States A

® Unsound for infinite-state systems

® Not all counterexamples are lasso-shaped
()= (z=0) TWO)E(e'=z+1) ¢ =FG(z<5b)

B | iveness to safety with Implicit Abstraction

= Apply the I2s transformation to the abstract system

B Save the values of the predicates instead of the concrete state
= Do it on-the-fly, tightly integrating 12s with IC3
® Sound but incomplete

® \When abstract loop found, simulate in the concrete and refine
B Might still diverge during refinement
® |ntrinsic limitation of state predicate abstraction



K-liveness =N

B Simple but effective technique for LTL verification of finite-
state systems

® Key insight: M x M_, = FG—f_,, iff exists k such that /-
IS visited at most k times

® Again, a safety property

B K-liveness: increase k incrementally, within IC3

® Liveness checking as a sequence of safety checks
= Exploits the highly incremental nature of IC3
® Sound also for infinite-state systems

® \What about completeness?



K-liveness for hybrid automata 28

m K-liveness is incomplete for infinite-state systems

= Evenif M x M-, = FG=f-, there might be no concrete k
bound for the number of V|olat|ons of =/,

IS (z=n) TO)E (' =z+1) ¢=FG(z>n)

® K-zeno: extension of K-liveness for hybrid automata

® Key idea: exploit progress of time to make k-liveness converge

= By extending the original model with a “symbolic fairness
monitor” Z‘é’ that forces time progress

® Under certain conditions, restores completeness of k-liveness

mif M x M-, =FG—f.,,then exists k such that
M x M-, y ZSO Visits fZ at most k times

B (clearly, safety check can still diverge)
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