VTSA summer school 2015

Exploiting SMT for Verification of Infinite-State Systems

2. Interpolation in SMT and in Verification

Alberto Griggio
Fondazione Bruno Kessler - Trento, Italy

Outline

Introduction

Interpolants in Formal Verification

Computing interpolants in SMT

Introduction

- (Craig) Interpolant for an ordered pair (A, B) of formulae s.t. $A \wedge B \models_{T} \perp\left(\right.$ or: $\left.A \models_{T} \neg B\right)$ is a formula I s.t.
- $A \models_{T} I$
- $I \wedge B \models_{T} \perp\left(I \models_{T} \neg B\right)$
- All the uninterpreted (in T) symbols of I are shared between A and B
- Why are interpolants useful?
- Overapproximation of A relative to B

- Overapprox. of $\exists_{\{x \notin B\}} \vec{x} . A$
- "Local" explanation of why A is inconsistent with B

Importance of interpolation

Several important applications in formal verification:

- Approximate image computation for model checking of infinite-state systems
- Predicate discovery for Counterexample-Guided Abstraction Refinement
- Approximation of transition relation for infinite-state systems
- An alternative to (lazy) predicate abstraction for program verification
- Automatic generation of loop invariants

■...

Outline

Introduction

Interpolants in Formal Verification

Computing interpolants in SMT

Background

Symbolic transition systems

- State variables X
- Initial states formula $I(X)$
- Transition relation formula $T\left(X, X^{\prime}\right)$
- A state σ is an assignment to the state vars $\bigwedge_{x_{i} \in X} x_{i}=v_{i}$
- A path of the system S is a sequence of states $\sigma_{0}, \ldots, \sigma_{k}$ such that $\sigma_{0} \models I$ and $\sigma_{i}, \sigma_{i+1}^{\prime} \models T$
- A k-step (symbolic) unrolling of S is a formula

$$
I\left(X^{0}\right) \wedge \bigwedge_{i=0}^{k-1} T\left(X^{i}, X^{i+1}\right)
$$

- Encodes all possible paths of length up to k
- A state property is a formula P over X
- Encodes all the states σ such that $\sigma \models P$

Forward reachability checking

- Forward image computation
- Compute all states reachable from σ in one transition:

$$
\operatorname{Img}(\sigma(X)):=\exists X \cdot \sigma(X) \wedge T\left(X, X^{\prime}\right)\left[X / X^{\prime}\right]
$$

- Prove that a set of states $\operatorname{Bad}(X)$ is not reachable:

$$
R(X):=I(X)
$$

$$
\operatorname{Img}(R(X))
$$

Forward reachability checking

- Forward image computation
- Compute all states reachable from σ in one transition:

$$
\operatorname{Img}(\sigma(X)):=\exists X \cdot \sigma(X) \wedge T\left(X, X^{\prime}\right)\left[X / X^{\prime}\right]
$$

- Prove that a set of states $\operatorname{Bad}(X)$ is not reachable:

$$
\operatorname{Img}(R(X))
$$

Forward reachability checking

- Forward image computation
- Compute all states reachable from σ in one transition:

$$
\operatorname{Img}(\sigma(X)):=\exists X \cdot \sigma(X) \wedge T\left(X, X^{\prime}\right)\left[X / X^{\prime}\right]
$$

- Prove that a set of states $\operatorname{Bad}(X)$ is not reachable:

Forward reachability checking

 BRUNO KESSLER- Forward image computation
- Compute all states reachable from σ in one transition:

$$
\operatorname{Img}(\sigma(X)):=\exists X . \sigma(X) \wedge T\left(X, X^{\prime}\right)\left[X / X^{\prime}\right]
$$

- Prove that a set of states $\operatorname{Bad}(X)$ is not reachable:

Forward reachability checking

- Forward image computation
- Compute all states reachable from σ in one transition:

$$
\operatorname{Img}(\sigma(X)):=\exists X \cdot \sigma(X) \wedge T\left(X, X^{\prime}\right)\left[X / X^{\prime}\right]
$$

- Prove that a set of states $\operatorname{Bad}(X)$ is not reachable:

Forward reachability checking

- Forward image computation
- Compute all states reachable from σ in one transition:

$$
\operatorname{Img}(\sigma(X)):=\exists X \cdot \sigma(X) \wedge T\left(X, X^{\prime}\right)\left[X / X^{\prime}\right]
$$

- Prove that a set of states $\operatorname{Bad}(X)$ is not reachable:

Interpolation-based reachability

- Image computation requires quantifier elimination, which is typically very expensive (both in theory and in practice)
- Interpolation-based algorithm (McMillan CAV'03): use interpolants to overapproximate image computation
- much more efficient than the previous algorithm
- interpolation is often much cheaper than quantifier elimination
- abstraction (overapproximation) accelerates convergence
- termination is still guaranteed for finite-state systems

Interpolation-based reachability

FONDAZIONE
BRUNO KESSLER

- Set $R(X):=I(X)$
- Check satisfiability of $R_{0} \wedge \bigwedge_{i=0}^{k-1} T_{i} \wedge \operatorname{Bad}_{k}$

$$
R_{0} \longrightarrow T_{0 \mapsto 1} \rightarrow \cdots \rightarrow T_{k-1 \mapsto k} \rightarrow \operatorname{Bad}_{k}
$$

Interpolation-based reachability

FONDAZIONE
BRUNO KESSLER

- Set $R(X):=I(X)$
- Check satisfiability of $R_{0} \wedge \bigwedge_{i=0}^{k-1} T_{i} \wedge \operatorname{Bad}_{k}$

- If SAT:
- If $R \equiv I$, return REACHABLE the unrolling hits Bad
- else, increase k and repeat

Interpolation-based reachability

- Set $R(X):=I(X)$
- Check satisfiability of $R_{0} \wedge \bigwedge_{i=0}^{k-1} T_{i} \wedge \operatorname{Bad}_{k}$

- If UNSAT:
- Set $\varphi(X):=\operatorname{Interpolant}(A, B)\left[X^{\prime} / X\right]$
φ is an abstraction of the forward image guided by the property

Interpolation-based reachability

- Set $R(X):=I(X)$
- Check satisfiability of $R_{0} \wedge \bigwedge_{i=0}^{k-1} T_{i} \wedge \operatorname{Bad}_{k}$

- If UNSAT:
- Set $\varphi(X):=\operatorname{Interpolant}(A, B)\left[X^{\prime} / X\right]$
φ is an abstraction of the forward image guided by the property
- If $\varphi \models R$, return UNREACHABLE fixpoint found
- else, set $R(X):=R(X) \vee \varphi(X)$ and continue

Interpolation-based Abstraction Refinement

(Lazy) Predicate abstraction

- Given a Transition System $S:=(I, T)$ and predicates \mathbb{P}
- Abstract initial states

$$
\widehat{I(X)_{\mathbb{P}}}:=\exists X .\left(I(X) \wedge \bigwedge_{p \in \mathbb{P}}\left(x_{p} \leftrightarrow p(X)\right)\left[p(X) / x_{p}\right]\right.
$$

- Abstract forward image

$$
\begin{aligned}
\widehat{\operatorname{Img}}(\varphi(X))_{\mathbb{P}}:= & \exists X, X^{\prime}, \overrightarrow{x_{p}} \cdot\left(\varphi(X) \wedge T\left(X, X^{\prime}\right) \wedge\right. \\
& \bigwedge_{p \in \mathbb{P}}\left(x_{p} \leftrightarrow p(X) \wedge x_{p}^{\prime} \leftrightarrow p\left(X^{\prime}\right)\right)\left[p(X) / x_{p}^{\prime}\right]
\end{aligned}
$$

- Standard technique applied in many verification tools
- In conjunction with counterexample-guided refinement (CEGAR)

- Extract new predicates from spurious counterexamples and compute a more precise abstraction

Interpolation-based Abstraction Refinement

FONDAZIONE
BRUNO KESSLER

(Lazy) Predicate abstraction

- Abstract initial states
$\widehat{I(X)_{\mathbb{P}}}:=\exists X .\left(I(X) \wedge \bigwedge_{p \in \mathbb{I}}\right.$
- Abstract forward image

The strongest boolean combination of predicates in \mathbb{P} that is implied by $\operatorname{Img}(\varphi(X))$

$$
\begin{aligned}
\widehat{\operatorname{Img}}(\varphi(X))_{\mathbb{P}}:= & \exists X, X^{\prime}, \overrightarrow{x_{p}} \cdot\left(\varphi(X) \wedge T\left(X, X^{\prime}\right) \wedge\right. \\
& \bigwedge_{p \in \mathbb{P}}\left(x_{p} \leftrightarrow p(X) \wedge x_{p}^{\prime} \leftrightarrow p\left(X^{\prime}\right)\right)\left[p(X) / x_{p}^{\prime}\right]
\end{aligned}
$$

- Standard technique applied in many verification tools
- In conjunction with counterexample-guided refinement (CEGAR)

- Extract new predicates from spurious counterexamples and compute a more precise abstraction

Interpolation-based Abstraction Refinement

(Lazy) Predicate abstraction

- Given a Transition System $S:=(I, T)$ and predicates \mathbb{P}
- Abstract initial states

$$
\widehat{I(X)_{\mathbb{P}}}:=\exists X .\left(I(X) \wedge \bigwedge_{p \in \mathbb{P}}\left(x_{p} \leftrightarrow p(X)\right)\left[p(X) / x_{p}\right]\right.
$$

- Abstract forward image

$$
\begin{aligned}
\widehat{\operatorname{Img}}(\varphi(X))_{\mathbb{P}}:= & \exists X, X^{\prime}, \overrightarrow{x_{p}} \cdot\left(\varphi(X) \wedge T\left(X, X^{\prime}\right) \wedge\right. \\
& \bigwedge_{p \in \mathbb{P}}\left(x_{p} \leftrightarrow p(X) \wedge x_{p}^{\prime} \leftrightarrow p\left(X^{\prime}\right)\right)\left[p(X) / x_{p}^{\prime}\right]
\end{aligned}
$$

- Standard technique applied in many verification tools
- In conjunction with counterexample-guided refinement (CEGAR)

- Extract new predicates from spurious counterexamples and compute a more precise abstraction

Interpolation-based Abstraction Refinement

(Lazy) Predicate abstraction

- Given a Transition System $S:=(I, T)$ and predicates \mathbb{P}
- Abstract initial states

$$
\widehat{I(X)_{\mathbb{P}}}:=\exists X .\left(I(X) \wedge \bigwedge_{p \in \mathbb{P}}\left(x_{p} \leftrightarrow p(X)\right)\left[p(X) / x_{p}\right]\right.
$$

- Abstract forward image

$$
\begin{aligned}
\widehat{\operatorname{Img}}(\varphi(X))_{\mathbb{P}}:= & \exists X, X^{\prime}, \overrightarrow{x_{p}} \cdot\left(\varphi(X) \wedge T\left(X, X^{\prime}\right) \wedge\right. \\
& \bigwedge_{p \in \mathbb{P}}\left(x_{p} \leftrightarrow p(X) \wedge x_{p}^{\prime} \leftrightarrow p\left(X^{\prime}\right)\right)\left[p(X) / x_{p}^{\prime}\right]
\end{aligned}
$$

- Standard technique applied in many verification tools
- In conjunction with counterexample-guided refinement (CEGAR)

- Extract new predicates from spurious counterexamples and compute a more precise abstraction

Interpolation-based Abstraction Refinement

- An abstract cex path $\hat{\sigma_{0}}, \ldots, \hat{\sigma_{k}}($ wrt. $\mathbb{P})$ might be spurious
- Because abstraction is overapproximating

$$
I_{0} \xrightarrow{T_{0 \mapsto 1}} \hat{\sigma}_{1} \longrightarrow \cdots \longrightarrow \hat{\sigma}_{k-1} \xrightarrow{T_{k-1 \mapsto k}} \operatorname{Bad}_{k}
$$

- An abstract cex path $\hat{\sigma_{0}}, \ldots, \hat{\sigma_{k}}($ wrt. $\mathbb{P})$ might be spurious
- Because abstraction is overapproximating

$$
I_{0} \xrightarrow{T_{0 \mapsto 1}} \hat{\sigma}_{1} \longrightarrow \cdots \longrightarrow \hat{\sigma}_{k-1} \xrightarrow{T_{k-1 \mapsto k}} \operatorname{Bad}_{k}
$$

- Compute a sequence of interpolants $\varphi_{0}, \ldots, \varphi_{k-1}$ such that $T_{i \mapsto i+1} \wedge \varphi_{i} \models \varphi_{i+1}$ for all $i \in[0, k-1)$

Interpolation-based Abstraction Refinement

- An abstract cex path $\hat{\sigma_{0}}, \ldots, \hat{\sigma_{k}}($ wrt. $\mathbb{P})$ might be spurious
- Because abstraction is overapproximating

■ Compute a sequence of interpolants $\varphi_{0}, \ldots, \varphi_{k-1}$ such that $T_{i \mapsto i+1} \wedge \varphi_{i} \models \varphi_{i+1}$ for all $i \in[0, k-1)$

Interpolation-based Abstraction Refinement

- An abstract cex path $\hat{\sigma_{0}}, \ldots, \hat{\sigma_{k}}($ wrt. $\mathbb{P})$ might be spurious
- Because abstraction is overapproximating

■ Compute a sequence of interpolants $\varphi_{0}, \ldots, \varphi_{k-1}$ such that $T_{i \mapsto i+1} \wedge \varphi_{i} \models \varphi_{i+1}$ for all $i \in[0, k-1)$

Interpolation-based Abstraction Refinement

- An abstract cex path $\hat{\sigma_{0}}, \ldots, \hat{\sigma_{k}}($ wrt. $\mathbb{P})$ might be spurious
- Because abstraction is overapproximating

■ Compute a sequence of interpolants $\varphi_{0}, \ldots, \varphi_{k-1}$ such that $T_{i \mapsto i+1} \wedge \varphi_{i} \models \varphi_{i+1}$ for all $i \in[0, k-1)$

Interpolation-based Abstraction Refinement

- An abstract cex path $\hat{\sigma_{0}}, \ldots, \hat{\sigma_{k}}$ (wrt. \mathbb{P}) might be spurious
- Because abstraction is overapproximating

- Compute a sequence of interpolants $\varphi_{0}, \ldots, \varphi_{k-1}$ such that $T_{i \mapsto i+1} \wedge \varphi_{i} \models \varphi_{i+1}$ for all $i \in[0, k-1)$
- Let $\mathbb{P}_{\text {new }}$ be the set of all the predicates in $\varphi_{0}, \ldots, \varphi_{k-1}$
- Set $\mathbb{P}^{\prime}:=\mathbb{P} \cup \mathbb{P}_{\text {new }}$
- Theorem: $\hat{\sigma_{0}}, \ldots, \hat{\sigma_{k}}$ is not an abstract cex path wrt. \mathbb{P}^{\prime}

Proof sketch

- φ_{i} is an overapproximation of the states reachable in i steps, compatible with the abstract trace $\hat{\sigma}_{0}, \ldots, \hat{\sigma}_{i}$
- φ_{i} is also incompatible with the rest of the abstract trace $\hat{\sigma}_{i+1}, \ldots, \hat{\sigma}_{k}$ (since it is an interpolant)
- By the requirement that $T_{i \mapsto i+1} \wedge \varphi_{i} \models \varphi_{i+1}$ it follows that $\operatorname{Img}\left(\varphi_{i}\right) \models \varphi_{i+1}$
- Therefore, $\operatorname{Img}(\underbrace{\ldots} \operatorname{Img}\left(\varphi_{0}\right)) \models \varphi_{k-1}$ and $\operatorname{Img}\left(\varphi_{k-1}\right) \models \perp$ ${ }_{k-2} \quad$ (since the trace is spurious)
- Since we add all the atomic predicates of $\varphi_{0}, \ldots, \varphi_{k-1}$ to \mathbb{P}^{\prime} and the abstraction is precise wrt. \mathbb{P}^{\prime}, then

$$
\widehat{\operatorname{Img}}(\underbrace{\ldots \operatorname{Img}}_{k-1}\left(\varphi_{0}\right)_{\mathbb{P}^{\prime}})_{\mathbb{P}^{\prime}} \models \perp
$$

Outline

Introduction

Interpolants in Formal Verification

Computing interpolants in SMT

Efficient interpolation in SAT

- Interpolants for Boolean CNF formulae (A, B) can be computed from resolution refutations in linear time
- Traverse the resolution proof, annotating each node with a partial interpolant /
- The partial interpolant for the root node (the empty clause) is the computed interpolant

Efficient interpolation in SAT

- Interpolants for Boolean CNF formulae (A, B) can be computed from resolution refutations in linear time
- Traverse the resolution proof, annotating each node with a partial interpolant I
- The partial interpolant for the root node (the empty clause) is the computed interpolant
- McMillan's annotation rules (others exist):

Efficient interpolation in SAT

- Interpolants for Boolean CNF formulae (A, B) can be computed from resolution refutations in linear time
- Traverse the resolution proof, annotating each node with a partial interpolant I
- The partial interpolant for the root node (the empty clause) is the computed interpolant
■ McMillan's annotation rules (others exist):
- For each leaf node (input clause) C in the proof:
- If $C \in A$, set $I:=\bigvee\{l \in C \mid \operatorname{var}(l) \in B\}$
- Otherwise $(C \in B)$, set $I:=\top$

Efficient interpolation in SAT

- Interpolants for Boolean CNF formulae (A, B) can be computed from resolution refutations in linear time
- Traverse the resolution proof, annotating each node with a partial interpolant I
- The partial interpolant for the root node (the empty clause) is the computed interpolant
- McMillan's annotation rules (others exist):
- For each leaf node (input clause) C in the proof:
- If $C \in A$, set $I:=\bigvee\{l \in C \mid \operatorname{var}(l) \in B\}$
- Otherwise ($C \in B$), set $I:=\top$
- For each inner node (resolution) with parents $\varphi \vee l$ and $\psi \vee \neg l$ and annotations I_{1} and I_{2}
- If $\operatorname{var}(l) \in B$, set $I:=I_{1} \wedge I_{2}$; otherwise, set $I:=I_{1} \vee I_{2}$

Example

 FONDAZIONEBRUNO KESSLER

$$
\begin{aligned}
& A:=\left(x \vee \neg y_{1}\right) \wedge\left(\neg x \vee \neg y_{2}\right) \wedge y_{1} \\
& B:=\left(\neg y_{1} \vee y_{2}\right) \wedge\left(y_{1} \vee z\right) \wedge \neg z
\end{aligned}
$$

$$
x \vee \neg y_{1} \quad \neg x \vee \neg y_{2}
$$

$$
\neg y_{1} \vee \neg y_{2} \quad y_{1}
$$

$$
\neg y_{2} \quad \neg y_{1} \vee y_{2}
$$

$y_{1} \vee z \quad \neg y_{1}$
$z \quad \neg z$
\perp

Example

$$
\begin{aligned}
& A:=\left(x \vee \neg y_{1}\right) \wedge\left(\neg x \vee \neg y_{2}\right) \wedge y_{1} \\
& B:=\left(\neg y_{1} \vee y_{2}\right) \wedge\left(y_{1} \vee z\right) \wedge \neg z
\end{aligned}
$$

$$
\begin{aligned}
& x \vee \neg y_{1} \neg y_{1} \quad \neg x \vee \neg y_{2} \quad \neg y_{2} \\
& \neg y_{1} \vee \neg y_{2} \neg y_{1} \vee \neg y_{2} \quad y_{1} y_{1} \\
& \neg y_{2}\left(\neg y_{1} \vee \neg y_{2}\right) \wedge y_{1} \quad \neg y_{1} \vee y_{2} \top \\
& y_{1} \vee z \square \quad \neg y_{1} \quad\left(\neg y_{1} \vee \neg y_{2}\right) \wedge y_{1} \\
& z\left(\neg y_{1} \vee \neg y_{2}\right) \wedge y_{1} \quad \neg z \quad \top \\
& \perp\left(\neg y_{1} \vee \neg y_{2}\right) \wedge y_{1}
\end{aligned}
$$

Proof of correctness

- By induction on the structure of the resolution refutation
- Lemma: for each annotated node $C[I]$, we have

1) $A \models I \vee \bigvee\{l \in C \mid \operatorname{var}(l) \notin B\}$
2) $B \wedge I \models \vee \bigvee\{l \in C \mid \operatorname{var}(l) \in B\}$
3) I contains only variables that occur in both A and B

- Then as a corollary, for the root $\perp[I]$, I is an interpolant
- The lemma trivially holds for leaf nodes (check)

Proof of correctness - resolution steps

Resolution step with parents $(\varphi \vee l)\left[I_{1}\right]$ and $(\psi \vee \neg l)\left[I_{2}\right]$

- Case $\operatorname{var}(l) \in B$

1) By ind. hyp $A \models I_{1} \vee \bigvee\{p \in \varphi \mid \operatorname{var}(p) \notin B\}$ and $A \models I_{2} \vee \bigvee\{p \in \psi \mid \operatorname{var}(p) \notin B\}$

Therefore $A \models\left(I_{1} \wedge I_{2}\right) \vee \bigvee\{p \in \varphi \wedge \psi \mid \operatorname{var}(p) \notin B\}$
2) By inductive hypotesis $B \wedge I_{1} \models \bigvee\{p \in \varphi \vee l \mid \operatorname{var}(p) \in B\}$ which means $B \models \neg I_{1} \vee \bigvee\{p \in \varphi \vee l \mid \operatorname{var}(p) \in B\}$ Similarly, $B \models \neg I_{2} \vee \bigvee\{p \in \psi \vee \neg l \mid \operatorname{var}(p) \in B\}$ By resolution on $\operatorname{var}(l)$, then

$$
B \models \neg I_{1} \vee \neg I_{2} \vee \bigvee\{p \in \varphi \vee \psi \mid \operatorname{var}(p) \in B\}
$$

3) Trivial by the inductive hypothesis

Proof of correctness - resolution steps

Resolution step with parents $(\varphi \vee l)\left[I_{1}\right]$ and $(\psi \vee \neg l)\left[I_{2}\right]$

- Case $\operatorname{var}(l) \notin B$

1) By ind. hyp $A \models I_{1} \vee \bigvee\{p \in \varphi \vee l \mid \operatorname{var}(p) \notin B\}$ and

$$
A \models I_{2} \vee \bigvee\{p \in \psi \vee \neg l \mid \operatorname{var}(p) \notin B\}
$$

By resolution on $\operatorname{var}(l)$, then

$$
A \models\left(I_{1} \vee I_{2}\right) \vee \bigvee\{p \in \varphi \vee \psi \mid \operatorname{var}(p) \notin B\}
$$

2) By ind. hyp $B \models \neg I_{1} \vee \bigvee\{p \in \varphi \mid \operatorname{var}(p) \in B\}$ and

$$
B \models \neg I_{2} \vee \bigvee\{p \in \psi \mid \operatorname{var}(p) \in B\}
$$

Therefore $B \models \neg I_{1} \vee \bigvee\{p \in \varphi \vee \psi \mid \operatorname{var}(p) \in B\}$ and

$$
B \models \neg I_{2} \vee \bigvee\{p \in \varphi \vee \psi \mid \operatorname{var}(p) \in B\}
$$

and so $B \wedge\left(I_{1} \vee I_{2}\right) \models \bigvee\{p \in \varphi \vee \psi \mid \operatorname{var}(p) \in B\}$
3) Trivial by the inductive hypothesis

Interpolants in SMT

- Resolution refutations in SMT:

T-specific part for conjunctions of constraints (negated T-lemmas)

Interpolants in SMT

- Resolution refutations in SMT:

T-specific part for conjunctions
of constraints (negated T-lemmas)

Boolean part (ground resolution)

T-specific interpolation for conjunctions only

Theory interpolation only for sets of T-literals

Interpolants in SMT

- Resolution refutations in SMT:

$$
\begin{aligned}
& T \text {-specific part for conjunctions } \\
& \text { of constraints (negated } T \text {-lemmas) }
\end{aligned}
$$

Theory interpolation only for sets of T-literals

- Annotation for a T-lemma C:

$$
\begin{array}{r}
I:=T \text {-interpolant }(\bigwedge\{l \in \neg C \mid \operatorname{var}(l) \notin B\}, \\
\bigwedge\{l \in \neg C \mid \operatorname{var}(l) \in B\})
\end{array}
$$

Equality (EUF)

■ Interpolants from coloured congruence graphs
\square Nodes with $\quad \square$ if term occurs in $A \quad$ if term is shared colours: $\quad \square$ if term occurs in B

- Edges with colours of the nodes they connect

■ Uncolorable edge: connects nodes of two different colours

- Always possible to obtain a coloured graph
- (by introducing new nodes)

Equality (EUF)

- Interpolants from coloured congruence graphs
- Nodes with colours:
if term is shared
- Edges with colours of the nodes they connect
- Uncolorable edge: connects nodes of two different colours
- Always possible to obtain a coloured graph
- (by introducing new nodes)

Equality (EUF)

- Interpolants from coloured congruence graphs
- Nodes with colours:
if term is shared
- Edges with colours of the nodes they connect
- Uncolorable edge: connects nodes of two different colours
- Always possible to obtain a coloured graph
- (by introducing new nodes)

Interpolation algorithm (sketch)

 SYSTEMS- Start from disequality edge
- Compute summaries for A-paths with shared endpoints

Interpolation algorithm (sketch)

- Start from disequality edge
- Compute summaries for A-paths with shared endpoints

- If an A-summary involves a congruence edge, compute summaries recursively on function arguments
- Use B-summaries as premises for the A-summary

Interpolation algorithm (sketch)

- Start from disequality edge
- Compute summaries for A-paths with shared endpoints

- If an A-summary involves a congruence edge, compute summaries recursively on function arguments
- Use B-summaries as premises for the A-summary

- (Several cases to consider)

Example

$$
\begin{aligned}
A:= & (u=g(s)) \wedge(g(t)=x) \wedge \\
& (f(u, y)=z) \\
B:= & (v=y) \wedge(s=t) \wedge \quad g(s) \quad g(t)
\end{aligned}
$$

Example

$$
\begin{aligned}
A:= & (u=g(s)) \wedge(g(t)=x) \wedge \\
& (f(u, y)=z) \\
B:= & (v=y) \wedge(s=t) \wedge \\
& \neg(f(x, v)=z) \\
& \text { Start from } \neg(f(x, v)=z) \\
& \text { A-summaries for } z-f(u, y)--f(x, y)--f(x, v)\} z=f(x, y)
\end{aligned}
$$ EMBEDDED

SYSEMMS

Example

$$
\begin{aligned}
A:= & (u=g(s)) \wedge(g(t)=x) \wedge \\
& (f(u, y)=z) \\
B:= & (v=y) \wedge(s=t) \wedge \\
& \neg(f(x, v)=z) \\
■ & \text { Start from } \neg(f(x, v)=z) \\
■ & \text { A-summaries for } z-f(u, y)--f(x, y)--f(x, v)\} z=f(x, y) \\
■ & \text { Recurse on edge } f(u, y)-\cdots--f(x, y) \\
& ■
\end{aligned}
$$

Example

$$
\begin{aligned}
& A:=(u=g(s)) \wedge(g(t)=x) \wedge \\
& (f(u, y)=z) \\
& B:=(v=y) \wedge(s=t) \wedge \quad g(s) \\
& \neg(f(x, v)=z) \\
& \text { - Start from } \neg(f(x, v)=z) \\
& \text { - A-summaries for } z-f(u, y)--f(x, y)--f(x, v)\} z=f(x, y) \\
& \text { - Recurse on edge } f(u, y)----f(x, y) \\
& \text { - Path } u-g(s)-----g(t)-x\} \top \\
& \text { ■ Recurse on edge } g(s)------g(t) \\
& \text { - Path } s-t \text {, } B \text {-summary: }(s=t)
\end{aligned}
$$

Example

$$
\begin{aligned}
& A:=(u=g(s)) \wedge(g(t)=x) \wedge \\
& (f(u, y)=z) \\
& B:=(v=y) \wedge(s=t) \wedge \quad g(s) \\
& \neg(f(x, v)=z) \\
& =z) \\
& \text { - Start from } \neg(f(x, v)=z) \\
& \text { - A-summaries for } z-f(u, y)--f(x, y)--f(x, v)\} z=f(x, y) \\
& \text { - Recurse on edge } f(u, y)----f(x, y) \\
& \text { - Path } u-g(s)-----g(t)-x\} \top \\
& \text { ■ Recurse on edge } g(s)------g(t) \\
& \text { - Path } s-t \text {, } B \text {-summary: }(s=t)
\end{aligned}
$$

■ Interpolant: $(s=t) \Longrightarrow(z=f(x, y))$

Linear Rational Arithmetic (LRA)

- Interpolants from proofs of unsatisfiability of a system of inequalities $\sum_{i} a_{i} x_{i} \leq c$
- Proof of unsatisfiability: linear combination of inequalities with positive coefficients to derive a contradiction ($0 \leq c$ with $c<0$)
- Interpolant obtained out of the proof by combining inequalities from A (using the same coefficients)
- Proof of unsatisfiability generated from the Simplex

Example

$$
A:=\underbrace{\left(3 x_{2}-x_{1} \leq 1\right)}_{s_{1}}, \underbrace{\left(0 \leq x_{1}+x_{2}\right)}_{s_{2}} \quad B:=\underbrace{\left(3 \leq x_{3}-2 x_{1}\right)}_{s_{3}}, \underbrace{\left(2 x_{3} \leq 1\right)}_{s_{4}}
$$

tableau

$$
\begin{aligned}
& s_{1}=3 x_{2}-x_{1} \\
& s_{2}=x_{1}+x_{2} \\
& s_{3}=x_{3}-2 x_{1} \\
& s_{4}=2 x_{3}
\end{aligned}
$$

bounds

$$
\begin{aligned}
&-\infty \leq s_{1} \leq 1 \\
& 0 \leq s_{2} \leq \infty \\
& 3 \leq s_{3} \leq \infty \\
&-\infty \leq s_{4} \leq 1
\end{aligned}
$$

candidate solution β

x_{1}	\mapsto	0
x_{2}	\mapsto	0
x_{3}	\mapsto	0
s_{1}	\mapsto	0
s_{2}	\mapsto	0
s_{3}	\mapsto	0
s_{4}	\mapsto	0

Example

$$
A:=\underbrace{\left(3 x_{2}-x_{1} \leq 1\right)}_{s_{1}}, \underbrace{\left(0 \leq x_{1}+x_{2}\right)}_{s_{2}} \quad B:=\underbrace{\left(3 \leq x_{3}-2 x_{1}\right)}_{s_{3}}, \underbrace{\left(2 x_{3} \leq 1\right)}_{s_{4}}
$$

tableau

$$
\begin{array}{rlrl}
x_{3} & =-\frac{1}{2} s_{1}+\frac{3}{2} s_{2}+s_{3} & -\infty & \leq s_{1} \leq 1 \\
x_{2} & =\frac{1}{4} s_{1}+\frac{1}{4} s_{2} & 0 & \leq s_{2} \leq \infty \\
x_{1} & =-\frac{1}{4} s_{1}+\frac{3}{4} s_{2} & & \leq s_{3} \leq \infty \\
s_{4} & =-s_{1}+3 s_{2}+2 s_{3} & -\infty & \leq s_{4} \leq 1
\end{array}
$$

candidate solution β
bounds

x_{1}	\mapsto	$-\frac{1}{4}$
x_{2}	\mapsto	$\frac{1}{4}$
x_{3}	\mapsto	$\frac{5}{2}$
s_{1}	\mapsto	1
s_{2}	\mapsto	0
s_{3}	\mapsto	3
s_{4}	\mapsto	5

No suitable variable for pivoting! Conflict

Example

$$
A:=\underbrace{\left(3 x_{2}-x_{1} \leq 1\right)}_{s_{1}}, \underbrace{\left(0 \leq x_{1}+x_{2}\right)}_{s_{2}} \quad B:=\underbrace{\left(3 \leq x_{3}-2 x_{1}\right)}_{s_{3}}, \underbrace{\left(2 x_{3} \leq 1\right)}_{s_{4}}
$$

tableau

$$
\begin{array}{rlrl}
x_{3} & =-\frac{1}{2} s_{1}+\frac{3}{2} s_{2}+s_{3} & -\infty & \leq s_{1} \leq 1 \\
x_{2} & =\frac{1}{4} s_{1}+\frac{1}{4} s_{2} & 0 \leq s_{2} & \leq \infty \\
x_{1} & =-\frac{1}{4} s_{1}+\frac{3}{4} s_{2} & & \leq s_{3} \leq \infty \\
s_{4} & =-s_{1}+3 s_{2}+2 s_{3} & -\infty \leq s_{4} \leq 1
\end{array}
$$

Proof:
$1 \cdot\left(2 x_{3} \leq 1\right) \quad 1 \cdot\left(3 x_{2}-x_{1} \leq 1\right)$

$$
\frac{\left(2 x_{3}+3 x_{2}-x_{1} \leq 2\right) \quad 3 \cdot\left(0 \leq x_{1}+x_{2}\right)}{2 \cdot\left(3 \leq x_{3}-2 x_{1}\right)}
$$

x_{1}	\mapsto	$-\frac{1}{4}$
x_{2}	\mapsto	$\frac{1}{4}$
x_{3}	\mapsto	$\frac{5}{2}$
s_{1}	\mapsto	1
s_{2}	\mapsto	0
s_{3}	\mapsto	3
s_{4}	\mapsto	5

Example

$$
A:=\underbrace{\left(3 x_{2}-x_{1} \leq 1\right)}_{s_{1}}, \underbrace{\left(0 \leq x_{1}+x_{2}\right)}_{s_{2}} \quad B:=\underbrace{\left(3 \leq x_{3}-2 x_{1}\right)}_{s_{3}}, \underbrace{\left(2 x_{3} \leq 1\right)}_{s_{4}}
$$

tableau

$$
\begin{array}{rlrl}
x_{3} & =-\frac{1}{2} s_{1}+\frac{3}{2} s_{2}+s_{3} & -\infty & \leq s_{1} \leq 1 \\
x_{2} & =\frac{1}{4} s_{1}+\frac{1}{4} s_{2} & 0 & \leq s_{2} \leq \infty \\
x_{1} & =-\frac{1}{4} s_{1}+\frac{3}{4} s_{2} & & \leq s_{3} \leq \infty \\
s_{4} & =-s_{1}+3 s_{2}+2 s_{3} & -\infty & \leq s_{4} \leq 1
\end{array}
$$

Interpolant:
bounds
candidate solution β

$$
\begin{gathered}
1 \cdot\left(3 x_{2}-x_{1} \leq 1\right) \\
\frac{\left(3 x_{2}-x_{1} \leq 1\right)}{3} \cdot\left(0 \leq x_{1}+x_{2}\right) \\
\left(-4 x_{1} \leq 1\right)
\end{gathered}
$$

$$
\left(-4 x_{1} \leq 1\right)
$$

Linear Integer Arithmetic (LIA)

- Constraints of the form

$$
\sum_{i} c_{i} x_{i}+c \bowtie 0, \quad \bowtie \in\{\leq,=\}
$$

- In general, no quantifier-free interpolation for LIA

Example: $A:=(y-2 x=0) \quad B:=(y-2 z-1=0)$
The only interpolant is: $\exists w .(y=2 w)$

- Solution: extend the signature to include modular equations (divisibility predicates)

$$
\left(t+c={ }_{d} 0\right) \equiv \exists w \cdot(t+c=d \cdot w), \quad d \in \mathbb{Z}^{>0}
$$

The interpolant now becomes: $(y=20)$

SMT(LIA) with modular equations

- Modular equations can be eliminated via preprocessing:
- Replace every atom $a:=\left(t+c={ }_{d} 0\right)$ with a fresh Boolean variable p_{a}
- Add the 4 clauses

$$
\begin{aligned}
& p_{a} \rightarrow\left(t+c-d w_{1}=0\right) \\
& \neg p_{a} \rightarrow\left(t+c-d w_{1}-w_{2}=0\right) \\
& \left(-w_{2}+1 \leq 0\right) \\
& \left(w_{2}-d+1 \leq 0\right)
\end{aligned}
$$

where w_{1}, w_{2} are fresh integer variables

Interpolants from LIA-proofs

- Cutting-plane proof system: complete proof system for LIA

$$
\begin{array}{r}
\text { Hyp } \frac{-}{t \leq 0} \quad \operatorname{Comb} \frac{t_{1} \leq 0 \quad t_{2} \leq 0}{c_{1} \cdot t_{1}+c_{2} \cdot t_{2} \leq 0}, c_{1}, c_{2}>0 \\
\\
\text { Div } \frac{\sum_{i} c_{i} x_{i}+c \leq 0}{\sum_{i} \frac{c_{i}}{d} x_{i}+\left\lceil\frac{c}{d}\right\rceil \leq 0}, d>0 \text { divides the } c_{i} \text { 's }
\end{array}
$$

Interpolants from LIA-proofs

SYSTEMS

- Cutting-plane proof system: complete proof system for LIA

$$
\operatorname{Hyp} \frac{-}{t \leq 0} \quad \operatorname{Comb} \frac{t_{1} \leq 0 \quad t_{2} \leq 0}{c_{1} \cdot t_{1}+c_{2} \cdot t_{2} \leq 0}, c_{1}, c_{2}>0
$$

LRA rules
Div $\frac{\sum_{i} c_{i} x_{i}+c \leq 0}{\sum_{i} \frac{c_{i}}{d} x_{i}+\left\lceil\frac{c}{d}\right\rceil \leq 0}, d>0$ divides the c_{i} 's

Interpolants from LIA-proofs

- Cutting-plane proof system: complete proof system for LIA

$$
\operatorname{Hyp} \frac{-}{t \leq 0} \quad \operatorname{Comb} \frac{t_{1} \leq 0 \quad t_{2} \leq 0}{c_{1} \cdot t_{1}+c_{2} \cdot t_{2} \leq 0}, c_{1}, c_{2}>0
$$

Strenghten $\frac{\sum_{i} c_{i} x_{i}+c \leq 0}{\sum_{i} c_{i} x_{i}+d \cdot\left\lceil\frac{c}{d}\right\rceil \leq 0}, d>0$ divides the c_{i} 's

Interpolants from LIA-proofs

- Cutting-plane proof system: complete proof system for LIA

$$
\operatorname{Hyp} \frac{-}{t \leq 0} \quad \operatorname{Comb} \frac{t_{1} \leq 0 \quad t_{2} \leq 0}{c_{1} \cdot t_{1}+c_{2} \cdot t_{2} \leq 0}, c_{1}, c_{2}>0
$$

Strenghten $\frac{\sum_{i} c_{i} x_{i}+c \leq 0}{\sum_{i} c_{i} x_{i}+d \cdot\left\lceil\frac{c}{d}\right\rceil \leq 0}, d>0$ divides the c_{i} 's

- Interpolation by annotating proof rules
- Annotation: a set of pairs $\left\{\left\langle t_{i} \leq 0, \bigwedge_{j}\left(t_{i j}=0\right)\right\rangle\right\}_{i}$
- When \perp is derived, then

$$
I:=\bigvee_{i}\left(t_{i} \leq 0 \wedge \bigwedge_{j} \operatorname{ExistElim}\left(x_{i} \notin B\right) \cdot\left(t_{i j}=0\right)\right)
$$

is the computed interpolant

Interpolants from cutting-plane proofs

- Annotations for Hyp and Comb from McMillan
(same as LRA)

$$
\begin{aligned}
& \operatorname{Hyp} \frac{-}{t \leq 0[\{\langle t \leq 0, \top\rangle\}]} t^{\prime}= \begin{cases}t \text { if } t \leq 0 \in A \\
0 & \text { if } t \leq 0 \in B\end{cases} \\
& \operatorname{Comb} \frac{t_{1} \leq 0\left[I_{1}\right] \quad t_{2} \leq 0\left[I_{2}\right]}{c_{1} \cdot t_{1}+c_{2} \cdot t_{2} \leq 0[I]} \\
& I:=\left\{\left\langle c_{1} t_{i}^{\prime}+c_{2} t_{j}^{\prime} \leq 0, E_{i} \wedge E_{j}\right\rangle \mid\left\langle t_{i}^{\prime}, E_{i}\right\rangle \in I_{1},\left\langle t_{j}^{\prime}, E_{j}\right\rangle \in I_{2}\right\}
\end{aligned}
$$

- k -Strengthen rule of [Brillout et al. IJCAR'10]

Str. $\frac{\sum_{i} c_{i} x_{i}+c \leq 0[\{\langle t \leq 0, \top\rangle\}]}{\sum_{i} c_{i} x_{i}+d \cdot\left\lceil\frac{c}{d}\right\rceil \leq 0[I]}, d>0$ divides the c_{i} 's

$$
\begin{array}{r}
I:=\left\{\langle(t+n \leq 0),(t+n=0)\rangle \left\lvert\, 0 \leq n<d \cdot\left\lceil\frac{c}{d}\right\rceil-c\right.\right\} \cup \\
\left\{\left\langle\left(t+d \cdot\left\lceil\frac{c}{d}\right\rceil-c \leq 0\right), \top\right\rangle\right\}
\end{array}
$$

Interpolants from cutting-plane proofs

- Annotations for Hyp and Comb from McMillan (same as LRA)

$$
\begin{aligned}
& \left.\left.\left.\operatorname{Hyp} \frac{-}{t \leq 0[\{\langle 0 \leq 0,} \top\right\rangle\right\}\right] \\
& t^{\prime}= \begin{cases}t & \text { if } t \leq 0 \in A \\
0 & \text { if } t \leq 0 \in B\end{cases} \\
& \operatorname{Comb} \frac{t_{1} \leq 0\left[I_{1}\right] \quad t_{2} \leq 0\left[I_{2}\right]}{c_{1} \cdot t_{1}+c_{2} \cdot t_{2} \leq 0[I]} \\
& I:=\left\{\left\langle c_{1} t_{i}^{\prime}+c_{2} t_{j}^{\prime} \leq 0, E_{i} \wedge E_{j}\right\rangle \mid\left\langle t_{i}^{\prime}, E_{i}\right\rangle \in I_{1},\left\langle t_{j}^{\prime}, E_{j}\right\rangle \in I_{2}\right\}
\end{aligned}
$$

- k -Strengthen rule of [Brillout et al. IJCAR'10]

Str. $\frac{\sum_{i} c_{i} x_{i}+c \leq 0[\{\langle t \leq 0, \top\rangle\}]}{\sum_{i} c_{i} x_{i}+d \cdot\left\lceil\frac{c}{d}\right\rceil \leq 0[I]}, d>0$ divides the c_{i} 's

$$
\begin{array}{r}
I:=\left\{\langle(t+n \leq 0),(t+n=0)\rangle \left\lvert\, 0 \leq n<d \cdot\left\lceil\frac{c}{d}\right\rceil-c\right.\right\} \cup \\
\left\{\left\langle\left(t+d \cdot\left\lceil\frac{c}{d}\right\rceil-c \leq 0\right), \top\right\rangle\right\}
\end{array}
$$

Example

$$
A:=\left\{\begin{array}{l}
-y-4 x-1 \leq 0 \\
y+4 x \leq 0
\end{array} \quad B:=\left\{\begin{array}{l}
-y-4 z+1 \leq 0 \\
y+4 z-2 \leq 0
\end{array}\right.\right.
$$

$$
y+4 x \leq 0 \quad-y-4 z+1 \leq 0
$$

$$
4 x-4 z+1 \leq 0
$$

$$
-y-4 x-1 \leq 0 \quad y+4 z-2 \leq 0
$$

$$
4 x-4 z+1+3 \leq 0
$$

$$
-4 x+4 z-3 \leq 0
$$

$$
(1 \leq 0) \equiv \perp
$$

Example - with annotations

$$
A:=\left\{\begin{array}{l}
-y-4 x-1 \leq 0 \\
y+4 x \leq 0
\end{array} \quad B:=\left\{\begin{array}{l}
-y-4 z+1 \leq 0 \\
y+4 z-2 \leq 0
\end{array}\right.\right.
$$

$$
\begin{aligned}
& y+4 x \leq 0 \quad-y-4 z+1 \leq 0 \\
& {[\{\langle y+4 x \leq 0, \top\rangle\}] \quad[\{\langle 0 \leq 0, \top\rangle\}]} \\
& 4 x-4 z+1 \leq 0 \\
& {[\{\langle y+4 x \leq 0, \top\rangle\}]} \\
& -y-4 x-1 \leq 0 \quad y+4 z-2 \leq 0 \\
& {[\{\langle-y-4 x-1 \leq 0, \top\rangle\}][\{\langle 0 \leq 0, \top\rangle\}]} \\
& 4 x-4 z+1+3 \leq 0 \\
& -4 x+4 z-3 \leq 0 \\
& {[\{\langle y+4 x+n \leq 0, y+4 x+n=0\rangle \mid} \\
& {[\{\langle-y-4 x-1 \leq 0, \top\rangle\}]} \\
& 0 \leq n<3\} \cup\{\langle y+4 x+2 \leq 0, \top\rangle\}] \\
& (1 \leq 0) \equiv \perp \\
& {[\{\langle n-1 \leq 0, y+4 x+n=0\rangle \mid 0 \leq n<3\} \cup\{\langle 2-1 \leq 0, \top\rangle\}]}
\end{aligned}
$$

Example - with annotations

EMBEDDED

$$
A:=\left\{\begin{array}{l}
-y-4 x-1 \leq 0 \\
y+4 x \leq 0
\end{array} \quad B:=\left\{\begin{array}{l}
-y-4 z+1 \leq 0 \\
y+4 z-2 \leq 0
\end{array}\right.\right.
$$

$$
\begin{gathered}
y+4 x \leq 0 \quad-y-4 z+1 \leq 0 \\
{[\{\langle y+4 x \leq 0, \top\rangle\}][\{\langle 0 \leq 0, \top\rangle\}]}
\end{gathered}
$$

$$
\begin{gathered}
4 x-4 z+1 \leq 0 \\
{[\{\langle y+4 x \leq 0, \top\rangle\}]}
\end{gathered}
$$

$$
-y-4 x-1 \leq 0 \quad y+4 z-2 \leq 0
$$

$$
[\{\langle-y-4 x-1 \leq \overline{0}, \top\rangle\}][\{\langle 0 \leq 0, \bar{\top}\rangle\}]
$$

$$
4 x-4 z+1+3 \leq 0
$$

$$
-4 x+4 z-3 \leq 0
$$

$$
[\{\langle y+4 x+n \leq 0, y+4 x+n=0\rangle
$$

$$
0 \leq n<3\} \cup\{\langle y+4 x+2 \leq 0, \top\rangle\}]
$$

$$
[\{\langle-y-4 x-1 \leq 0, \top\rangle\}]
$$

$$
(1 \leq 0) \equiv \perp
$$

$$
[\{\langle n-1 \leq 0, y+4 x+n=0\rangle \mid 0 \leq n<3\} \cup\{\langle 2-1 \leq 0, \top\rangle\}]
$$

$$
\text { Interpolant: }\left(y={ }_{4} 0\right) \vee\left(y+1={ }_{4} 0\right)
$$

Drawback of Strengthen

■ Interpolation of Strengthen creates potentially very big disjunctions

- Linear in the strengthening factor $k:=d\left\lceil\frac{c}{d}\right\rceil-c$
- Can be exponential in the size of the proof

Example: $\left\{\begin{array}{l}-y-4 x-1 \leq 0 \\ y+4 x \leq 0\end{array}\right.$

$$
B:=\left\{\begin{array}{l}
-y-4 z+1 \leq 0 \\
y+4 z-2 \leq 0
\end{array}\right.
$$

Interpolant: $\left(y={ }_{4} 0\right) \vee\left(y+1={ }_{4} 0\right)$

Drawback of Strengthen

■ Interpolation of Strengthen creates potentially very big disjunctions

- Linear in the strengthening factor $k:=d\left\lceil\frac{c}{d}\right\rceil-c$
- Can be exponential in the size of the proof

Example: $\left\{\begin{array}{l}-y-2 n x-n+1 \leq 0 \\ y+2 n x \leq 0\end{array} B:=\left\{\begin{array}{l}-y-2 n z+1 \leq 0 \\ y+2 n z-n \leq 0\end{array}\right.\right.$
Interpolant: $\left(y={ }_{2 n} 0\right) \vee\left(y+1={ }_{2 n} 0\right) \vee \ldots \vee(y=2 n n-1)$

Drawback of Strengthen

- Interpolation of Strengthen creates potentially very big disjunctions
- Linear in the strengthening factor $k:=d\left\lceil\frac{c}{d}\right\rceil-c$
- Can be exponential in the size of the proof

Example:
$A:=\left\{\begin{array}{l}-y-2 n x-n+1 \leq 0 \\ y+2 n x \leq 0\end{array} B:=\left\{\begin{array}{l}-y-2 n z+1 \leq 0 \\ y+2 n z-n \leq 0\end{array}\right.\right.$ Interpolant: $\left(y={ }_{2 n} 0\right) \vee\left(y+1={ }_{2 n} 0\right) \vee \ldots \vee\left(y={ }_{2 n} n-1\right)$

- The problem are $A B-m i x e d ~ c u t s: ~$

Strengthen $\frac{\sum_{x_{i} \notin B} c_{i} x_{i}+\sum_{y_{j} \notin A} c_{j} y_{j}+c \leq 0}{\sum_{x_{i} \notin B} c_{i} x_{i}+\sum_{y_{j} \notin A} c_{j} y_{j}+d \cdot\left\lceil\frac{c}{d}\right\rceil \leq 0}$

Interpolation with ceilings

- Idea: use a different extension of the signature of LIA, and extend also its domain
- Introduce the ceiling function $\lceil\cdot\rceil$ [Pudlák '97]
- Allow non-variable terms to be non-integers (e.g. $\frac{x}{2}$)
- Much simpler interpolation procedure
- Proof annotations are single inequalities $(t \leq 0)$

Interpolation with ceilings

- Idea: use a different extension of the signature of LIA, and extend also its domain
- Introduce the ceiling function $\lceil\cdot\rceil$ [Pudlák '97]
- Allow non-variable terms to be non-integers (e.g. $\frac{x}{2}$)
- Much simpler interpolation procedure
- Proof annotations are single inequalities $(t \leq 0)$

$$
\begin{aligned}
& \text { Hyp } \frac{-}{t \leq 0\left[t^{\prime} \leq 0\right]} \quad \operatorname{Comb} \frac{t_{1} \leq 0\left[t_{1}^{\prime} \leq 0\right]}{c_{1} \cdot t_{1}+c_{2} \cdot t_{2} \leq 0\left[c_{1} \cdot t_{1}^{\prime}+c_{2} \cdot t_{2}^{\prime} \leq 0\right]} \\
& \sum_{y_{j} \notin B} a_{j} y_{j}+\sum_{z_{k} \notin A} b_{k} z_{k}+\sum_{x_{i} \in A \cap B} c_{i} x_{i}+c \\
& \text { iv } \frac{\left[\sum_{y_{j} \notin B} a_{j} y_{j}+\sum_{x_{i} \in A \cap B} c_{i}^{\prime} x_{i}+t^{\prime}\right]}{\sum_{y_{j} \notin B} \frac{a_{j}}{d} y_{j}+\sum_{z_{k} \in B} \frac{b_{k}}{d} z_{k}+\sum_{x_{i} \in A \cap B} \frac{c_{i}}{d} x_{i}+\left\lceil\frac{c}{d}\right\rceil} \\
& \quad\left[\sum_{y_{j} \notin B} \frac{a_{j}}{d} y_{j}+\left\lceil\frac{\sum_{x_{i} \in A \cap B} c_{i}^{\prime} x_{i}+t^{\prime}}{d}\right\rceil\right] \quad d>0 \text { divides } a_{j}, b_{k}, c_{i}
\end{aligned}
$$

Interpolation with ceilings - example

- No blowup of interpolants wrt. the size of the proofs

$$
\begin{aligned}
& A:=\left\{\begin{array}{l}
-y-2 n x-n+1 \leq 0 \quad B:=\left\{\begin{array}{l}
-y-2 n z+1 \leq 0 \\
y+2 n x \leq 0
\end{array}\right. \\
\begin{array}{l}
y+2 n x \leq 0-y z-n \leq 0
\end{array} \\
\frac{2 n x-2 n z+1 \leq 0}{2 n \cdot(x-z+1 \leq 0)} \quad-y-2 n x-n+1 \leq 0 \quad y+2 n z-n \leq 0
\end{array}\right. \\
& \begin{array}{ll}
2 n z+1 \leq 0
\end{array} \\
& \hline-2 n x+2 n z-2 n+1 \leq 0
\end{aligned}
$$

$$
(1 \leq 0) \equiv \perp
$$

Interpolation with ceilings - example

- No blowup of interpolants wrt. the size of the proofs

$$
A:=\left\{\begin{array}{l}
-y-2 n x-n+1 \leq 0 \\
y+2 n x \leq 0
\end{array} \quad B:=\left\{\begin{array}{l}
-y-2 n z+1 \leq 0 \\
y+2 n z-n \leq 0
\end{array}\right.\right.
$$

$$
\begin{array}{lc}
y+2 n x \leq 0 & -y-2 n z+1 \leq 0 \\
{[y+2 n x \leq 0]} & {[0 \leq 0]}
\end{array}
$$

$$
2 n x-2 n z+1 \leq 0
$$

$$
[y+2 n x \leq 0]
$$

$$
-y-2 n x-n+1 \leq 0 \quad y+2 n z-n \leq 0
$$

$$
[-y-2 n x-n+1 \leq 0] \quad[0 \leq 0]
$$

$$
2 n \cdot(x-z+1 \leq 0)
$$

$$
\left[x+\left\lceil\frac{y}{2 n}\right\rceil \leq 0\right]
$$

$$
\begin{gathered}
-2 n x+2 n z-2 n+1 \leq 0 \\
{[-y-2 n x-n+1 \leq 0]}
\end{gathered}
$$

$$
\begin{gathered}
(1 \leq 0) \equiv \perp \\
{\left[2 n\left\lceil\frac{y}{2 n}\right\rceil-y-n+1 \leq 0\right]}
\end{gathered}
$$

Interpolation with ceilings - example

- No blowup of interpolants wrt. the size of the proofs

$$
A:=\left\{\begin{array}{l}
-y-2 n x-n+1 \leq 0 \\
y+2 n x \leq 0
\end{array} \quad B:=\left\{\begin{array}{l}
-y-2 n z+1 \leq 0 \\
y+2 n z-n \leq 0
\end{array}\right.\right.
$$

$$
\begin{array}{lc}
y+2 n x \leq 0 & -y-2 n z+1 \leq 0 \\
{[y+2 n x \leq 0]} & {[0 \leq 0]}
\end{array}
$$

$$
2 n x-2 n z+1 \leq 0
$$

$$
-y-2 n x-n+1 \leq 0 \quad y+2 n z-n \leq 0
$$

$$
[y+2 n x \leq 0]
$$

$$
[-y-2 n x-n+1 \leq 0] \quad[0 \leq 0]
$$

$$
2 n \cdot(x-z+1 \leq 0)
$$

$$
\left[x+\left\lceil\frac{y}{2 n}\right\rceil \leq 0\right]
$$

$$
\begin{gathered}
-2 n x+2 n z-2 n+1 \leq 0 \\
{[-y-2 n x-n+1 \leq 0]}
\end{gathered}
$$

$$
(1 \leq 0) \equiv \perp
$$

Interpolant: $\left[2 n\left\lceil\frac{y}{2 n}\right\rceil-y-n+1 \leq 0\right]$

SMT(LIA) with ceilings

- Like modular equations, also ceilings can be eliminated via preprocessing
- Replace every term $\lceil t\rceil$ with a fresh integer variable $x_{\lceil t\rceil}$
- Add the 2 unit clauses
(encoding the meaning of ceiling: $\lceil t\rceil-1<t \leq\lceil t\rceil$)

$$
\begin{aligned}
& \left(l \cdot x_{\lceil t\rceil}-l \cdot t+l \leq 0\right) \\
& \left(l \cdot t-l \cdot x_{\lceil t\rceil} \leq 0\right)
\end{aligned}
$$

where l is the least common multiple of the denominators of the coefficients in t

Bit-vectors (BV)

- Interpolation for bit-vectors is hard
- Only some limited work done so far

■ Most efficient solvers use eager encoding into SAT, which is efficient but not good for interpolation

- Easy in principle, but not very useful interpolants
- Try to exploit lazy bit-blasting to incorporate BV into DPLL(T)

Interpolation via Bit-Blasting

- Interpolation via bit-blasting is easy...
- From $A_{B V}$ and $B_{B V}$ generate $A_{\text {Bool }}$ and $B_{\text {Bool }}$

Each var x of width n encoded with n Boolean vars $b_{1}^{x} \ldots b_{n}^{x}$

- Generate a Boolean interpolant $I_{\text {Bool }}$ for $\left(A_{\mathrm{Bool}}, B_{\mathrm{Bool}}\right)$
- Replace every variable b_{i}^{x} in $I_{\text {Boolwith the bit-selection } x[i]}$ and every Boolean connective with the corresponding bit-wise connective: $\wedge \mapsto \&, \quad \vee \mapsto \mid, \quad \neg \mapsto \sim$

■ ...but quite impractical

- Generates "ugly" interpolants
- Word-level structure of the original problem completely lost
- How to apply word-level simplifications?

Interpolation via Bit-Blasting - Example

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(a_{[8]} * b_{[8]}=15_{[8]}\right) \wedge\left(a_{[8]}=3_{[8]}\right) \\
& B \stackrel{\text { def }}{=} \neg\left(b_{[8]} \%_{u} c_{[8]}=1_{[8]}\right) \wedge\left(c_{[8]}=2_{[8]}\right)
\end{aligned}
$$

A word-level interpolant is:

$$
I \stackrel{\text { def }}{=}\left(b_{[8]} * 3_{[8]}=15_{[8]}\right)
$$

...but with bit-blasting we get:

$$
\begin{aligned}
& I^{\prime} \stackrel{\text { def }}{=}\left(b_{[8]}[0]=1_{[1]}\right) \wedge\left(\left(b _ { [8] } [0] \& \sim \left(\left(\left(\left(\left(\left(\sim b_{[8]}[7] \& \sim b_{[8]}[6]\right) \&\right.\right.\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left.\left.\left.\sim b_{[8]}[5]\right) \& \sim b_{[8]}[4]\right) \& \sim b_{[8]}[3]\right) \& b_{[8]}[2]\right) \& \sim b_{[8]}[1]\right)\right)=0_{[1]}\right)
\end{aligned}
$$

Alternative: lazy bit-blasting and DPLL(T)

- Exploit lazy bit-blasting
- Bit-blast only BV-atoms, not the whole formula
- Boolean skeleton of the formula handled by the "main" DPLL, like in DPLL(T)
- Conjunctions of BV-atoms handled (via bit-blasting) by a "sub"DPLL (DPLL-BV) that acts as a BV-solver

BV-specific Interpolation for conjunctions of constraints

Interpolation for BV constraints

- A layered approach
- Apply in sequence a chain of procedures of increasing generality and cost
- Interpolation in EUF
- Interpolation via equality inlining
- Interpolation via Linear Integer Arithmetic encoding
- Interpolation via bit-blasting

Interpolation in EUF

- Treat all the BV-operators as uninterpreted functions
- Exploit cheap, efficient algorithms for solving and interpolating modulo EUF
- Possible because we avoid bit-blasting upront!

Example: $\quad A \stackrel{\text { def }}{=}\left(x_{1[32]}=3_{[32]}\right) \wedge\left(x_{3[32]}=x_{1[32]} \cdot x_{2[32]}\right)$

$$
\begin{array}{r}
B \stackrel{\text { def }}{=}\left(x_{4[32]}=x_{2[32]}\right) \wedge\left(x_{5[32]}=3_{[32]} \cdot x_{4[32]}\right) \wedge \\
\neg\left(x_{3[32]}=x_{5[32]}\right)
\end{array}
$$

$$
I_{\mathrm{UF}} \stackrel{\text { def }}{=} x_{3}=f^{\cdot}\left(f^{3}, x_{2}\right)
$$

$$
I_{\mathrm{BV}} \stackrel{\text { def }}{=} x_{3[32]}=3_{[32]} \cdot x_{2[32]}
$$

Interpolation via Equality Inlining

- Interpolation via quantifier elimination: given (A, B), an interpolant can be computed by eliminating quantifiers from

$$
\exists_{x \notin B} A \text { or from } \exists_{x \notin A} \neg B
$$

- In general, this can be very expensive for BV
- Might require bit-blasting and can cause blow-up of the formula
- Cheap case: non-common variables occurring in "definitional" equalities
Example: $(x=e) \wedge \varphi$ and x does not occur in e, then

$$
\exists_{x}((x=e) \wedge \varphi) \Longrightarrow \varphi[x \mapsto e]
$$

Interpolation via Equality Inlining

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \stackrel{\text { def }}{=}\left(0_{[24]}::\left(x_{4[8]} \cdot x_{5[8]}\right) \leq_{s}\left(0_{[24]}:: x_{1[8]}-1_{[32]}\right)\right) \wedge$

$$
\left(x_{2[8]}=x_{1[8]}\right) \wedge\left(x_{4[8]}=192_{[8]}\right) \wedge\left(x_{5[8]}=128_{[8]}\right)
$$

$$
\begin{gathered}
B \stackrel{\text { def }}{=}\left(\left(x_{3[8]} \cdot x_{6[8]}\right)=\left(-\left(0_{[24]}:: x_{2[8]}\right)\right)[7: 0]\right) \wedge \\
\left(x_{3[8]}<u 1_{[8]}\right) \wedge\left(0_{[8]} \leq_{u} x_{3[8]}\right) \wedge\left(x_{6[8]}=1_{[8]}\right)
\end{gathered}
$$

Interpolation via Equality Inlining

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \stackrel{\text { def }}{=}\left(0_{[24]}::\left(x_{4[8]} \cdot x_{5[8]}\right) \leq_{s}\left(0_{[24]}:: x_{1[8]}-1_{[32]}\right)\right) \wedge$

$$
\left(x_{2[8]}=x_{1[8]}\right) \wedge\left(x_{4[8]}=192_{[8]}\right) \wedge\left(x_{5[8]}=128_{[8]}\right)
$$

Definitional equalities

$$
\begin{gathered}
B \stackrel{\text { def }}{=}\left(\left(x_{3[8]} \cdot x_{6[8]}\right)=\left(-\left(\theta_{[24]}:: x_{2[8]}\right)\right)[7: 0]\right) \wedge \\
\left(x_{3[8]}<u 1_{[8]}\right) \wedge\left(0_{[8]} \leq_{u} x_{3[8]}\right) \wedge\left(x_{6[8]}=1_{[8]}\right)
\end{gathered}
$$

Interpolation via Equality Inlining

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \xlongequal{\text { def }}\left(0_{[24]}::\left(x_{4[8]} \cdot x_{5[8]}\right) \leq_{s}\left(0_{[24]}:: x_{1[8]}-1_{[32]}\right)\right) \wedge$

$$
\left(x_{2[8]}=x_{1[8]}\right) \wedge\left(x_{4[8]}=192_{[8]}\right) \wedge\left(x_{5[8]}=128_{[8]}\right)
$$

$$
\begin{gathered}
B \stackrel{\text { def }}{=}\left(\left(x_{3[8]} \cdot x_{6[8]}\right)=\left(-\left(0_{[24]}:: x_{2[8]}\right)\right)[7: 0]\right) \wedge \\
\left(x_{3[8]}<_{u} 1_{[8]}\right) \wedge\left(0_{[8]} \leq_{u} x_{3[8]}\right) \wedge\left(x_{6[8]}=1_{[8]}\right)
\end{gathered}
$$

Interpolation via Equality Inlining

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \stackrel{\text { def }}{=}\left(0_{[24]}::\left(x_{4[8]} \cdot x_{5[8]}\right) \leq_{s}\left(0_{[24]}:: x_{2[8]}-1_{[32]}\right)\right) \wedge$

$$
\wedge\left(x_{4[8]}=192_{[8]}\right) \wedge\left(x_{5[8]}=128_{[8]}\right)
$$

$$
\begin{gathered}
B \stackrel{\text { def }}{=}\left(\left(x_{3[8]} \cdot x_{6[8]}\right)=\left(-\left(0_{[24]}:: x_{2[8]}\right)\right)[7: 0]\right) \wedge \\
\left(x_{3[8]}<u 1_{[8]}\right) \wedge\left(0_{[8]} \leq_{u} x_{3[8]}\right) \wedge\left(x_{6[8]}=1_{[8]}\right)
\end{gathered}
$$

Interpolation via Equality Inlining

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \xlongequal{\text { def }}\left(0_{[24]}::\left(x_{4[8]} \cdot x_{5[8]}\right) \leq_{s}\left(0_{[24]}:: x_{2[8]}-1_{[32]}\right)\right) \wedge$

$$
\wedge\left(x_{4[8]}=192_{[8]}\right) \wedge\left(x_{5[8]}=128_{[8]}\right)
$$

$$
\begin{gathered}
B \stackrel{\text { def }}{=}\left(\left(x_{3[8]} \cdot x_{6[8]}\right)=\left(-\left(0_{[24]}:: x_{2[8]}\right)\right)[7: 0]\right) \wedge \\
\left(x_{3[8]}<_{u} 1_{[8]}\right) \wedge\left(0_{[8]} \leq_{u} x_{3[8]}\right) \wedge\left(x_{6[8]}=1_{[8]}\right)
\end{gathered}
$$

Interpolation via Equality Inlining

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \xlongequal{\text { def }}\left(0_{[24]}::\left(192_{[8]} \cdot 128_{[8]}\right) \leq_{s}\left(0_{[24]}:: x_{2[8]}-1_{[32]}\right)\right)$

$$
\begin{gathered}
B \stackrel{\text { def }}{=}\left(\left(x_{3[8]} \cdot x_{6[8]}\right)=\left(-\left(0_{[24]}:: x_{2[8]}\right)\right)[7: 0]\right) \wedge \\
\left(x_{3[8]}<_{u} 1_{[8]}\right) \wedge\left(0_{[8]} \leq_{u} x_{3[8]}\right) \wedge\left(x_{6[8]}=1_{[8]}\right)
\end{gathered}
$$

Interpolation via Equality Inlining

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \xlongequal{\text { def }}\left(0_{[24]}::\left(192_{[8]} \cdot 128_{[8]}\right) \leq_{s}\left(0_{[24]}:: x_{2[8]}-1_{[32]}\right)\right)$

$$
I \stackrel{\text { dof }}{=}\left(0_{32} \leq_{s}\left(0_{24}:: x_{2[8]}-1_{[32]}\right)\right.
$$

$$
\begin{gathered}
B \stackrel{\text { def }}{=}\left(\left(x_{3[8]} \cdot x_{6[8]}\right)=\left(-\left(0_{[24]}:: x_{2[8]}\right)\right)[7: 0]\right) \wedge \\
\left(x_{3[8]}<_{u} 1_{[8]}\right) \wedge\left(0_{[8]} \leq_{u} x_{3[8]}\right) \wedge\left(x_{6[8]}=1_{[8]}\right)
\end{gathered}
$$

Interpolation via LIA Encoding

- Simple idea (in principle):
- Encode a set of BV-constraints into an SMT(LIA)-formula
- Generate a LIA-interpolant using existing algorithms
- Map back to a BV-interpolant

■ However, several problems to solve:

- Efficiency
- More importantly, soundness

Encoding BV into LIA

- Use well-known encodings from BV to SMT(LIA)
- Encode each BV term $t_{[n]}$ as an integer variable x_{t} and the constraints $\left(0 \leq x_{t}\right) \wedge\left(x_{t} \leq 2^{n}-1\right)$
- Encode each BV operation as a LIA-formula.

Examples:
$t_{[i-j+1]} \stackrel{\text { def }}{=} t_{1[n]}[i: j] \Rightarrow\left(x_{t}=m\right) \wedge\left(x_{t_{1}}=2^{i+1} h+2^{j} m+l\right) \wedge$

$$
l \in\left[0,2^{i}\right) \wedge m \in\left[0,2^{i-j+1}\right) \wedge h \in\left[0,2^{n-i-1}\right)
$$

$t_{[n]} \stackrel{\text { def }}{=} t_{1[n]}+t_{2[n]}$
$\left(x_{t}=x_{t_{1}}+x_{t_{2}}-2^{n} \sigma\right) \wedge(0 \leq \sigma \leq 1)$
$t_{[n]} \stackrel{\text { def }}{=} t_{1[n]} \cdot k$
$\left(x_{t}=k \cdot x_{t_{1}}-2^{n} \sigma\right) \wedge(0 \leq \sigma \leq k)$

From LIA-interpolants to BV-interpolants

■ "Invert" the LIA encoding to get a BV interpolant

- Unsound in general
- Issues due to overflow and (un)signedness of operations

■ Our (very simple) solution: check the interpolants

- Given a candidate interpolant \hat{I}, use our $\operatorname{SMT}(\mathrm{BV})$ solver to check the unsatisfiability of $(A \wedge \neg \hat{I}) \vee(B \wedge \hat{I})$
- If successful, then \hat{I} is an interpolant

From LIA- to BV-interpolants: examples

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(y_{1[8]}=y_{5[4]}:: y_{5[4]}\right) \wedge\left(y_{1[8]}=y_{2[8]}\right) \wedge\left(y_{5[4]}=1_{[4]}\right) \\
& B \stackrel{\text { def }}{=} \neg\left(y_{4[8]}+1_{[8]} \leq u y_{2[8]}\right) \wedge\left(y_{4[8]}=1_{[8]}\right)
\end{aligned}
$$

Encoding into LIA:

$$
\begin{aligned}
A_{\mathrm{LIA}} \stackrel{\text { def }}{=} & \left(x_{y_{2}}=16 x_{y_{5}}+x_{y_{5}}\right) \wedge\left(x_{y_{1}}=x_{y_{2}}\right) \wedge\left(x_{y_{5}}=1\right) \wedge \\
& \left(x_{y_{1}} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{2}} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{5}} \in\left[0,2^{4}\right)\right)
\end{aligned}
$$

$B_{\mathrm{LIA}} \stackrel{\text { def }}{=} \neg\left(x_{y_{4}+1} \leq x_{y_{2}}\right) \wedge\left(x_{y_{4}+1}=x_{y_{4}}+1-2^{8} \sigma\right) \wedge$

$$
\begin{aligned}
& \left(x_{y_{4}}=1\right) \wedge \\
& \left(x_{y_{4}+1} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{4}} \in\left[0,2^{8}\right)\right) \wedge(0 \leq \sigma \leq 1)
\end{aligned}
$$

From LIA- to BV-interpolants: examples

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(y_{1[8]}=y_{5[4]}:: y_{5[4]}\right) \wedge\left(y_{1[8]}=y_{2[8]}\right) \wedge\left(y_{5[4]}=1_{[4]}\right) \\
& B \stackrel{\text { def }}{=} \neg\left(y_{4[8]}+1_{[8]} \leq_{u} y_{2[8]}\right) \wedge\left(y_{4[8]}=1_{[8]}\right)
\end{aligned}
$$

LIA-Interpolant:

$$
I_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(17 \leq x_{y_{2}}\right)
$$

BV-interpolant:

$$
I \stackrel{\text { def }}{=}\left(17_{[8]} \leq_{u} y_{2[8]}\right)
$$

From LIA- to BV-interpolants: examples

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(y_{2[8]}=81_{[8]}\right) \wedge\left(y_{3[8]}=0_{[8]}\right) \wedge\left(y_{4[8]}=y_{2[8]}\right) \\
& B \stackrel{\text { def }}{=}\left(y_{13[16]}=0_{[8]}:: y_{4[8]}\right) \wedge\left(255_{[16]} \leq_{u} y_{13[16]}+\left(0_{[8]}:: y_{3[8]}\right)\right)
\end{aligned}
$$

Encoding into LIA:

$$
\begin{aligned}
A_{\mathrm{LIA}} \stackrel{\text { def }}{=} & \left(x_{y_{2}}=81\right) \wedge\left(x_{y_{3}}=0\right) \wedge\left(x_{y_{4}}=x_{y_{2}}\right) \wedge \\
& \left(x_{y_{2}} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{3}} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{4}} \in\left[0,2^{8}\right)\right) \\
B_{\mathrm{LIA}} \stackrel{\text { def }}{=} & \left(x_{y_{13}}=2^{8} \cdot 0+x_{y_{4}}\right) \wedge\left(255 \leq x_{y_{13}+\left(0:: y_{3}\right)}\right) \wedge \\
& \left(x_{\left.y_{13}+\left(0:: y_{3}\right)=x_{y_{13}}+2^{8} \cdot 0+x_{y_{3}}-2^{16} \sigma\right) \wedge}\right. \\
& \left(x_{y_{13}} \in\left[0,2^{16}\right)\right) \wedge\left(x_{y_{13}+\left(0:: y_{3}\right)} \in\left[0,2^{16}\right)\right) \wedge \\
& (0 \leq \sigma \leq 1)
\end{aligned}
$$

From LIA- to BV-interpolants: examples

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(y_{2[8]}=81_{[8]}\right) \wedge\left(y_{3[8]}=0_{[8]}\right) \wedge\left(y_{4[8]}=y_{2[8]}\right) \\
& B \stackrel{\text { def }}{=}\left(y_{13[16]}=0_{[8]}:: y_{4[8]}\right) \wedge\left(255_{[16]} \leq_{u} y_{13[16]}+\left(0_{[8]}:: y_{3[8]}\right)\right)
\end{aligned}
$$

LIA-interpolant:

$$
I_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(x_{y_{3}}+x_{y_{4}} \leq 81\right)
$$

BV-interpolant:

$$
\hat{I} \stackrel{\text { def }}{=}\left(y_{3[8]}+y_{4[8]} \leq_{u} 81_{[8]}\right)
$$

From LIA- to BV-interpolants: examples

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(y_{2[8]}=81_{[8]}\right) \wedge\left(y_{3[8]}=0_{[8]}\right) \wedge\left(y_{4[8]}=y_{2[8]}\right) \\
& B \stackrel{\text { def }}{=}\left(y_{13[16]}=0_{[8]}:: y_{4[8]}\right) \wedge\left(255_{[16]} \leq_{u} y_{13[16]}+\left(0_{[8]}:: y_{3[8]}\right)\right)
\end{aligned}
$$

LIA-interpolant:

$$
I_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(x_{y_{3}}+x_{y_{4}} \leq 81\right)
$$

Addition might overflow in BV!

BV-interpolant:

$$
\hat{I} \xlongequal{\text { def }}\left(y_{3[8]}+y_{4[8]} \leq_{u} 81_{[8]}\right)
$$

From LIA- to BV-interpolants: examples

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(y_{2[8]}=81_{[8]}\right) \wedge\left(y_{3[8]}=0_{[8]}\right) \wedge\left(y_{4[8]}=y_{2[8]}\right) \\
& B \stackrel{\text { def }}{=}\left(y_{13[16]}=0_{[8]}:: y_{4[8]}\right) \wedge\left(255_{[16]} \leq_{u} y_{13[16]}+\left(0_{[8]}:: y_{3[8]}\right)\right)
\end{aligned}
$$

LIA-interpolant:

$$
I_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(x_{y_{3}}+x_{y_{4}} \leq 81\right)
$$

Addition might overflow in BV!

BV-interpolant:

A correct interpolant would be

$$
I \stackrel{\text { def }}{=}\left(0_{[1]}:: y_{3[8]}+0_{[1]}:: y_{4[8]} \leq_{u} 81_{[9]}\right)
$$

From LIA- to BV-interpolants: examples

$A \stackrel{\text { def }}{=} \neg\left(y_{4[8]}+1_{[8]} \leq_{u} y_{3[8]}\right) \wedge\left(y_{2[8]}=y_{4[8]}+1_{[8]}\right)$
$B \stackrel{\text { def }}{=}\left(y_{2[8]}+1_{[8]} \leq u y_{3[8]}\right) \wedge\left(y_{7[8]}=3_{[8]}\right) \wedge\left(y_{7[8]}=y_{2[8]}+1_{[8]}\right)$
Encoding into LIA:

$$
\begin{aligned}
& A_{\mathrm{LIA}} \stackrel{\text { def }}{=} \neg\left(x_{y_{4}+1} \leq x_{y_{3}}\right) \wedge\left(x_{y_{2}}=x_{y_{4}+1}\right) \wedge \\
&\left(x_{y_{4}+1}=x_{y_{4}}+1-2^{8} \sigma_{1}\right) \wedge \\
&\left(x_{y_{2}} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{3}} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{4}} \in\left[0,2^{8}\right)\right) \wedge \\
&\left(x_{y_{4}+1} \in\left[0,2^{8}\right)\right) \wedge\left(0 \leq \sigma_{1} \leq 1\right) \\
& B_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(x_{y_{2}+1} \leq x_{y_{3}}\right) \wedge\left(x_{y_{7}}=3\right) \wedge\left(x_{y_{7}}=x_{y_{2}+1}\right) \wedge \\
&\left(x_{y_{2}+1}=x_{y_{2}}+1-2^{8} \sigma_{2}\right) \wedge \\
&\left(x_{y_{7}} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{2}+1} \in\left[0,2^{8}\right)\right) \wedge\left(0 \leq \sigma_{2} \leq 1\right)
\end{aligned}
$$

From LIA- to BV-interpolants: examples

$$
\begin{aligned}
& A \stackrel{\text { def }}{=} \neg\left(y_{4[8]}+1_{[8]} \leq_{u} y_{3[8]}\right) \wedge\left(y_{2[8]}=y_{4[8]}+1_{[8]}\right) \\
& B \stackrel{\text { def }}{=}\left(y_{2[8]}+1_{[8]} \leq_{u} y_{3[8]}\right) \wedge\left(y_{7[8]}=3_{[8]}\right) \wedge\left(y_{7[8]}=y_{2[8]}+1_{[8]}\right)
\end{aligned}
$$

LIA-interpolant:

$$
I_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(-255 \leq x_{y_{2}}-x_{y_{3}}+256\left\lfloor-1 \frac{x_{y_{2}}}{256}\right\rfloor\right)
$$

BV-interpolant: (after fixing overflows)

$$
\begin{aligned}
\hat{I}^{\prime} & \stackrel{\text { def }}{=}\left(65281_{[16]} \leq u\left(0_{[8]}:: y_{2[8]}\right)-\left(0_{[8]}:: y_{3[8]}\right)+\right. \\
& \left.256_{[16]} \cdot\left(65535_{[16]} \cdot\left(0_{[8]}:: y_{2[8]}\right) / u 256_{[16]}\right)\right)
\end{aligned}
$$

From LIA- to BV-interpolants: examples

$A \stackrel{\text { def }}{=} \neg\left(y_{4[8]}+1_{[8]} \leq_{u} y_{3[8]}\right) \wedge\left(y_{2[8]}=y_{4[8]}+1_{[8]}\right)$
$B \stackrel{\text { def }}{=}\left(y_{2[8]}+1_{[8]} \leq_{u} y_{3[8]}\right) \wedge\left(y_{7[8]}=3_{[8]}\right) \wedge\left(y_{7[8]}=y_{2[8]}+1_{[8]}\right)$
LIA-interpolant:

$$
I_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(-255 \leq x_{y_{2}}-x_{y_{3}}+256\left\lfloor-1 \frac{x_{y_{2}}}{256}\right\rfloor\right)
$$

BV-interpolant:

(after fixing overflows)

$$
\begin{aligned}
& \hat{I}^{\prime} \stackrel{\text { def }}{=} \\
&\left(65281_{[16} \leq_{u} 0_{[8]}:: y_{2[8]}\right)-\left(0_{[8]}:: y_{3[8]}\right)+ \\
&\left.256_{[16]} \cdot\left(65535_{[16]} \cdot\left(0_{[8]}:: y_{2[8]}\right) / u 256_{[16]}\right)\right)
\end{aligned}
$$

In this case, the problem is also the sign

Still
Wrong!

From LIA- to BV-interpolants: examples

$$
\begin{aligned}
& A \stackrel{\text { def }}{=} \neg\left(y_{4[8]}+1_{[8]} \leq_{u} y_{3[8]}\right) \wedge\left(y_{2[8]}=y_{4[8]}+1_{[8]}\right) \\
& B \stackrel{\text { def }}{=}\left(y_{2[8]}+1_{[8]} \leq_{u} y_{3[8]}\right) \wedge\left(y_{7[8]}=3_{[8]}\right) \wedge\left(y_{7[8]}=y_{2[8]}+1_{[8]}\right)
\end{aligned}
$$

LIA-interpolant:

$$
I_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(-255 \leq x_{y_{2}}-x_{y_{3}}+256\left\lfloor-1 \frac{x_{y_{2}}}{256}\right\rfloor\right)
$$

BV-interpolant:

$$
\begin{aligned}
I \stackrel{\text { def }}{=} & \left(65281_{[16]} \leq_{s}\left(0_{[8]}:: y_{2[8]}\right)-\left(0_{[8]}:: y_{3[8]}\right)+\right. \\
& \left.256_{[16]} \cdot\left(65535_{[16]} \cdot\left(0_{[8]}:: y_{2[8]}\right) / u 256_{[16]}\right)\right)
\end{aligned}
$$

Correct interpolant

Interpolation in combined theories

- Delayed Theory Combination (DTC): use the DPLL engine to perform theory combination
- Independent \mathcal{T}_{i}-solvers, that interact only with DPLL
- How: Boolean search space augmented with interface equalities
- Equalities between variables shared by the two theories
- Combination of theories encoded directly in the proof of unsatisfiability P
$-\mathcal{T}_{i}$-lemmas for the individual theories
- P contains interface equalities

Interpolation in combined theories

- Problem for interpolation:
- Some interface equalities ($x=y$) are AB-mixed: $x \notin B, y \notin A$
- Interpolation procedures don't work with AB-mixed terms
- Solution: Split $A B$-mixed equalities occurring in P, and fix the proof
- How: Split each \mathcal{T}-lemma
$\eta \vee(x=y)$ into $(\eta \vee(x=t)) \wedge$
$\eta \vee(t=y)$ with $t \in A \cap B$ using available algorithms
- \mathcal{T}_{i} 's must be equalityinterpolating and convex
- Propagate the changes throughout P

Interpolation in combined theories

- Problem for interpolation:
- Some interface equalities $(x=y)$ are AB-mixed: $x \notin B, y \notin A$
- Interpolation procedures don't work with AB-mixed terms
- Solution: Split $A B$-mixed equalities occurring in P, and fix the proof
- How: Split each \mathcal{T}-lemma $\eta \vee(x=y)$ into $(\eta \vee(x=t)) \wedge$ $\eta \vee(t=y)$ with $t \in A \cap B$ using available algorithms
- \mathcal{T}_{i} 's must be equalityinterpolating and convex
- Propagate the changes throughout P

Interpolation in combined theories

- Problem for interpolation:
- Some interface equalities ($x=y$) are AB-mixed: $x \notin B, y \notin A$
- Interpolation procedures don't work with AB-mixed terms
- Solution: Split AB-mixed equalities occurring in P, and fix the proof
- How: Split each \mathcal{T}-lemma

Problem: spliting can cause exponential blow-up in P

Solution: control the kind of proofs generated by DPLL, so that the splitting can be performed efficiently (ie-local proofs)

Interpolation in combined theories

- After splitting AB-mixed equalities, we can compute an interpolant as usual
- Nothing special needed for theory combination!
- Because theory combination is encoded in the proof, we can reuse the Boolean interpolation algorithm

■ Features:

- No need of ad-hoc interpolant combination procedures
- Exploit state-of-the-art SMT solvers, based on (variants of) DTC
- Split only when necessary

Example

$$
\begin{aligned}
& A:=\left(a_{1}=f\left(x_{1}\right)\right) \wedge\left(z-x_{1}=1\right) \wedge\left(a_{1}+z=0\right) \\
& B:=\left(a_{2}=f\left(x_{2}\right)\right) \wedge\left(z-x_{2}=1\right) \wedge\left(a_{2}+z=1\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& A:=\left(a_{1}=f\left(x_{1}\right)\right) \wedge\left(z-x_{1}=1\right) \wedge\left(a_{1}+z=0\right) \\
& B:=\left(a_{2}=f\left(x_{2}\right)\right) \wedge\left(z-x_{2}=1\right) \wedge\left(a_{2}+z=1\right)
\end{aligned}
$$

T-lemmas:

$$
\begin{aligned}
C_{1} \equiv & \left(x_{1}=x_{2}\right) \vee \neg\left(z-x_{1}=1\right) \vee \\
& \neg\left(z-x_{2}=1\right)
\end{aligned}
$$

$$
C_{2} \equiv\left(a_{1}=a_{2}\right) \vee \neg\left(a_{2}=f\left(x_{2}\right)\right) \vee
$$

$$
\neg\left(a_{1}=f\left(x_{1}\right)\right) \vee \neg\left(x_{1}=x_{2}\right)
$$

$$
C_{3} \equiv \neg\left(a_{1}+z=0\right) \vee \neg\left(a_{2}+z=1\right) \vee
$$

$$
\neg\left(a_{1}=a_{2}\right)
$$

$\Theta_{2} \quad\left(a_{2}+z=1\right)$

$$
\left(a_{1}+z=0\right) \quad \Theta_{3}
$$

$$
\Theta_{4} \quad\left(z-x_{2}=1\right)
$$

$$
\left(a_{1}=f\left(x_{1}\right)\right) \quad \Theta_{5}
$$

$$
\Theta_{6} \quad\left(a_{2}=f\left(x_{2}\right)\right)
$$

$$
\left(z-x_{1}=1\right) \quad \Theta_{7}
$$

Example

$$
\begin{aligned}
& A:=\left(a_{1}=f\left(x_{1}\right)\right) \wedge\left(z-x_{1}=1\right) \wedge\left(a_{1}+z=0\right) \\
& B:=\left(a_{2}=f\left(x_{2}\right)\right) \wedge\left(z-x_{2}=1\right) \wedge\left(a_{2}+z=1\right)
\end{aligned}
$$

Pivot: $\left(a_{1}=a_{2}\right)$

T-lemmas:

Pivot: $\left(x_{1}=x_{2}\right)$

$$
\left.\begin{array}{cc|cc}
C_{1} \equiv & \left(x_{1}=x_{2}\right) \vee \neg\left(z-x_{1}=1\right) \vee & \left(\bar{a}_{1}+z^{-}=\overline{0}\right)^{-} & \Theta_{3}^{-} \\
& \neg\left(z-x_{2}=1\right) & \text { subproof } \\
\text { with int.eqs. }
\end{array}\right)
$$

$$
\neg\left(a_{1}=f\left(x_{1}\right)\right) \vee \neg\left(x_{1}=x_{2}\right)
$$

$$
\Theta_{6} \quad\left(a_{2}=f\left(x_{2}\right)\right)
$$

$$
C_{3} \equiv \neg\left(a_{1}+z=0\right) \vee \neg\left(a_{2}+z=1\right) \vee
$$

$$
\left(z-x_{1}=1\right)
$$

$$
\Theta_{7}
$$

$$
\neg\left(a_{1}=a_{2}\right)
$$

Example

$$
\begin{aligned}
& A:=\left(a_{1}=f\left(x_{1}\right)\right) \wedge\left(z-x_{1}=1\right) \wedge\left(a_{1}+z=0\right) \\
& B:=\left(a_{2}=f\left(x_{2}\right)\right) \wedge\left(z-x_{2}=1\right) \wedge\left(a_{2}+z=1\right)
\end{aligned}
$$

$P^{i e}$ subproof:

T-lemmas:

$$
\begin{aligned}
C_{1} \equiv & \left(x_{1}=x_{2}\right) \vee \neg\left(z-x_{1}=1\right) \vee \\
& \neg\left(z-x_{2}=1\right) \\
C_{2} \equiv & \left(a_{1}=a_{2}\right) \vee \neg\left(a_{2}=f\left(x_{2}\right)\right) \vee \\
& \neg\left(a_{1}=f\left(x_{1}\right)\right) \vee \neg\left(x_{1}=x_{2}\right) \\
C_{3} \equiv & C_{3}
\end{aligned}
$$

C_{1}

$$
\neg\left(a_{1}=a_{2}\right)
$$

Example

$$
\begin{aligned}
& A:=\left(a_{1}=f\left(x_{1}\right)\right) \wedge\left(z-x_{1}=1\right) \wedge\left(a_{1}+z=0\right) \\
& B:=\left(a_{2}=f\left(x_{2}\right)\right) \wedge\left(z-x_{2}=1\right) \wedge\left(a_{2}+z=1\right) \\
& P^{i e} \text { sunproof: } \\
& T \text {-lemmas: } \\
& \text { Split }\left(x_{1}=x_{2}\right) \text { in } C_{l} \\
& C_{1} \equiv\left(x_{1}=x_{2}\right) \vee \neg\left(z-x_{1}=1\right) \vee \\
& \neg\left(z-x_{2}=1\right) \\
& C_{2} \equiv\left(a_{1}=a_{2}\right) \vee \neg\left(a_{2}=f\left(x_{2}\right)\right) \vee \\
& \neg\left(a_{1}=f\left(x_{1}\right)\right) \vee \neg\left(x_{1}=x_{2}\right) \\
& \Theta_{1} \\
& C_{3} \equiv \neg\left(a_{1}+z=0\right) \vee \neg\left(a_{2}+z=1\right) \vee \\
& \neg\left(a_{1}=a_{2}\right)
\end{aligned}
$$

Example

$A:=\left(a_{1}=f\left(x_{1}\right)\right) \wedge\left(z-x_{1}=1\right) \wedge\left(a_{1}+z=0\right)$
$B:=\left(a_{2}=f\left(x_{2}\right)\right) \wedge\left(z-x_{2}=1\right) \wedge\left(a_{2}+z=1\right)$
$P^{i e}$ subproof:
$C_{1}^{\prime} \equiv\left(x_{1}=z-1\right) \vee \neg\left(z-x_{1}=1\right) \vee \mathbf{I}$

$$
\neg\left(z-x_{2}=1\right)
$$

$$
C_{1}^{\prime \prime} \equiv\left(z-1=x_{2}\right) \vee \neg\left(z-x_{1}=1\right) \vee
$$

$$
\neg\left(z-x_{2}=1\right)
$$

$$
C_{2} \equiv\left(a_{1}=a_{2}\right) \vee \neg\left(a_{2}=f\left(x_{2}\right)\right) \vee
$$

$$
\neg\left(a_{1}=f\left(x_{1}\right)\right) \vee \neg\left(x_{1}=x_{2}\right)
$$

$$
C_{3} \equiv \neg\left(a_{1}+z=0\right) \vee \neg\left(a_{2}+z=1\right) \downarrow
$$

C_{3}
Θ_{1}
Θ_{2}^{\prime}

$$
\neg\left(a_{1}=a_{2}\right)
$$

C_{1}^{\prime}
Θ_{2}

Example

$$
\begin{aligned}
& A:=\left(a_{1}=f\left(x_{1}\right)\right) \wedge\left(z-x_{1}=1\right) \wedge\left(a_{1}+z=0\right) \\
& B:=\left(a_{2}=f\left(x_{2}\right)\right) \wedge\left(z-x_{2}=1\right) \wedge\left(a_{2}+z=1\right)
\end{aligned}
$$

$P^{i e}$ subproof:

$$
\begin{array}{c:c:c}
\hline C_{1}^{\prime} \equiv\left(x_{1}=z-1\right) \vee \neg\left(z-x_{1}=1\right) \vee & & \text { Split }\left(a_{1}=a_{2}\right) \text { in } C_{2} \\
& \neg\left(z-x_{2}=1\right) & C_{2} \\
C_{1}^{\prime \prime} \equiv & \left(z-1=x_{2}\right) \vee \neg\left(z-x_{1}=1\right) \vee & \\
\neg\left(z-x_{2}=1\right) & & \\
& \begin{array}{lll}
C_{2} \equiv & \left(a_{1}=a_{2}\right) \vee \neg\left(a_{2}=f\left(x_{2}\right)\right) \vee & \\
& \neg\left(a_{1}=f\left(x_{1}\right)\right) \vee \neg\left(x_{1}=x_{2}\right) & \\
& & \\
C_{3} \equiv \neg\left(a_{1}+z=0\right) \vee \neg\left(a_{2}+z=1\right) & & \Theta_{2}^{\prime}
\end{array}
\end{array}
$$

$$
\neg\left(a_{1}=a_{2}\right)
$$

Θ_{2}

Example

$$
\begin{aligned}
& A:=\left(a_{1}=f\left(x_{1}\right)\right) \wedge\left(z-x_{1}=1\right) \wedge\left(a_{1}+z=0\right) \\
& B:=\left(a_{2}=f\left(x_{2}\right)\right) \wedge\left(z-x_{2}=1\right) \wedge\left(a_{2}+z=1\right)
\end{aligned}
$$

$P^{i e}$ subproof:

$$
\begin{gathered}
C_{2}^{\prime} \equiv\left(a_{1}=f(z-1)\right) \vee \neg\left(a_{2}=f\left(x_{2}\right)\right) \vee \\
\left.\neg\left(a_{1}\right) f\left(x_{1}\right)\right) \vee \neg\left(x_{1}=z-1\right) \vee \\
\neg\left(z-1=x_{2}\right) \\
C_{2}^{\prime \prime}=\left(f(z-1)=a_{2}\right) \vee \neg \neg\left(a_{2}=f\left(x_{2}\right)\right) \vee \\
\neg\left(a_{1}=f\left(x_{1}\right)\right) \vee \neg\left(x_{1}=z-1\right) \vee \\
\neg\left(z-1=x_{2}\right) \\
C_{3}^{\prime} \equiv \neg\left(a_{1}+z=0\right) \vee \neg\left(a_{2}+z=1\right) \vee \\
\neg\left(a_{1}=f(z-1)\right) \vee \neg\left(f(z-1)=a_{2}\right)
\end{gathered}
$$

Proof Tree Preserving Interpolation

- [Christ, Hoenicke and Nutz, TACAS 2013]
- Interpolants with AB-mixed literals without proof rewriting
- Replace AB-mixed terms $(s \leq t)$ with $(s \leq x) \wedge(x \leq t)$ in leaves, where x is a fresh purification variable
- Eliminate the purification variable when resolving on $(s \leq t)$

$$
\frac{C_{1} \vee(s \leq t)\left[I_{1}(x)\right] \quad C_{2} \vee \neg(s \leq t)\left[I_{2}(x)\right]}{C_{1} \vee C_{2}\left[I_{3}\right]}
$$

■ Advantages:

- no need of proof rewriting
- handles also for non-convex theories
- Drawbacks:
- need T-specific interpolation rules for resolution steps
- more complex interpolation system

From Binary to Sequence Interpolants

- An ordered sequence of formulae F_{1}, \ldots, F_{n} such that $\bigwedge_{i} F_{i} \models \perp$
- We want a sequence of interpolants I_{1}, \ldots, I_{n-1} such that
- I_{k} is an interpolant for $\left(\bigwedge_{i=1}^{k} F_{i}, \bigwedge_{j=k+1}^{n} F_{j}\right)$
- $F_{k} \wedge I_{k-1} \models I_{k}$ for all $k \in[2, n-1]$
- Needed in various applications (e.g. abstraction refinement)
- How to compute them?
- In general, if we compute arbitrary binary interpolants for $\left(\bigwedge_{i=1}^{k} F_{i}, \bigwedge_{j=k+1}^{n} F_{j}\right)$, the second condition will not hold

A simple solution

- Compute I_{1} as an interpolant of $\left(F_{1}, \bigwedge_{j=2}^{n} F_{j}\right)$
- Compute I_{k} as an interpolant of $\left(I_{k-1} \wedge F_{k}, \bigwedge_{j=k+1}^{n} F_{j}\right)$
- Claim: I_{k} is an interpolant for $\left(\bigwedge_{i=1}^{k} F_{i}, \bigwedge_{j=k+1}^{n} F_{j}\right)$
- Proof (sketch):
- By ind.hyp. I_{k-1} is an interpolant for $\left(\bigwedge_{i=1}^{k-1} F_{i}, \bigwedge_{j=k}^{n} F_{j}\right)$ so $\bigwedge_{i=1}^{k-1} F_{i} \models I_{k-1}$ and $I_{k-1} \wedge F_{k} \wedge \bigwedge_{j=k+1}^{n} F_{j} \models \perp$
- Advantages:
- simple to implement
- can use any off-the-shelf binary interpolation
- Drawback: requires n-1 SMT calls

A more efficient algorithm

- Compute an SMT proof of unsatisfiablity P for $\bigwedge_{i=1}^{n} F_{i}$

■ Compute each $I_{k}:=\operatorname{Interpolant}\left(\bigwedge_{i=1}^{k} F_{i}, \bigwedge_{j=k+1}^{n} F_{j}\right)$ from the same proof P

■ Theorem: $F_{k} \wedge I_{k-1} \models I_{k}$

A more efficient algorithm

- Compute an SMT proof of unsatisfiablity P for $\bigwedge_{i=1}^{n} F_{i}$
- Compute each $I_{k}:=\operatorname{Interpolant}\left(\bigwedge_{i=1}^{k} F_{i}, \bigwedge_{j=k+1}^{n} F_{j}\right)$ from the same proof P
- Theorem: $F_{k} \wedge I_{k-1} \models I_{k}$
- Proof (sketch) - case $n=3$:
- Let C be a node of P with partial interpolants I ' and l " for the partitionings $\left(F_{1}, F_{2} \wedge F_{3}\right)$ and $\left(F_{1} \wedge F_{2}, F_{3}\right)$ resp. Then we can prove, by induction on the structure of P, that:

$$
I^{\prime} \wedge F_{2} \models I^{\prime \prime} \vee \bigvee\left\{l \in C \mid \operatorname{var}(l) \notin F_{3}\right\}
$$

- The theorem then follows as a corollary
- Works also for DTC-rewritten proofs

Selected bibliography

DISCLAIMER: this is very incomplete. Apologies to missing authors/works

- Interpolants in Formal Verification
- McMillan. Interpolation and SAT-based Model Checking. CAV 2003
- Henzinger, Jhala, Majumdar, McMillan. Abstractions from Proofs. POPL 2004
- McMillan. Lazy Abstraction with Interpolants. CAV 2006
- Vizel, Grumberg. Interpolation-Sequence based model checking. FMCAD 2009
- Albargouthi, Gurfinkel, Chechick. Whale: an interpolationbased algorithm for inter-procedural verification. VMCAI 2012

Selected bibliography

- Interpolants in SAT and SMT
- McMillan. An Interpolating Theorem Prover. TCS 2005.
- Yorsh, Musuvathi. A Combination Method for Generating Interpolants. CADE 2005
- Cimatti, Griggio, Sebastiani. Efficient Generation of Craig Interpolants in SMT. TOCL 2010
- Rybalchenko, Sofronie-Stokkermans. Constraint solving for interpolation. J. Symb. Comput. 45(11): 1212-1233 (2010)
- Griggio. Effective Word-Level Interpolation for Software Verification. FMCAD 2011
- Brillout, Kroening, Rümmer, Wahl. An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic. J. Autom. Reasoning 47(4): 341-367 (2011)

Selected bibliography

- Interpolants in SAT and SMT
- D'Silva, Kroening, Purandare, Weissenbacher. Interpolant strength. VMCAI 2010
- Goel, Krstic, Tinelli. Ground interpolation for the theory of equality. Logical Methods in Computer Science 8(1) 2012
- Bruttomesso, Ghilardi, Ranise. Quantifier-free interpolation of a Theory of Arrays. Logical Methods in Comp. Sci. 8(2) 2012
- Totla, Wies. Complete instantiation-based interpolation. POPL 2013
- Christ, Hoenicke, Nutz. Proof Tree Preserving Interpolation. TACAS 2013
- Ruemmer, Subotic. Exploring Interpolants. FMCAD 2013
- Bruttomesso, Ghilardi, Ranise. Quantifier-free interpolation in combinations of equality interpolating theories. TOCL 2014

Thank You

VTSA summer school 2015

Exploiting SMT for Verification of Infinite-State Systems

3. SMT-based Verification with IC3

Alberto Griggio
Fondazione Bruno Kessler - Trento, Italy

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

Introduction

- IC3 very successful SAT-based model checking algorithm
- Incremental Construction
- of Inductive Clauses
- for Indubitable Correctness
- Key principles:
- Verification by induction
- Inductive invariant built incrementally
- by discovering (relatively-)inductive clauses
- Exploiting efficient SAT solvers

Introduction

- IC3 has been further generalized to SMT in various ways
- We will look in some detail at one such generalization, called IC3 with Implicit Predicate Abstraction (IC3-IA)
- Exploits several features of modern SMT solvers that we have discussed so far
- Incremental solving
- Assumptions and unsatisfiable cores
- Interpolation
- A "hands-down" approach
- We will build a (simple) real implementation on top of MathSAT

Proofs by Induction

- Given transition system $\left\langle I(X), T\left(X, X^{\prime}\right)\right\rangle$ and property $P(X)$
- Base case (initiation):

$$
I(X) \models P(X)
$$

- Inductive step (consectution):

$$
P(X) \wedge T\left(X, X^{\prime}\right) \models P\left(X^{\prime}\right)
$$

- Typically however, P is not inductive

■ Find an inductive invariant $\operatorname{Inv}(X)$, stronger than P

- $I(X) \models \operatorname{Inv}(X)$
- $\operatorname{Inv}(X) \wedge T\left(X, X^{\prime}\right) \models \operatorname{Inv}\left(X^{\prime}\right)$
- $\operatorname{Inv}(X) \models P(X)$

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

A (very) high level view of IC3

- Given a symbolic transition system and invariant property P, build an inductive invariant F s.t. $F \models P$
- Trace of formulae $F_{0}(X) \equiv I, \ldots, F_{k}(X)$ s.t:
- for $i>0, F_{i}$ is a set of clauses
overapproximation of states reachable in up to i steps
$F_{i+1} \subseteq F_{i}\left(\right.$ so $\left.F_{i} \models F_{i+1}\right)$
$F_{i} \wedge T \models F_{i+1}^{\prime}$
for all $i<k, F_{i} \models P$

A (very) high level view of IC3

- Blocking phase: incrementally strengthen trace until $F_{k} \models P$
- Get bad cube s
- Call SAT solver on $F_{k-1} \wedge \neg s \wedge T \wedge s^{\prime}$
(i.e., check if $F_{k-1} \wedge \neg s \wedge T \models \neg s^{\prime}$)

A (very) high level view of IC3

■ Blocking phase: incrementally strengthen trace until $F_{k} \models P$

- Get bad cube s
- Call SAT solver on $F_{k-1} \wedge \neg s \wedge T \wedge s^{\prime}$
(i.e., check if $F_{k-1} \wedge \neg s \wedge T \models \neg s^{\prime}$)

Check if s is inductive relative to F_{k-1}

A (very) high level view of IC3

- Blocking phase: incrementally strengthen trace until $F_{k} \models P$
- Get bad cube s
- Call SAT solver on $F_{k-1} \wedge \neg s \wedge T \wedge s^{\prime}$
(i.e., check if $F_{k-1} \wedge \neg s \wedge T \models \neg s^{\prime}$)

A (very) high level view of IC3

- Blocking phase: incrementally strengthen trace until $F_{k} \models P$
- Get bad cube s
- Call SAT solver on $F_{k-1} \wedge \neg s \wedge T \wedge s^{\prime}$
- SAT: s is reachable from $F_{k-1} \wedge \neg s$ in 1 step
- Get a cube c in the preimage of s and try

If I is reached, counterexample found (recursively) to prove it unreachable from F_{k-2}, \ldots

- c is a counterexample to induction (CTI)

A (very) high level view of IC3

- Blocking phase: incrementally strengthen trace until $F_{k} \models P$
- Get bad cube s
- Call SAT solver on $F_{k-2} \wedge \neg s \wedge T \wedge s^{\prime}$

A (very) high level view of IC3

- Blocking phase: incrementally strengthen trace until $F_{k} \models P$
- Get bad cube s
- Call SAT solver on $F_{k-2} \wedge \neg s \wedge T \wedge s^{\prime}$
- UNSAT: $\neg c$ is inductive relative to $F_{k-2} \quad F_{k-2} \wedge \neg c \wedge T \models \neg c^{\prime}$
- Generalize c to g and block by adding $\neg g$ to $F_{k-1}, F_{k-2}, \ldots, F_{1}$

A (very) high level view of IC3

- Blocking phase: incrementally strengthen trace until $F_{k} \models P$
- Get bad cube s
- Call SAT solver on $F_{k-2} \wedge \neg s \wedge T \wedge s^{\prime}$
- UNSAT: $\neg c$ is inductive relative to $F_{k-2} \quad F_{k-2} \wedge \neg c \wedge T \models \neg c^{\prime}$
- Generalize c to g and block by adding $\neg g$ to $F_{k-1}, F_{k-2}, \ldots, F_{1}$

A (very) high level view of IC3

Propagation: extend trace to F_{k+1} and push forward clauses For each i and each clause $c \in F_{i}$:

Call SAT solver on $F_{i} \wedge T \wedge \neg c^{\prime}$ If UNSAT, add c to F_{i+1}

$$
F_{i} \wedge T \models c^{\prime}
$$

A (very) high level view of IC3

Propagation: extend trace to F_{k+1} and push forward clauses For each i and each clause $c \in F_{i}$:

Call SAT solver on $F_{i} \wedge T \wedge \neg c^{\prime}$ If UNSAT, add c to F_{i+1}

$$
F_{i} \wedge T \models c^{\prime}
$$

A (very) high level view of IC3

Propagation: extend trace to F_{k+1} and push forward clauses
For each i and each clause $c \in F_{i}$:
Call SAT solver on $F_{i} \wedge T \wedge \neg c^{\prime}$ If UNSAT, add c to F_{i+1}

$$
F_{i} \wedge T \models c^{\prime}
$$

If $F_{i} \equiv F_{i+1}, P$ is proved, otherwise start another round of blocking and propagation

IC3 pseudo-code

```
bool IC3(I, T, P):
    trace = [I] # first elem of trace is init formula
    trace.push() # add a new frame
    while True:
        # blocking phase
        while is_sat(trace.last() & ~P):
        c = extract_cube() # c |= trace.last() & ~P
        if not rec_block(c, trace.size()-1):
        return False # counterexample found
    # propagation phase
    trace.push()
    for i=1 to trace.size()-1:
        for each cube c in trace[i]:
        if not is_sat(trace[i] & ~c & T & c'):
        trace[i+1].append(c)
        if trace[i] == trace[i+1]:
        return True # property proved
```


IC3 pseudo-code

```
bool rec_block(s, i):
    if i == 0:
        return False # reached initial states
    while is_sat(trace[i-1] & ~s & T & s'):
        c = get_predecessor(i-1, T, s')
        if not rec_block(c, i-1):
        return False
    g = generalize(~s, i)
    trace[i].append(g)
    return True
```


Correctness (sketch)

- Consider the formula $F_{k-1} \wedge T \wedge s^{\prime}$ where s is a bad cube
- If UNSAT, then F_{k-1} is strong enough to block s
- Since $F_{i} \wedge T \models F_{i+1}^{\prime}$, then s is unreachable in k steps or less

■ Since $F_{i} \models F_{i+1}$, then we can add s to all $F_{j}, j \leq k$

Correctness (sketch)

- Consider the formula $F_{k-1} \wedge T \wedge s^{\prime}$ where s is a bad cube
- If UNSAT, then F_{k-1} is strong enough to block s
- Since $F_{i} \wedge T \models F_{i+1}^{\prime}$, then s is unreachable in k steps or less

■ Since $F_{i} \models F_{i+1}$, then we can add s to all $F_{j}, j \leq k$

- Consider now the relative induction check $F_{k-1} \wedge \neg s \wedge T \wedge s^{\prime}$
- We know that $I \equiv F_{0} \not \models s$ because $I \models P$ (base case)
- Since $F_{i} \models F_{i+1}$, then we know that $\neg s$ holds up to k

Correctness (sketch)

EMBEDDED

- Consider the formula $F_{k-1} \wedge T \wedge s^{\prime}$ where s is a bad cube
- If UNSAT, then F_{k-1} is strong enough to block s
- Since $F_{i} \wedge T \models F_{i+1}^{\prime}$, then s is unreachable in k steps or less
- Since $F_{i} \models F_{i+1}$, then we can add s to all $F_{j}, j \leq k$
- Consider now the relative induction check $F_{k-1} \wedge \neg s \wedge T \wedge s^{\prime}$
- We know that $I \equiv F_{0} \not \models s$ because $I \models P$ (base case)
- Since $F_{i} \models F_{i+1}$, then we know that $\neg s$ holds up to k
- Propagation: for each $c \in F_{i}$, check $F_{i} \wedge T \wedge \neg c^{\prime}$
- we know that c holds up to i, if UNSAT then it holds up to $i+1$
- since $F_{i} \models F_{i+1}, F_{i} \wedge T \models F_{i+1}^{\prime}$ and $F_{i} \models P$, if $F_{i} \equiv F_{i+1}$ then the fixpoint is an inductive invariant

Inductive Clause Generalization

- Crucial step of IC3
- Given a relatively inductive clause $c \stackrel{\text { def }}{=}\left\{l_{1}, \ldots, l_{n}\right\}$ compute a generalization $g \subseteq c$ that is still inductive

$$
\begin{equation*}
F_{i-1} \wedge T \wedge g \models g^{\prime} \tag{1}
\end{equation*}
$$

- Drop literals from c and check that (1) still holds - Accelerate with unsat cores returned by the SAT solver - Using SAT under assumptions
- However, make sure the base case still holds
- If $I \not \vDash c \backslash\left\{l_{j}\right\}$, then l_{j} cannot be dropped

Simple iterative generalization

```
void indgen(c, i):
    done = False
    for iter = 1 to max_iters:
        if done:
        break
        done = True
        for each l in c:
            cand = c \ {l}
            if not is_sat(I & cand) and
            not is_sat(trace[i] & ~cand & T & cand'):
            c = get_unsat_core(cand)
            rest = cand \ c
            while is_sat(I & c):
            l1 = rest.pop()
            c.add(l1)
                done = False
            break
```


CTI computation

- When $F_{i} \wedge \neg s \wedge T \wedge s^{\prime}$ is satisfiable:
$\square s$ reaches $\neg P$ in $k-i$ steps
- s can be reached from F_{i} in 1 step

- strengthen F_{i} by blocking cubes c in the preimage of s
- Extract CTI c from the SAT assignment
- And generalize to represent multiple bad predecessors
- Use unsat cores, exploiting a functional encoding of the transition relation
- If T is functional, then $c \wedge$ inputs $\wedge T \models s^{\prime}$
- check inputs $\wedge T \wedge \neg s^{\prime}$ under assumptions c

SAT-based CTI generalization

```
void generalize_cti(cti, inputs, next):
    for i = 1 to max_iters:
        b = is_sat(cti & inputs & T & ~next')
        assert not b # assume T to be functional
        c = get_unsat_core(cti)
        if should_stop(c, cti):
    break
    cti = c
```


Example

No counterexamples of length 0

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2} \\
& \\
& F_{0}=I \\
& F_{1}=\mathrm{T}
\end{aligned}
$$

[borrowed and adapted from F. Somenzi]

Example

Get bad cube $c=x_{1} \wedge x_{2}$ in $F_{1} \wedge \neg P$

Example

Is $\neg c$ inductive relative to $F_{0} ? F_{0} \wedge T \wedge \neg c \models \neg c^{\prime}$

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2}
\end{aligned}
$$

$$
F_{0}=I
$$

$$
F_{1}=\top
$$

Example

Yes, generalize $\neg c=\neg x_{1} \vee \neg x_{2}$

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2} \\
& F_{0}=I \\
& F_{1}=\top
\end{aligned}
$$

Example

Yes, generalize $\neg c=\neg x_{1} \vee \neg x_{2}$

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2} \\
& F_{0}=I \\
& F_{1}=\mathrm{T}
\end{aligned}
$$

Try dropping $\neg x_{2}$

$$
F_{0} \wedge T \wedge \neg x_{1} \not \vDash \neg x_{1}^{\prime}
$$

Example

Yes, generalize $\neg c=\neg x_{1} \vee \neg x_{2}$

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2} \\
& \\
& F_{0}=I \\
& F_{1}=\top
\end{aligned}
$$

Try dropping $\neg x_{1}$

$$
F_{0} \wedge T \wedge \neg x_{2} \models \neg x_{2}^{\prime}
$$

Example

Yes, generalize $\neg c=\neg x_{1} \vee \neg x_{2}$

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2} \\
& F_{0}=I \\
& F_{1}=\top
\end{aligned}
$$

Try dropping $\neg x_{1}$

$$
F_{0} \wedge T \wedge \neg x_{2} \models \neg x_{2}^{\prime}
$$

Example

Update F_{1}

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2} \\
& F_{0}=I \\
& F_{1}=\neg x_{2}
\end{aligned}
$$

Example

EMBEDDED
SYSTEMS

Blocking done for F_{1}. Add F_{2} and propagate forward

Example

No clause propagates from F_{1} to F_{2}

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2}
\end{aligned}
$$

$$
F_{0}=I
$$

$$
F_{1}=\neg x_{2}
$$

$$
F_{2}=\top
$$

Example

Get bad cube $c=x_{1} \wedge x_{2} \quad$ in $F_{2} \wedge \neg P$

Example

Is $\neg c$ inductive relative to $F_{1} ? F_{1} \wedge T \wedge \neg c \models \neg c^{\prime}$

Example

No, found CTI $s=\neg x_{1} \wedge \neg x_{2} \wedge x_{3}$

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2} \\
& F_{0}=I \\
& F_{1}=\neg x_{2} \\
& F_{2}=\top
\end{aligned}
$$

Example

Try blocking $\neg s$ at level 0: $F_{0} \wedge T \wedge \neg s \models \neg s^{\prime}$

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2} \\
& F_{0}=I \\
& F_{1}=\neg x_{2} \\
& F_{2}=\top
\end{aligned}
$$

Example

Yes, generalize $\neg s=x_{1} \vee x_{2} \vee \neg x_{3}$

Try dropping x_{1}

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2} \\
& F_{0}=I \\
& F_{1}=\neg x_{2} \\
& F_{2}=\top
\end{aligned}
$$

$$
F_{0} \wedge T \wedge x_{2} \vee \neg x_{3} \not \models x_{2}^{\prime} \vee \neg x_{3}^{\prime}
$$

Example

Yes, generalize $\neg s=x_{1} \vee x_{2} \vee \neg x_{3}$

Try dropping x_{2}

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2} \\
& F_{0}=I \\
& F_{1}=\neg x_{2} \\
& F_{2}=\top
\end{aligned}
$$

$$
F_{0} \wedge T \wedge x_{1} \vee \neg x_{3} \models x_{1}^{\prime} \vee \neg x_{3}^{\prime}
$$

Example

Yes, generalize $\neg s=x_{1} \vee x_{2} \vee \neg x_{3}$

Try dropping x_{3}

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2} \\
& F_{0}=I \\
& F_{1}=\neg x_{2} \\
& F_{2}=\top
\end{aligned}
$$

$I \not \vDash x_{1}$

Example

Update F_{1}

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2}
\end{aligned}
$$

$$
F_{0}=I
$$

$$
F_{1}=\neg x_{2} \wedge
$$

$$
\left(x_{1} \vee \neg x_{3}\right)
$$

$$
F_{2}=\top
$$

Example

Return to the original bad cube c

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2} \\
& F_{0}=I \\
& F_{1}=\neg x_{2} \wedge \\
& \quad\left(x_{1} \vee \neg x_{3}\right) \\
& F_{2}=\top
\end{aligned}
$$

Example

Is $\neg c$ inductive relative to $F_{1} ? F_{1} \wedge T \wedge \neg c \models \neg c^{\prime}$

Example

Yes, generalize $\neg c=\neg x_{1} \vee \neg x_{2}$

$$
F_{1} \wedge T \wedge \neg x_{2} \models \neg x_{2}^{\prime}
$$

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2} \\
& F_{0}=I \\
& F_{1}=\neg x_{2} \wedge \\
& \quad\left(x_{1} \vee \neg x_{3}\right) \\
& F_{2}=\top
\end{aligned}
$$

Example

Update F_{2} and add new frame F_{3}

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2} \\
& \\
& F_{0}=I \\
& F_{1}=\neg x_{2} \wedge \\
& \quad \quad\left(x_{1} \vee \neg x_{3}\right) \\
& F_{2}=\neg x_{2} \\
& F_{3}=\top
\end{aligned}
$$

Example

Perform forward propagation

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2}
\end{aligned}
$$

$$
F_{0}=I
$$

From F_{1} to F_{2} :

$$
F_{1}=\neg x_{2} \wedge
$$

$$
F_{1} \wedge T \wedge\left(x_{1} \vee \neg x_{3}\right) \models\left(x_{1}^{\prime} \vee \neg x_{3}^{\prime}\right)
$$

$$
\begin{aligned}
& \left(x_{1} \vee \neg x_{3}\right) \\
F_{2}= & \neg x_{2} \\
F_{3}= & \top
\end{aligned}
$$

Example

Perform forward propagation

$$
\begin{aligned}
I= & \neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
P= & \neg x_{1} \vee \neg x_{2} \\
F_{0}= & I \\
F_{1}= & \neg x_{2} \wedge \\
& \left(x_{1} \vee \neg x_{3}\right) \\
F_{2}= & \neg x_{2} \wedge \\
& \left(x_{1} \vee \neg x_{3}\right) \\
F_{3}= & \top
\end{aligned}
$$

Example

Perform forward propagation

Inductive invariant:

$$
F_{1} \equiv F_{2} \equiv \neg x_{2} \wedge\left(x_{1} \vee \neg x_{3}\right)
$$

$$
\begin{aligned}
& I=\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \\
& P=\neg x_{1} \vee \neg x_{2}
\end{aligned}
$$

$$
F_{0}=I
$$

$$
F_{1}=\neg x_{2} \wedge
$$

$$
\left(x_{1} \vee \neg x_{3}\right)
$$

$$
F_{2}=\neg x_{2} \wedge
$$

$$
\left(x_{1} \vee \neg x_{3}\right)
$$

$$
F_{3}=\top
$$

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

IC3 with SMT

■ How to generalize from SAT to SMT?

IC3 with SMT

■ How to generalize from SAT to SMT?

■ Good news: replacing the SAT solver with an SMT solver is enough for partial correctness

- but what about:
- termination?
- efficiency?

IC3 with SMT

- How to generalize from SAT to SMT?
- Good news: replacing the SAT solver with an SMT solver is enough for partial correctness
- but what about:
- termination?
- Easy! (answer)
- the problem is in general undecidable, so no hope here
- efficiency?

$\operatorname{Rel} \operatorname{Ind}\left(F_{k-1}, T, s\right)$ with SMT

- When $F_{i} \wedge \neg s \wedge T \wedge s^{\prime}$ is satisfiable:
- s reaches $\neg P$ in k - isteps
- s can be reached from F_{i} in 1 step

- strengthen F_{i} by blocking cubes c in the preimage of s
- In the Boolean case, get c from SAT assignment (and generalize)
- For SMT(LRA):
- Would exclude a single point in an infinite space

Single model m from SMT solver:

$$
x=3 \wedge y=7
$$

$\operatorname{RelInd}\left(F_{k-1}, T, s\right)$ with SMT

- When $F_{i} \wedge \neg s \wedge T \wedge s^{\prime}$ is satisfiable:
- s reaches $\neg P$ in k - i steps
- s can be reached from F_{i} in 1 step

\square strengthen F_{i} by blocking cubes c in the preimage of s
- In the Boolean case, get c from SAT assignment (and generalize)

■ For SMT(LRA): underapproximated quantifier elimination

- Encodes a set of predecessors
- Cheaper than full quantifier elimination
- But still potentially expensive
- Not always available
- E.g for UF+LRA
underapproximated preimage:

$$
(x \leq 3) \wedge(y \geq 7)
$$

$\operatorname{RelInd}\left(F_{k-1}, T, s\right)$ with SMT

 SYSTEMS- When $F_{i} \wedge \neg s \wedge T \wedge s^{\prime}$ is unsatisfiable:
- Compute a generalization g of s to block
- Block more than a single cube at a time

- In the Boolean case, use inductive generalization algorithms
- For SMT, Boolean algorithms plus theory-specific "ad hoc" techniques
- Based on Farkas' lemma for LRA [HB SAT'12]
- [WK DATE'13] for BV
- [KJN FORMATS'12] for timed automata

Implicit Predicate Abstraction [Tonetta FM'09] ES

- Abstract version of k-induction, avoiding explicit computation of the abstract transition relation
- By embedding the abstraction in the SMT encoding
- Given a set of predicates \mathbb{P} and an unrolling depth k, the abstract path $\widehat{\operatorname{Path}}_{k, \mathbb{P}}$ is

$$
\bigwedge_{1 \leq h<k}\left(T\left(Y^{h-1}, X^{h}\right) \wedge \bigwedge_{p \in \mathbb{P}}\left(p\left(X^{h}\right) \leftrightarrow p\left(Y^{h}\right)\right) \wedge T\left(Y^{k-1}, X^{k}\right)\right.
$$

$$
\begin{aligned}
& E Q \stackrel{\text { def }}{=} \\
& \bigwedge_{p \in \mathbb{P}}(p(Y) \leftrightarrow p(X))
\end{aligned}
$$

IC3 with Implicit Abstraction

- Integrate the idea of Implicit Abstraction within IC3

■ Use abstract transition relation $T\left(X, Y^{\prime}\right)$ instead of $T\left(X, X^{\prime}\right)$

- Learn clauses only over predicates \mathbb{P}
- Use abstract relative induction check:
$\operatorname{AbsRelInd}(F, T, s, \mathbb{P}):=F(X) \wedge s(X) \wedge T\left(X, Y^{\prime}\right) \wedge$

$$
\bigwedge_{p \in \mathbb{P}}\left(p\left(X^{\prime}\right) \leftrightarrow p\left(Y^{\prime}\right)\right) \wedge \neg s\left(X^{\prime}\right)
$$

IC3 with Implicit Abstraction

- Integrate the idea of Implicit Abstraction within IC3

■ Use abstract transition relation $T\left(X, Y^{\prime}\right)$ instead of $T\left(X, X^{\prime}\right)$

- Learn clauses only over predicates \mathbb{P}
- Use abstract relative induction check:
$\operatorname{AbsRe\operatorname {ReInd}}(F, T, s, \mathbb{P}):=F(X) \wedge s(X) \wedge T\left(X, Y^{\prime}\right) \wedge$

$$
\bigwedge_{p \in \mathbb{P}}\left(p\left(X^{\prime}\right) \leftrightarrow p\left(Y^{\prime}\right)\right) \wedge \neg s\left(X^{\prime}\right)
$$

- If UNSAT \Rightarrow inductive strengthening as in the Boolean case
- No theory-specific technique needed
- Theory reasoning confined within the SMT solver

IC3 with Implicit Abstraction

- Integrate the idea of Implicit Abstraction within IC3

■ Use abstract transition relation $T\left(X, Y^{\prime}\right)$ instead of $T\left(X, X^{\prime}\right)$

- Learn clauses only over predicates \mathbb{P}
- Use abstract relative induction check:
$\operatorname{AbsRelInd}(F, T, s, \mathbb{P}):=F(X) \wedge s(X) \wedge T\left(X, Y^{\prime}\right) \wedge$

$$
\bigwedge_{p \in \mathbb{P}}\left(p\left(X^{\prime}\right) \leftrightarrow p\left(Y^{\prime}\right)\right) \wedge \neg s\left(X^{\prime}\right)
$$

- If SAT \Rightarrow abstract predecessor c from the SMT model μ
- $c \stackrel{\text { def }}{=}\{p(X) \mid p \in \mathbb{P} \wedge \mu \models p(X)\} \cup\{\neg p(X) \mid \mu \not \models p(X)\}$
- No quantifier elimination needed

Example

- $T \stackrel{\text { def }}{=}\left(2 x_{1}^{\prime}-3 x_{1} \leq 4 x_{2}^{\prime}+2 x_{2}+3\right) \wedge\left(3 x_{1}-2 x_{2}^{\prime}=0\right)$
- $\mathbb{P} \xlongequal{\text { def }}\left\{\left(x_{1}-x_{2} \geq 4\right),\left(x_{1}<3\right)\right\}$
- $s \stackrel{\text { def }}{=} \neg\left(x_{1}-x_{2} \geq 4\right) \wedge\left(x_{1}<3\right)$
- $\operatorname{RelInd}(\emptyset, T, s)$ is SAT
- Compute a predecessor with $\exists_{\text {approx }} x_{1}^{\prime}, x_{2}^{\prime} .\left(\neg s \wedge T \wedge s^{\prime}\right)$

$$
\left(\frac{5}{2} \leq 3 x_{1}+x_{2}\right) \wedge \neg\left(x_{1}-x_{2} \geq 4\right) \wedge\left(x_{1}<3\right) \wedge \neg\left(-\frac{2}{3} \leq x_{1}\right)
$$

Example

- $T \stackrel{\text { def }}{=}\left(2 x_{1}^{\prime}-3 x_{1} \leq 4 x_{2}^{\prime}+2 x_{2}+3\right) \wedge\left(3 x_{1}-2 x_{2}^{\prime}=0\right)$
- $\mathbb{P} \stackrel{\text { def }}{=}\left\{\left(x_{1}-x_{2} \geq 4\right),\left(x_{1}<3\right)\right\}$
- $s \stackrel{\text { def }}{=} \neg\left(x_{1}-x_{2} \geq 4\right) \wedge\left(x_{1}<3\right)$
- $\operatorname{RelInd}(\emptyset, T, s)$ is SAT
- Compute a predecessor with $\exists_{\text {approx }} x_{1}^{\prime}, x_{2}^{\prime} .\left(\neg s \wedge T \wedge s^{\prime}\right)$

$$
\left(\frac{5}{2} \leq 3 x_{1}+x_{2}\right) \wedge \neg\left(x_{1}-x_{2} \geq 4\right) \wedge\left(x_{1}<3\right) \wedge \neg\left(-\frac{2}{3} \leq x_{1}\right)
$$

- AbsRelInd $(\emptyset, T, s, \mathbb{P}):=T\left[X^{\prime} \mapsto Y^{\prime}\right] \wedge$

$$
\begin{gathered}
\neg s \wedge s^{\prime} \wedge \\
\left(x_{1}^{\prime}-x_{2}^{\prime} \geq 4\right) \leftrightarrow\left(y_{1}^{\prime}-y_{2}^{\prime} \geq 4\right) \wedge\left(x_{1}^{\prime}<3\right) \leftrightarrow\left(y_{1}^{\prime}<3\right)
\end{gathered}
$$

- Compute predecessor from SMT model $\mu \stackrel{\text { def }}{=}\left\{x_{1} \mapsto 0, x_{2} \mapsto 1\right\}$

$$
\neg\left(x_{1}-x_{2} \geq 4\right) \wedge\left(x_{1}<3\right)
$$

Example

- $T \stackrel{\text { def }}{=}\left(2 x_{1}^{\prime}-3 x_{1} \leq 4 x_{2}^{\prime}+2 x_{2}+3\right) \wedge\left(3 x_{1}-2 x_{2}^{\prime}=0\right)$
- $\mathbb{P} \stackrel{\text { def }}{=}\left\{\left(x_{1}-x_{2} \geq 4\right),\left(x_{1}<3\right)\right\}$
- $s \stackrel{\text { def }}{=} \neg\left(x_{1}-x_{2} \geq 4\right) \wedge\left(x_{1}<3\right)$
- $\operatorname{RelInd}(\emptyset, T, s)$ is SAT
- Compute a predecessor with $\exists_{\text {approx }} x_{1}^{\prime}, x_{2}^{\prime} .\left(\neg s \wedge T \wedge s^{\prime}\right)$

$$
\left(\frac{5}{2} \leq 3 x_{1}+x_{2} \backslash \neg\left(x_{1}-x_{2} \geq 4\right) \wedge\left(x_{1}<3\right) \triangle \neg\left(-\frac{2}{3} \leq x_{1}\right)\right.
$$

- AbsRelInd $(\emptyset, T, s, \mathbb{P}):=\not \subset\left[X^{\prime} \mapsto Y^{\prime}\right] \wedge$

$$
\left(x_{1}^{\prime}-x_{2}^{\prime} \geq 4\right) \leftrightarrow\left(y_{1}^{\prime}-y_{2}^{\prime} \geq 4\right) \wedge\left(x_{1}^{\prime}<3\right) \leftrightarrow\left(y_{1}^{\prime}<3\right)
$$

- Compute predecessor from SMT model $\mu \stackrel{\text { def }}{=}\left\{x_{1} \mapsto 0, x_{2} \mapsto 1\right\}$ $\neg\left(x_{1}-x_{2} \geq 4\right) \wedge\left(x_{1}<3\right)$

Abstraction Refinement

■ Abstract predecessors are overapproximations

- Spurious counterexamples can be generated
- We can apply standard abstraction refinement techniques
- Use sequence interpolants to discover new predicates
- Sequence of abstract states $s_{0} \rightarrow s_{1} \rightarrow \ldots \rightarrow s_{n}$
- SMT check on $s_{0}^{0} \wedge T_{\text {concrete }}^{0} \wedge s_{1}^{1} \wedge \ldots \wedge T_{\text {concrete }}^{k-1} \wedge s_{k}^{k}$
- If unsat, compute sequence of interpolants for $\left[s_{0}^{0} \wedge T_{\text {concrete }}^{0} \wedge \ldots \wedge T_{\text {concrete }}^{i-1}\right],\left[s_{i}^{i} \wedge \ldots \wedge T_{\text {concrete }}^{k-1} \wedge s_{k}^{k}\right]$
- Add all the predicates in the interpolants to \mathbb{P}

Incrementality

- Abstraction refinement is fully incremental
- No restart from scratch
- Can keep all the clauses of F_{1}, \ldots, F_{k}
- Refinements monotonically strengthen T

$$
T_{\text {new }} \stackrel{\text { def }}{=} T_{\text {old }} \wedge \bigwedge_{p \in \mathbb{P}_{\text {new }}}(p(X) \leftrightarrow p(Y)) \wedge\left(p\left(X^{\prime}\right) \leftrightarrow p\left(Y^{\prime}\right)\right)
$$

- All IC3 invariants on F_{1}, \ldots, F_{k} are preserved

$$
F_{i+1} \subseteq F_{i}\left(\text { so } F_{i} \models F_{i+1}\right)
$$

$$
\text { for all } i<k, F_{i} \models P
$$

$$
\mathrm{F}_{i} \wedge T_{\text {new }} \models F_{i+1}^{\prime}
$$

- Abstract counterexample check can use incremental SMT

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Property: $(d>2) \Longrightarrow(c>d)$
- Predicates \mathbb{P}
$(d=1) \quad(c \geq d)$
$(d>2) \quad(c>d)$

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Property: $(d>2) \Longrightarrow(c>d)$
- Predicates \mathbb{P}
$(d=1) \quad(c \geq d)$
$(d>2) \quad(c>d)$
- Check base case: Init \models Property

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Predicates \mathbb{P}

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d)
\end{array}
$$

- Property: $(d>2) \Longrightarrow(c>d)$
- Get bad cube
- Trace: $F_{0}:=$ Init

$$
F_{1}:=\top
$$

- SMT check $F_{1} \wedge \neg$ Prop
- SAT with model $\mu:=\{c=0, d=2\}$
- Evaluate predicates wrt. μ
- Return $c:=\{\neg(d=1), \neg(c \geq d),(d>2), \neg(c>d)\}$

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Property: $(d>2) \Longrightarrow(c>d)$
- Rec. block c
- Predicates \mathbb{P}

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d)
\end{array}
$$

- Trace: $F_{0}:=$ Init

$$
F_{1}:=\top
$$

- Check
$\operatorname{AbsRelInd}\left(F_{0}, T, c, \mathbb{P}\right):=\operatorname{Init} \wedge$

$$
\begin{aligned}
& \left(y_{c}=c+d\right) \wedge\left(y_{d}=d+1\right) \wedge \\
& \left(\left(d^{\prime}=1\right) \leftrightarrow\left(y_{d}=1\right)\right) \wedge\left(\left(c^{\prime} \geq d^{\prime}\right) \leftrightarrow\left(y_{c} \geq y_{d}\right)\right) \wedge \\
& \left(\left(d^{\prime}>2\right) \leftrightarrow\left(y_{d}>2\right)\right) \wedge\left(\left(c^{\prime}>d^{\prime}\right) \leftrightarrow\left(y_{c}>y_{d}\right)\right) \wedge \\
& \neg c \wedge c^{\prime}
\end{aligned}
$$

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Property: $(d>2) \Longrightarrow(c>d)$
- Rec. block c
- Predicates \mathbb{P}

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d)
\end{array}
$$

- Trace: $F_{0}:=$ Init

$$
F_{1}:=\top
$$

- Check

AbsRelInd $\left(F_{0}, T, c, \mathbb{P}\right)$

- Unsat core: $\left\{\left(d^{\prime}>2\right)\right\}$
- Update $F_{1}:=F_{1} \wedge \neg(d>2)$

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Property: $(d>2) \Longrightarrow(c>d)$
- Forward propagation
- Predicates \mathbb{P}

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d)
\end{array}
$$

- Trace: $F_{0}:=$ Init

$$
\begin{aligned}
& F_{1}:=\neg(d>2) \\
& F_{2}:=\top
\end{aligned}
$$

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Property: $(d>2) \Longrightarrow(c>d)$
- Get bad cube at 2
- $c:=\{\neg(d=1), \neg(c \geq d)$,

$$
(d>2), \neg(c>d)\}
$$

- Predicates \mathbb{P}

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d)
\end{array}
$$

- Trace: $F_{0}:=$ Init

$$
\begin{aligned}
& F_{1}:=\neg(d>2) \\
& F_{2}:=\top
\end{aligned}
$$

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Property: $(d>2) \Longrightarrow(c>d)$
- Rec. block c
- Predicates \mathbb{P}

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d)
\end{array}
$$

- Trace: $F_{0}:=$ Init

$$
\begin{aligned}
& F_{1}:=\neg(d>2) \\
& F_{2}:=\top
\end{aligned}
$$

- Update $F_{1}:=F_{1} \wedge(c \geq d)$
- Update $F_{2}:=F_{2} \wedge(c>d) \vee \neg(d>2)$

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Property: $(d>2) \Longrightarrow(c>d)$
- Forward propagation
- Predicates \mathbb{P}

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d)
\end{array}
$$

- Trace: $F_{0}:=$ Init

$$
\begin{gathered}
F_{1}:=\neg(d>2) \wedge(c \geq d) \wedge F_{2} \\
F_{2}:=(c>d) \vee \neg(d>2) \\
F_{3}:=\top
\end{gathered}
$$

Example

- System S with 2 state vars c and d
- Predicates \mathbb{P}
- Init: $(d=1) \wedge(c \geq d)$

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d)
\end{array}
$$

- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Property: $(d>2) \Longrightarrow(c>d)$
- Get bad cube at 3
- $c:=\{\neg(d=1), \neg(c \geq d)$,

$$
\begin{gathered}
F_{1}:=\neg(d>2) \wedge(c \geq d) \wedge F_{2} \\
F_{2}:=(c>d) \vee \neg(d>2) \\
F_{3}:=\top
\end{gathered}
$$

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Predicates \mathbb{P}

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d)
\end{array}
$$

- Property: $(d>2) \Longrightarrow(c>d)$
- Rec block c
- Trace: $F_{0}:=$ Init
- Check

$$
\begin{gathered}
F_{1}:=\neg(d>2) \wedge(c \geq d) \wedge F_{2} \\
F_{2}:=(c>d) \vee \neg(d>2) \\
F_{3}:=\top
\end{gathered}
$$

- SMT model

$$
\mu:=\left\{c=0, d=2, c^{\prime}=0, d^{\prime}=3, y_{c}=2, y_{d}=3\right\}
$$

- (Abstract) predecessor

$$
s:=\{\neg(d>2), \neg(c>d), \neg(d=1), \neg(c \geq d)\}
$$

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Predicates \mathbb{P}

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d)
\end{array}
$$

- Property: $(d>2) \Longrightarrow(c>d)$

■ Rec block s (at level 2)

- Trace: $F_{0}:=$ Init

$$
\begin{array}{r}
F_{1}:=\neg(d>2) \wedge(c \geq d) \wedge F_{2} \\
F_{2}:=(c>d) \vee \neg(d>2)
\end{array}
$$

- Reached level 0, abstract cex:

$$
F_{3}:=\top
$$

$$
\begin{aligned}
& q:=\neg(d>2), \neg(c>d),(d=1),(c \geq d) \\
& p:=\neg(d>2), \neg(c>d), \neg(d=1),(c \geq d) \\
& s:=\neg(d>2), \neg(c>d), \neg(d=1), \neg(c \geq d) \\
& c:=\neg(d=1), \neg(c \geq d),(d>2), \neg(c>d)
\end{aligned}
$$

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Property: $(d>2) \Longrightarrow(c>d)$
- Check abstract counterexample
- SMT check

■ Trace: $F_{0}:=$ Init

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d)
\end{array}
$$

- Predicates \mathbb{P}
F_{1}
$I_{0} \wedge q_{0} \wedge T_{0 \mapsto 1} \wedge p_{1} \wedge T_{1 \mapsto 2} \wedge s_{2} \wedge T_{2 \mapsto 3} \wedge c_{3} \quad F_{3}$
UNSAT

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Property: $(d>2) \Longrightarrow(c>d)$
- Predicates \mathbb{P}

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d)
\end{array}
$$

- Check abstract counterexample
- Trace: $F_{0}:=$ Init
- Compute sequence interpolant

$$
\varphi_{1}:=\left(d_{1} \geq 2\right)
$$

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Property: $(d>2) \Longrightarrow(c>d)$
- Check abstract counterexample
- Compute sequence interpolant
- Predicates \mathbb{P}

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d)
\end{array}
$$

- Trace: $F_{0}:=$ Init

$$
\underbrace{I_{0} \wedge q_{0} \wedge T_{0 \mapsto 1} \wedge p_{1} \wedge T_{1 \mapsto 2}}_{A_{2}} \underbrace{\wedge s_{2} \wedge T_{2 \mapsto 3} \wedge c_{3}}_{B_{2}} \quad F_{3}
$$

Example

- System S with 2 state vars c and d
- Predicates \mathbb{P}
- Init: $(d=1) \wedge(c \geq d)$

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d) \\
(d \geq 2) & (d \geq 3) \\
\hline
\end{array}
$$

- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Property: $(d>2) \Longrightarrow(c>d)$
- Check abstract counterexample
- Trace: $F_{0}:=$ Init
- Compute sequence interpolant

$$
\begin{aligned}
\varphi_{1} & :=\left(d_{1} \geq 2\right) \\
\varphi_{2} & :=\left(d_{2} \geq 3\right) \\
\varphi_{3} & :=\perp
\end{aligned}
$$

Example

- System S with 2 state vars c and d
- Predicates \mathbb{P}
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d) \\
(d \geq 2) & (d \geq 3)
\end{array}
$$

- Trace: $F_{0}:=$ Init
- Update abstract trans
- Resume IC3 from level 3

$$
\begin{aligned}
& F_{1}:=\neg(d>2) \wedge(c \geq d) \wedge F_{2} \\
& F_{2}:=(c>d) \vee \neg(d>2)
\end{aligned}
$$

$$
F_{3}:=\top
$$

Example

- System S with 2 state vars c and d
- Predicates \mathbb{P}
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
$(d=1) \quad(c \geq d)$
$(d>2) \quad(c>d)$
$(d \geq 2) \quad(d \geq 3)$
- Trace: $F_{0}:=$ Init
- Update abstract trans

$$
\begin{gathered}
F_{1}:=\neg(d>2) \wedge(c \geq d) \wedge F_{2} \\
F_{2}:=(c \geq d) \vee \neg(d \geq 2) \wedge F_{3} \\
F_{3}:=(d=1) \vee(d \geq 2) \wedge \\
\neg(c \geq d) \wedge F_{4} \\
F_{4}:=(c>d) \vee \neg(d>2)
\end{gathered}
$$

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Property: $(d>2) \Longrightarrow(c>d)$
- Predicates \mathbb{P}
$(d=1) \quad(c \geq d)$
$(d>2) \quad(c>d)$
$(d \geq 2) \quad(d \geq 3)$
- Trace: $F_{0}:=$ Init
- Update abstract trans

$$
\begin{aligned}
& F_{1}:=\neg(d>2) \wedge(c \geq d) \wedge F_{2} \\
& F_{2}:=(c \geq d) \vee \neg(d \geq 2) \wedge F_{3} \\
& F_{3}:=(d=1) \vee(d \geq 2) \wedge \\
& \neg(c \geq d) \wedge F_{4}
\end{aligned}
$$

- Forward propagation

$$
F_{4}:=(c>d) \vee \neg(d>2)
$$

Example

- System S with 2 state vars c and d
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$
- Property: $(d>2) \Longrightarrow(c>d)$
- Predicates \mathbb{P}
$(d=1) \quad(c \geq d)$
$(d>2) \quad(c>d)$
$(d \geq 2) \quad(d \geq 3)$
- Trace: $F_{0}:=$ Init
- Update abstract trans

$$
\begin{gathered}
F_{1}:=\neg(d>2) \wedge(c \geq d) \wedge F_{2} \\
F_{2}:=(c \geq d) \vee \neg(d \geq 2) \wedge F_{3} \\
F_{3}:=(d=1) \vee(d \geq 2) \wedge \\
\quad \neg(c \geq d) \wedge F_{4} \\
F_{4}:=(c>d) \vee \neg(d>2)
\end{gathered}
$$

- Forward propagation

$$
F_{2} \wedge \widehat{T}_{\mathbb{P}} \models\left(c^{\prime} \geq d^{\prime}\right) \vee \neg\left(d^{\prime} \geq 2\right)
$$

Example

- System S with 2 state vars c and d
- Predicates \mathbb{P}
- Init: $(d=1) \wedge(c \geq d)$
- Trans: $\left(c^{\prime}=c+d\right) \wedge\left(d^{\prime}=d+1\right)$

$$
\begin{array}{ll}
(d=1) & (c \geq d) \\
(d>2) & (c>d) \\
(d \geq 2) & (d \geq 3)
\end{array}
$$

- Trace: $F_{0}:=$ Init
- Update abstract trans
- Resume IC3 from level 3

$$
\begin{gathered}
F_{1}:=\neg(d>2) \wedge(c \geq d) \wedge F_{2} \\
F_{2}:=F_{3} \\
F_{3}:=(c \geq d) \vee \neg(d \geq 2) \wedge \\
\\
(d=1) \vee(d \geq 2) \wedge \\
\quad \neg(c \geq d) \wedge F_{4} \\
F_{4}:=(c>d) \vee \neg(d>2)
\end{gathered}
$$

SAFE

Implementing IC3-IA

- Get the code at: http://es-static.fbk.eu/people/griggio/vtsa2015/
- Open source (GPLv3) implementation on top of MathSAT http://mathsat.fbk.eu/
- Incremental interface
- Assumptions and unsat core
- Interpolation
- Simple (~1700 lines of C++, including parser and statistics, according to David A. Wheeler's 'SLOCCount') yet competitive
- Input in VMT format (a simple extension of SMT-LIB)
https://nuxmv.fbk.eu/index.php?n=Languages.VMT
- Let's analyse it!

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

Linear Temporal Logic

- Syntax

- A (quantifier-free) first-order formula φ
- X φ (neXt φ)
- $\mathbf{F} \varphi \quad$ (Finally φ)
- $\varphi \mathbf{U} \psi(\varphi$ Until $\psi)$
- G φ (Globally φ)

- Semantics

- Given an infinite path $\pi:=s_{0}, s_{1}, \ldots, s_{i}, \ldots$

■ $\pi \models \mathbf{X} \varphi$ iff $s_{1}, \ldots \models \varphi$
■ $\pi \models \varphi \mathbf{U} \psi$ iff $\exists j>0 . s_{j}, \ldots \models \psi$ and $\forall 0 \leq k<j . s_{k}, \ldots \models \varphi$
■ $\pi \models \mathbf{F} \varphi$ iff $\exists j . s_{j}, \ldots \models \varphi$

- $\pi \models \mathbf{G} \varphi$ iff $\forall j . s_{j}, \ldots \models \varphi$
- A system S satisfies an LTL formula $\varphi(S \models \varphi)$ iff all inifinite paths of S satisfy φ

LTL verification

■ Automata-based approach:

- Given an LTL property φ, build a transition system $S_{\neg \varphi}$ with a fairness condition $f_{\neg \varphi}$, such that

$$
S \models \varphi \text { iff } S \times S_{\neg \varphi} \models \mathbf{F G} \neg f_{\neg \varphi}
$$

- Finite-state case:
- lasso-shaped counterexamples, with $f_{\neg \varphi}$ at least once in the loop
- liveness to safety transformation: absence of lasso-shaped counterexamples as an invariant property
■ Duplicate the state variables $X_{\text {copy }}=\left\{x_{c} \mid x \in X\right\}$
- Non-deterministically save the current state
- Remember when $f_{\neg \varphi}$ in extra state var triggered
- Invariant: $\mathbf{G} \neg\left(X=X_{\text {copy }} \wedge\right.$ triggered $)$

Liveness to Safety for Inifinite States

 SYSTEMS- Unsound for infinite-state systems
- Not all counterexamples are lasso-shaped

$$
I(S) \stackrel{\text { def }}{=}(x=0) \quad T(S) \stackrel{\text { def }}{=}\left(x^{\prime}=x+1\right) \quad \varphi \stackrel{\text { def }}{=} \mathbf{F G}(x<5)
$$

- Liveness to safety with Implicit Abstraction
- Apply the I 2 s transformation to the abstract system
- Save the values of the predicates instead of the concrete state
- Do it on-the-fly, tightly integrating I2s with IC3
- Sound but incomplete
- When abstract loop found, simulate in the concrete and refine
- Might still diverge during refinement
- Intrinsic limitation of state predicate abstraction

K-liveness

- Simple but effective technique for LTL verification of finitestate systems
- Key insight: $M \times M_{\neg \varphi} \models \mathbf{F G} \neg f_{\neg \varphi}$ iff exists k such that $f_{\neg \varphi}$ is visited at most k times
- Again, a safety property
- K-liveness: increase k incrementally, within IC3
- Liveness checking as a sequence of safety checks
- Exploits the highly incremental nature of IC3
- Sound also for infinite-state systems
- What about completeness?

K-liveness for hybrid automata

- K-liveness is incomplete for infinite-state systems
- Even if $M \times M_{\neg \varphi} \models \mathbf{F G} \neg f_{\neg \varphi}$, there might be no concrete \boldsymbol{k} bound for the number of violations of $\neg f_{\neg \varphi}$

$$
I(S) \stackrel{\text { def }}{=}(x=n) \quad T(S) \stackrel{\text { def }}{=}\left(x^{\prime}=x+1\right) \quad \varphi \stackrel{\text { def }}{=} \mathbf{F} \mathbf{G}(x>n)
$$

- K-zeno: extension of K-liveness for hybrid automata
- Key idea: exploit progress of time to make k-liveness converge
- By extending the original model with a "symbolic fairness monitor" Z_{β}^{φ} that forces time progress
- Under certain conditions, restores completeness of k-liveness
- If $M \times M_{\neg \varphi} \models \mathbf{F G} \neg f_{\neg \varphi}$, then exists k such that $M \times M_{\neg \varphi} \times Z_{\beta}^{\varphi}$ visits f_{Z} at most k times
- (clearly, safety check can still diverge)

Selected bibliography

DISCLAIMER: again, this is definitely incomplete. Apologies to missing authors/works

- IC3 for finite-state systems
- Bradley, Manna. Checking Safety by Inductive Generalization of Counterexamples to Induction. FMCAD 2007
- Bradley. SAT-based Model Checking Without Unrolling. VMCAI 2011
- Een, Mischenko, Brayton. Efficient Implementation of Property-Directed Reachability. FMCAD 2011
- Hassan, Somenzi, Bradley. Better Generalization in IC3. FMCAD 2013
- Vizel, Gurfinkel. Interpolating Property-Directed Reachability. CAV 2014

Selected bibliography

- IC3 for infinite-state systems
- Hoder, Bjørner. Generalized Property-Directed Reachability. SAT 2012
- Cimatti, Griggio, Mover, Tonetta. IC3 Modulo Theories with Implicit Predicate Abstraction. TACAS 2013
- Komuravelli, Gurfinkel, Chaki. SMT-Based Model Checking for Recursive Programs. CAV 2014
- Birgmeier, Bradley, Weissenbacher. Counterexample to Induction-Guided Abstraction-Refinement (CTIGAR). CAV 2014
- Bjørner, Gurfinkel. Property Directed Polyhedral Abstraction. VMCAI 2015

Selected bibliography

- IC3 for LTL verification
- Bradley, Somenzi, Hassan, Zhang. An incremental approach to model checking progress properties. FMCAD 2011
- Claessen, Sörensson. A liveness checking algorithm that counts. FMCAD 2012
- Cimatti, Griggio, Mover, Tonetta. Verifying LTL Properties of Hybrid Systems with K-Liveness. CAV 2014

Thank You

