
VTSA summer school 2015

Exploiting SMT for Verification
of Infinite-State Systems

2. Interpolation in SMT
and in Verification

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy

Outline

Introduction

Interpolants in Formal Verification

Computing interpolants in SMT

Introduction

 (Craig) Interpolant for an ordered pair (A, B) of formulae s.t.

 is a formula I s.t.

 All the uninterpreted (in) symbols of I
are shared between A and B

 Why are interpolants useful?

 Overapproximation of A relative to B

 Overapprox. of

 “Local” explanation of why A is inconsistent with B

Importance of interpolation

Several important applications in formal verification:

 Approximate image computation for model checking of
infinite-state systems

 Predicate discovery for Counterexample-Guided Abstraction
Refinement

 Approximation of transition relation for infinite-state systems

 An alternative to (lazy) predicate abstraction for program
verification

 Automatic generation of loop invariants

 ...

Outline

Introduction

Interpolants in Formal Verification

Computing interpolants in SMT

Background

Symbolic transition systems

 State variables

 Initial states formula

 Transition relation formula

 A state is an assignment to the state vars

 A path of the system S is a sequence of states
such that and

 A k-step (symbolic) unrolling of S is a formula

 Encodes all possible paths of length up to k

 A state property is a formula over

 Encodes all the states such that

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Interpolation-based reachability

 Image computation requires quantifier elimination, which is
typically very expensive (both in theory and in practice)

 Interpolation-based algorithm (McMillan CAV'03): use
interpolants to overapproximate image computation

 much more efficient than the previous algorithm

 interpolation is often much cheaper than quantifier elimination
 abstraction (overapproximation) accelerates convergence

 termination is still guaranteed for finite-state systems

Interpolation-based reachability

 Set

 Check satisfiability of

T07!1 Tk¡1 7!k

Interpolation-based reachability

 Set

 Check satisfiability of

 If SAT:

 If , return REACHABLE the unrolling hits Bad

 else, increase k and repeat

T07!1 Tk¡1 7!k

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set

 is an abstraction of the forward image
 guided by the property

T07!1 Tk¡1 7!k

A

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set

 is an abstraction of the forward image
 guided by the property

 If , return UNREACHABLE fixpoint found

 else, set and continue

T07!1 Tk¡1 7!k

A

Interpolation-based Abstraction Refinement

(Lazy) Predicate abstraction

 Given a Transition System and predicates

 Abstract initial states

 Abstract forward image

 Standard technique applied in many
verification tools

 In conjunction with counterexample-guided
refinement (CEGAR)

 Extract new predicates from spurious counterexamples and compute
a more precise abstraction

P

Interpolation-based Abstraction Refinement

(Lazy) Predicate abstraction

 Given a Transition System and predicates

 Abstract initial states

 Abstract forward image

 Standard technique applied in many
verification tools

 In conjunction with counterexample-guided
refinement (CEGAR)

 Extract new predicates from spurious counterexamples and compute
a more precise abstraction

P
The strongest boolean combination
of predicates in that is implied
by

P

Interpolation-based Abstraction Refinement

(Lazy) Predicate abstraction

 Given a Transition System and predicates

 Abstract initial states

 Abstract forward image

 Standard technique applied in many
verification tools

 In conjunction with counterexample-guided
refinement (CEGAR)

 Extract new predicates from spurious counterexamples and compute
a more precise abstraction

P

Interpolation-based Abstraction Refinement

(Lazy) Predicate abstraction

 Given a Transition System and predicates

 Abstract initial states

 Abstract forward image

 Standard technique applied in many
verification tools

 In conjunction with counterexample-guided
refinement (CEGAR)

 Extract new predicates from spurious counterexamples and compute
a more precise abstraction

P

Interpolation-based Abstraction Refinement

 An abstract cex path (wrt.) might be spurious

 Because abstraction is overapproximating

T07!1 Tk¡1 7!k

Interpolation-based Abstraction Refinement

 An abstract cex path (wrt.) might be spurious

 Because abstraction is overapproximating

 Compute a sequence of interpolants

such that

T07!1 Tk¡1 7!k

Interpolation-based Abstraction Refinement

 An abstract cex path (wrt.) might be spurious

 Because abstraction is overapproximating

 Compute a sequence of interpolants

such that

T07!1 Tk¡1 7!k

Interpolation-based Abstraction Refinement

 An abstract cex path (wrt.) might be spurious

 Because abstraction is overapproximating

 Compute a sequence of interpolants

such that

T07!1 Tk¡1 7!k

Interpolation-based Abstraction Refinement

 An abstract cex path (wrt.) might be spurious

 Because abstraction is overapproximating

 Compute a sequence of interpolants

such that

T07!1 Tk¡1 7!k

Interpolation-based Abstraction Refinement

 An abstract cex path (wrt.) might be spurious

 Because abstraction is overapproximating

 Compute a sequence of interpolants

such that

 Let be the set of all the predicates in

 Set

 Theorem: is not an abstract cex path wrt.

T07!1 Tk¡1 7!k

Proof sketch

 is an overapproximation of the states reachable in i steps,
compatible with the abstract trace

 is also incompatible with the rest of the abstract trace
 (since it is an interpolant)

 By the requirement that

it follows that

 Therefore, and

 (since the trace is spurious)

 Since we add all the atomic predicates of
to and the abstraction is precise wrt. , then

Outline

Introduction

Interpolants in Formal Verification

Computing interpolants in SMT

Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the
computed interpolant

Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the
computed interpolant

 McMillan's annotation rules (others exist):

Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the
computed interpolant

 McMillan's annotation rules (others exist):

 For each leaf node (input clause) C in the proof:

 If , set
 Otherwise (), set

Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the
computed interpolant

 McMillan's annotation rules (others exist):

 For each leaf node (input clause) C in the proof:

 If , set
 Otherwise (), set

 For each inner node (resolution) with parents and
and annotations and

 If , set ; otherwise, set

Example

Example

Proof of correctness

 By induction on the structure of the resolution refutation

 Lemma: for each annotated node , we have

1)

2)

3) I contains only variables that occur in both A and B

 Then as a corollary, for the root , I is an interpolant

 The lemma trivially holds for leaf nodes (check)

Proof of correctness – resolution steps

Resolution step with parents and

 Case

1) By ind. hyp and

Therefore

2) By inductive hypotesis

which means

Similarly,

By resolution on , then

3) Trivial by the inductive hypothesis

Proof of correctness – resolution steps

Resolution step with parents and

 Case

1) By ind. hyp and

By resolution on , then

2) By ind. hyp and

Therefore and

 and so

3) Trivial by the inductive hypothesis

Interpolants in SMT

 Resolution refutations in SMT:

Boolean part
(ground resolution)

T-specific part for conjunctions
of constraints (negated T-lemmas)

Interpolants in SMT

 Resolution refutations in SMT:

Boolean part
(ground resolution)

T-specific part for conjunctions
of constraints (negated T-lemmas)

Standard Boolean
interpolation

T-specific interpolation
for conjunctions only

Theory interpolation only for sets of T-literals

Interpolants in SMT

 Resolution refutations in SMT:

 Annotation for a T-lemma C:

Boolean part
(ground resolution)

T-specific part for conjunctions
of constraints (negated T-lemmas)

Standard Boolean
interpolation

T-specific interpolation
for conjunctions only

Theory interpolation only for sets of T-literals

Equality (EUF)

 Interpolants from coloured congruence graphs

 Nodes with
colours:

 Edges with colours of the nodes they connect

 Uncolorable edge: connects nodes of two different colours
 Always possible to obtain a coloured graph

 (by introducing new nodes)

if term occurs in A

if term occurs in B

if term is shared

Equality (EUF)

 Interpolants from coloured congruence graphs

 Nodes with
colours:

 Edges with colours of the nodes they connect

 Uncolorable edge: connects nodes of two different colours
 Always possible to obtain a coloured graph

 (by introducing new nodes)

if term occurs in A

if term occurs in B

if term is shared

Uncolourable

Equality (EUF)

 Interpolants from coloured congruence graphs

 Nodes with
colours:

 Edges with colours of the nodes they connect

 Uncolorable edge: connects nodes of two different colours
 Always possible to obtain a coloured graph

 (by introducing new nodes)

if term occurs in A

if term occurs in B

if term is shared

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

and

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

 If an A-summary involves a congruence edge, compute
summaries recursively on function arguments

 Use B-summaries as premises for the A-summary

and

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

 If an A-summary involves a congruence edge, compute
summaries recursively on function arguments

 Use B-summaries as premises for the A-summary

 (Several cases to consider)

and

Example

Example

 Start from

 A-summaries for

Example

 Start from

 A-summaries for

 Recurse on edge

 Path

Example

 Start from

 A-summaries for

 Recurse on edge

 Path

 Recurse on edge
 Path , B-summary:

Example

 Start from

 A-summaries for

 Recurse on edge

 Path

 Recurse on edge
 Path , B-summary:

 Interpolant:

Linear Rational Arithmetic (LRA)

 Interpolants from proofs of unsatisfiability of a system of
inequalities

 Proof of unsatisfiability: linear combination of inequalities with
positive coefficients to derive a contradiction (with)

 Interpolant obtained out of the proof by combining inequalities
from A (using the same coefficients)

 Proof of unsatisfiability generated from the Simplex

Example

 tableau bounds candidate solution

Example

tableau bounds candidate solution

No suitable variable for pivoting!
Conflict

Example

tableau bounds candidate solution

Proof:

Example

tableau bounds candidate solution

Interpolant:

Linear Integer Arithmetic (LIA)

 Constraints of the form

 In general, no quantifier-free interpolation for LIA

 Solution: extend the signature to include modular equations
(divisibility predicates)

P
i cixi + c ./ 0; ./2 f·;=g

A := (y ¡ 2x = 0) B := (y ¡ 2z ¡ 1 = 0)Example:

9w:(y = 2w)The only interpolant is:

(t + c =d 0) ´ 9w:(t + c = d ¢ w); d 2 Z>0

The interpolant now becomes: (y =2 0)

SMT(LIA) with modular equations

 Modular equations can be eliminated via preprocessing:

 Replace every atom
with a fresh Boolean variable

 Add the 4 clauses

where are fresh integer variables

a := (t + c =d 0)
pa

pa ! (t + c¡ dw1 = 0)

(¡w2 + 1 · 0)

(w2 ¡ d + 1 · 0)

w1; w2

:pa ! (t+ c¡ dw1 ¡w2 = 0)

 Cutting-plane proof system: complete proof system for LIA

Hyp
¡

t · 0
Comb

t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Div

P
i cixi + c · 0P

i
ci
d xi + d cde · 0

; d > 0 divides the ci's

Interpolants from LIA-proofs

 Cutting-plane proof system: complete proof system for LIA

Hyp
¡

t · 0
Comb

t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Div

P
i cixi + c · 0P

i
ci
d xi + d cde · 0

; d > 0 divides the ci's

Interpolants from LIA-proofs

LRA rules

 Cutting-plane proof system: complete proof system for LIA

Hyp
¡

t · 0
Comb

t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Interpolants from LIA-proofs

Strenghten

P
i cixi + c · 0P

i cixi + d ¢ d cde · 0
; d > 0 divides the ci's

 Cutting-plane proof system: complete proof system for LIA

 Interpolation by annotating proof rules

 Annotation: a set of pairs

 When is derived, then

is the computed interpolant

Hyp
¡

t · 0
Comb

t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Interpolants from LIA-proofs

Strenghten

P
i cixi + c · 0P

i cixi + d ¢ d cde · 0
; d > 0 divides the ci's

fhti · 0;
V
j(tij = 0)igi

?
I :=

W
i(ti · 0 ^Vj ExistElim(xi 62 B):(tij = 0))

Interpolants from cutting-plane proofs

 Annotations for Hyp and Comb from McMillan
(same as LRA)

 k-Strengthen rule of [Brillout et al. IJCAR'10]

Comb
t1 · 0 [I1] t2 · 0 [I2]

c1 ¢ t1 + c2 ¢ t2 · 0 [I]

I := fhc1t0i + c2t0j · 0; Ei ^ Eji j ht0i; Eii 2 I1; ht0j ; Eji 2 I2g

Str.

P
i cixi + c · 0 [fht · 0;>ig]P

i cixi + d ¢ d cde · 0 [I]
; d > 0 divides the ci's

I := fh(t + n · 0); (t + n = 0)i j 0 · n < d ¢ d cde ¡ cg[
fh(t + d ¢ d c

d
e ¡ c · 0);>ig

Hyp
¡

t · 0 [fht · 0;>ig]
t0 =

½
t if t · 0 2 A
0 if t · 0 2 B

Interpolants from cutting-plane proofs

 Annotations for Hyp and Comb from McMillan
(same as LRA)

 k-Strengthen rule of [Brillout et al. IJCAR'10]

Comb
t1 · 0 [I1] t2 · 0 [I2]

c1 ¢ t1 + c2 ¢ t2 · 0 [I]

I := fhc1t0i + c2t0j · 0; Ei ^ Eji j ht0i; Eii 2 I1; ht0j ; Eji 2 I2g

Str.

P
i cixi + c · 0 [fht · 0;>ig]P

i cixi + d ¢ d cde · 0 [I]
; d > 0 divides the ci's

I := fh(t + n · 0); (t + n = 0)i j 0 · n < d ¢ d cde ¡ cg[
fh(t + d ¢ d c

d
e ¡ c · 0);>ig

Hyp
¡

t · 0 [fh0 · 0;>ig]
t0 =

½
t if t · 0 2 A
0 if t · 0 2 B

Example

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

4x¡ 4z + 1 · 0

4x¡ 4z + 1 + 3 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0

¡4x+ 4z ¡ 3 · 0

(1 · 0) ´ ?

Example – with annotations

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

4x¡ 4z + 1 · 0

4x¡ 4z + 1 + 3 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0

¡4x+ 4z ¡ 3 · 0

(1 · 0) ´ ?

[fhy + 4x · 0;>ig] [fh0 · 0;>ig]

[fhy + 4x · 0;>ig]
[fh0 · 0;>ig][fh¡y ¡ 4x¡ 1 · 0;>ig]

[fh¡y ¡ 4x¡ 1 · 0;>ig]

[fhn¡ 1 · 0; y + 4x+ n = 0i j 0 · n < 3g [fh2 ¡ 1 · 0;>ig]

[fhy + 4x+ n · 0; y + 4x + n = 0i j
0 · n < 3g [fhy + 4x+ 2 · 0;>ig]

 Interpolant:

Example – with annotations

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

4x¡ 4z + 1 · 0

4x¡ 4z + 1 + 3 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0

¡4x+ 4z ¡ 3 · 0

(1 · 0) ´ ?

[fhy + 4x · 0;>ig] [fh0 · 0;>ig]

[fhy + 4x · 0;>ig]
[fh0 · 0;>ig][fh¡y ¡ 4x¡ 1 · 0;>ig]

[fh¡y ¡ 4x¡ 1 · 0;>ig]

[fhn¡ 1 · 0; y + 4x+ n = 0i j 0 · n < 3g [fh2 ¡ 1 · 0;>ig]

[fhy + 4x+ n · 0; y + 4x + n = 0i j
0 · n < 3g [fhy + 4x+ 2 · 0;>ig]

Interpolant:

Drawback of Strengthen

 Interpolation of Strengthen creates potentially very big
disjunctions

 Linear in the strengthening factor

 Can be exponential in the size of the proof

k := dd c
d
e ¡ c

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

Example:

(y =4 0) _ (y + 1 =4 0)Interpolant:

Drawback of Strengthen

 Interpolation of Strengthen creates potentially very big
disjunctions

 Linear in the strengthening factor

 Can be exponential in the size of the proof

k := dd c
d
e ¡ c

Example:

Interpolant:

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

(y =2n 0) _ (y + 1 =2n 0) _ : : : _ (y =2n n¡ 1)

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

Drawback of Strengthen

 Interpolation of Strengthen creates potentially very big
disjunctions

 Linear in the strengthening factor

 Can be exponential in the size of the proof

 The problem are AB-mixed cuts:

k := dd c
d
e ¡ c

Example:

Interpolant:

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

(y =2n 0) _ (y + 1 =2n 0) _ : : : _ (y =2n n¡ 1)

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

Strengthen

P
xi 62B cixi +

P
yj 62A cjyj + c · 0

P
xi 62B cixi +

P
yj 62A cjyj + d ¢ d cde · 0

Interpolation with ceilings

 Idea: use a different extension of the signature of LIA, and
extend also its domain

 Introduce the ceiling function [Pudlák '97]

 Allow non-variable terms to be non-integers (e.g.)

 Much simpler interpolation procedure

 Proof annotations are single inequalities

d¢e
x
2

(t · 0)

Interpolation with ceilings

 Idea: use a different extension of the signature of LIA, and
extend also its domain

 Introduce the ceiling function [Pudlák '97]

 Allow non-variable terms to be non-integers (e.g.)

 Much simpler interpolation procedure

 Proof annotations are single inequalities

d¢e
x
2

(t · 0)

Comb
t1 · 0 [t01 · 0] t2 · 0 [t02 · 0]

c1 ¢ t1 + c2 ¢ t2 · 0 [c1 ¢ t01 + c2 ¢ t02 · 0]

d > 0 divides aj ; bk; ci

Hyp
¡

t · 0 [t0 · 0]

Div

P
yj 62B ajyj +

P
zk 62A bkzk +

P
xi2A\B cixi + c

[
P
yj 62B ajyj +

P
xi2A\B c

0
ixi + t0]

P
yj 62B

aj
d yj +

P
zk2B

bk
d zk +

P
xi2A\B

ci
d xi + d cde

[
P
yj 62B

aj
d yj + d

P
xi2A\B c

0
ixi+t

0

d e]

Interpolation with ceilings - example

 No blowup of interpolants wrt. the size of the proofs

(1 · 0) ´ ?

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

y + 2nx · 0 ¡y ¡ 2nz + 1 · 0

2nx¡ 2nz + 1 · 0
¡y ¡ 2nx¡ n + 1 · 0 y + 2nz ¡ n · 0

¡2nx+ 2nz ¡ 2n + 1 · 02n ¢ (x¡ z + 1 · 0)

Interpolation with ceilings - example

 No blowup of interpolants wrt. the size of the proofs

(1 · 0) ´ ?

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

y + 2nx · 0 ¡y ¡ 2nz + 1 · 0

2nx¡ 2nz + 1 · 0
¡y ¡ 2nx¡ n + 1 · 0 y + 2nz ¡ n · 0

¡2nx+ 2nz ¡ 2n + 1 · 02n ¢ (x¡ z + 1 · 0)

[y + 2nx · 0] [0 · 0]

[y + 2nx · 0] [¡y ¡ 2nx¡ n + 1 · 0] [0 · 0]

[¡y ¡ 2nx¡ n + 1 · 0]

[2nd y
2ne ¡ y ¡ n + 1 · 0]

[x + d y
2ne · 0]

 Interpolant:

Interpolation with ceilings - example

 No blowup of interpolants wrt. the size of the proofs

(1 · 0) ´ ?

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

y + 2nx · 0 ¡y ¡ 2nz + 1 · 0

2nx¡ 2nz + 1 · 0
¡y ¡ 2nx¡ n + 1 · 0 y + 2nz ¡ n · 0

¡2nx+ 2nz ¡ 2n + 1 · 02n ¢ (x¡ z + 1 · 0)

[y + 2nx · 0] [0 · 0]

[y + 2nx · 0] [¡y ¡ 2nx¡ n + 1 · 0] [0 · 0]

[¡y ¡ 2nx¡ n + 1 · 0]

[2nd y
2ne ¡ y ¡ n + 1 · 0]

Interpolant:

[x + d y
2ne · 0]

SMT(LIA) with ceilings

 Like modular equations, also ceilings can be eliminated via
preprocessing

 Replace every term
with a fresh integer variable

 Add the 2 unit clauses
(encoding the meaning of ceiling:)

where is the least common multiple of the denominators of the
coefficients in

dte
xdte

(l ¢ xdte ¡ l ¢ t + l · 0)

(l ¢ t¡ l ¢ xdte · 0)

l
t

Bit-vectors (BV)

 Interpolation for bit-vectors is hard

 Only some limited work done so far

 Most efficient solvers use eager encoding into SAT, which is
efficient but not good for interpolation

 Easy in principle, but not very useful interpolants

 Try to exploit lazy bit-blasting to incorporate BV into DPLL(T)

Interpolation via Bit-Blasting

 Interpolation via bit-blasting is easy…

 From and generate and

Each var of width n encoded with n Boolean vars

 Generate a Boolean interpolant for

 Replace every variable in with the bit-selection
and every Boolean connective with the corresponding bit-wise
connective:

 ...but quite impractical

 Generates “ugly” interpolants

 Word-level structure of the original problem completely lost

 How to apply word-level simplifications?

BBoolABV BBV
x bx1 : : : b

x
n

IBool

ABool

(ABool; BBool)
IBoolbxi x[i]

^ 7! &; _ 7! j; : 7!»

Interpolation via Bit-Blasting - Example

A word-level interpolant is:

...but with bit-blasting we get:

A
def
= (a[8] ¤ b[8] = 15[8]) ^ (a[8] = 3[8])

B
def
= :(b[8]%uc[8] = 1[8]) ^ (c[8] = 2[8])

I
def
= (b[8] ¤ 3[8] = 15[8])

I 0
def
= (b[8][0] = 1[1]) ^ ((b[8][0]& » ((((((» b[8][7]& » b[8][6])&

» b[8][5])& » b[8][4])& » b[8][3])&b[8][2])& » b[8][1])) = 0[1])

Alternative: lazy bit-blasting and DPLL(T)

 Exploit lazy bit-blasting

 Bit-blast only BV-atoms, not the whole formula

 Boolean skeleton of the formula handled by the “main” DPLL, like
in DPLL(T)

 Conjunctions of BV-atoms handled (via bit-blasting) by a “sub”-
DPLL (DPLL-BV) that acts as a BV-solver

Standard
Boolean Interpolation

BV-specific Interpolation
for conjunctions of constraints

Interpolation for BV constraints

 A layered approach

 Apply in sequence a chain of procedures of increasing
generality and cost

 Interpolation in EUF

 Interpolation via equality inlining

 Interpolation via Linear Integer Arithmetic encoding

 Interpolation via bit-blasting

Interpolation in EUF

 Treat all the BV-operators as uninterpreted functions

 Exploit cheap, efficient algorithms for solving and
interpolating modulo EUF

 Possible because we avoid bit-blasting upront!

Example: A
def
= (x1[32] = 3[32]) ^ (x3[32] = x1[32] ¢ x2[32])

B
def
= (x4[32] = x2[32]) ^ (x5[32] = 3[32] ¢ x4[32])^

:(x3[32] = x5[32])

IUF
def
= x3 = f ¢(f3; x2)

IBV
def
= x3[32] = 3[32] ¢ x2[32]

Interpolation via Equality Inlining

 Interpolation via quantifier elimination: given , an
interpolant can be computed by eliminating quantifiers from
 or from

 In general, this can be very expensive for BV

 Might require bit-blasting and can cause blow-up of the formula

 Cheap case: non-common variables occurring in “definitional”
equalities

Example: and does not occur in , then

(A;B)

9x 62BA 9x 62A:B

(x = e) ^ ' x e

9x((x = e) ^ ') =) '[x 7! e]

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

Example:

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Definitional equalities

Example:

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example:

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^

^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^

^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def
= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def
= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^

I
def
= (032 ·s (024 :: x2[8] ¡ 1[32])

Interpolation via LIA Encoding

 Simple idea (in principle):

 Encode a set of BV-constraints into an SMT(LIA)-formula

 Generate a LIA-interpolant using existing algorithms

 Map back to a BV-interpolant

 However, several problems to solve:

 Efficiency

 More importantly, soundness

Encoding BV into LIA

 Use well-known encodings from BV to SMT(LIA)

 Encode each BV term as an integer variable and the
constraints

 Encode each BV operation as a LIA-formula.

t[n] xt
(0 · xt) ^ (xt · 2n ¡ 1)

t[i¡j+1]
def
= t1[n][i : j] (xt = m) ^ (xt1 = 2i+1h + 2jm + l)^

l 2 [0; 2i) ^m 2 [0; 2i¡j+1) ^ h 2 [0; 2n¡i¡1)

t[n]
def
= t1[n] + t2[n] (xt = xt1 + xt2 ¡ 2n¾) ^ (0 · ¾ · 1)

t[n]
def
= t1[n] ¢ k (xt = k ¢ xt1 ¡ 2n¾) ^ (0 · ¾ · k)

Examples:

From LIA-interpolants to BV-interpolants

 “Invert” the LIA encoding to get a BV interpolant

 Unsound in general

 Issues due to overflow and (un)signedness of operations

 Our (very simple) solution: check the interpolants

 Given a candidate interpolant , use our SMT(BV) solver to

check the unsatisfiability of

 If successful, then is an interpolant

Î

Î

(A ^ :Î) _ (B ^ Î)

From LIA- to BV-interpolants: examples

Encoding into LIA:

ALIA
def
=(xy2 = 16xy5 + xy5) ^ (xy1 = xy2) ^ (xy5 = 1)^

(xy1 2 [0; 28)) ^ (xy2 2 [0; 28)) ^ (xy5 2 [0; 24))

BLIA
def
=:(xy4+1 · xy2) ^ (xy4+1 = xy4 + 1 ¡ 28¾)^

(xy4 = 1)^
(xy4+1 2 [0; 28)) ^ (xy4 2 [0; 28)) ^ (0 · ¾ · 1)

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])

From LIA- to BV-interpolants: examples

LIA-Interpolant:

BV-interpolant:

ILIA
def
= (17 · xy2)

I
def
= (17[8] ·u y2[8])

Good!

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])

From LIA- to BV-interpolants: examples

Encoding into LIA:

ALIA
def
=(xy2 = 81) ^ (xy3 = 0) ^ (xy4 = xy2)^

(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))

BLIA
def
=(xy13 = 28 ¢ 0 + xy4) ^ (255 · xy13+(0::y3))^

(xy13+(0::y3) = xy13 + 28 ¢ 0 + xy3 ¡ 216¾)^
(xy13 2 [0; 216)) ^ (xy13+(0::y3) 2 [0; 216))^
(0 · ¾ · 1)

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might
overflow in BV!

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might
overflow in BV!

A correct interpolant would be

I
def
= (0[1] :: y3[8] + 0[1] :: y4[8] ·u 81[9])

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

Encoding into LIA:

ALIA
def
=:(xy4+1 · xy3) ^ (xy2 = xy4+1)^

(xy4+1 = xy4 + 1 ¡ 28¾1)^
(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))^
(xy4+1 2 [0; 28)) ^ (0 · ¾1 · 1)

BLIA
def
=(xy2+1 · xy3) ^ (xy7 = 3) ^ (xy7 = xy2+1)^

(xy2+1 = xy2 + 1 ¡ 28¾2)^
(xy7 2 [0; 28)) ^ (xy2+1 2 [0; 28)) ^ (0 · ¾2 · 1)

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î0
def
= (65281[16] ·u (0[8] :: y2[8]) ¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î0
def
= (65281[16] ·u (0[8] :: y2[8]) ¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)

Still
Wrong!

In this case, the problem
is also the sign

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Correct interpolant

I
def
= (65281[16] ·s (0[8] :: y2[8]) ¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

Interpolation in combined theories

 Combination of theories
encoded directly in the
proof of unsatisfiability P

 -lemmas for the
individual theories

 P contains interface
equalities

 Delayed Theory Combination (DTC): use the DPLL engine to
perform theory combination

 Independent -solvers, that interact only with DPLL

 How: Boolean search space augmented with interface equalities

 Equalities between variables shared by the two theories

?

T1T2

T1

T1 T1

T2
T2

T2

P

Ti

Ti

Interpolation in combined theories

 How: Split each -lemma
 into
 with
using available algorithms

 's must be equality-
interpolating and convex

 Propagate the changes
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation:

 Some interface equalities (x = y) are AB-mixed:

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

?

T1T2

T1

T1 T1

T2
T2

T2

P

Interpolation in combined theories

 How: Split each -lemma
 into
 with
using available algorithms

 's must be equality-
interpolating and convex

 Propagate the changes
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation:

 Some interface equalities (x = y) are AB-mixed:

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

?

T1
T2

T1 T1 T1

T2
T2

T2
T2

T1

T2

P'

Interpolation in combined theories

 How: Split each -lemma
 into
 with
using available algorithms

 's must be equality-
interpolating and convex

 Propagate the changes
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation:

 Some interface equalities (x = y) are AB-mixed:

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

Problem: splitting can
cause exponential blow-up
in P

Solution: control the kind of
proofs generated by DPLL,
so that the splitting can be
performed efficiently
(ie-local proofs) ?

T1
T2

T1 T1 T1

T2
T2

T2
T2

T1

T2

P'

Interpolation in combined theories

 After splitting AB-mixed equalities, we can compute an
interpolant as usual

 Nothing special needed for theory combination!

 Because theory combination is encoded in the proof, we can
reuse the Boolean interpolation algorithm

 Features:

 No need of ad-hoc interpolant combination procedures

 Exploit state-of-the-art SMT solvers, based on (variants of) DTC

 Split only when necessary

Example

Example

T-lemmas:

?

£3

(a2 + z = 1)

(a1 + z = 0)

£4

£5

£6

£7

(z ¡ x2 = 1)

(a1 = f(x1))

(a2 = f(x2))

(z ¡ x1 = 1)

Example

T-lemmas: Pivot: (x
1
 = x

2
)

?

£3

(a2 + z = 1)

(a1 + z = 0)

£4

£5

£6

£7

(z ¡ x2 = 1)

(a1 = f(x1))

(a2 = f(x2))

(z ¡ x1 = 1)

C3 C2

£1 C1
£2

Pivot: (a
1
 = a

2
)

subproof
with int.eqs.

Example

C3 C2

C1£1

£2

Pie subproof:

T-lemmas:

Example

C3 C2

C1£1

£2

Pie subproof:

T-lemmas: Split (x
1
= x

2
) in C

1

Example

Pie subproof:

T-lemmas:
C3 C2

£1 C01

C001£02

£2

C01 ´(x1 = z ¡ 1) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

C 001 ´(z ¡ 1 = x2) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

Example

Pie subproof:

T-lemmas:
C3 C2

£1 C01

C001£02

£2

C01 ´(x1 = z ¡ 1) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

C 001 ´(z ¡ 1 = x2) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

Split (a
1
= a

2
) in C

2

Example

Pie subproof:

£1

£2

C001£02

C01£01

C002

C02C03
C02 ´(a1 = f(z ¡ 1)) _ :(a2 = f(x2))_

:(a1 = f(x1)) _ :(x1 = z ¡ 1)_
:(z ¡ 1 = x2)

C 002 ´(f(z ¡ 1) = a2) _ :(a2 = f(x2))_
:(a1 = f(x1)) _ :(x1 = z ¡ 1)_
:(z ¡ 1 = x2)

C03 ´:(a1 + z = 0) _ :(a2 + z = 1)_
:(a1 = f(z ¡ 1)) _ :(f(z ¡ 1) = a2)

Proof Tree Preserving Interpolation

 [Christ, Hoenicke and Nutz, TACAS 2013]

 Interpolants with AB-mixed literals without proof rewriting

 Replace AB-mixed terms with
in leaves, where is a fresh purification variable

 Eliminate the purification variable when resolving on

 Advantages:

 no need of proof rewriting

 handles also for non-convex theories

 Drawbacks:

 need T-specific interpolation rules for resolution steps

 more complex interpolation system

From Binary to Sequence Interpolants

 An ordered sequence of formulae such that

 We want a sequence of interpolants such that

 is an interpolant for

 for all

 Needed in various applications (e.g. abstraction refinement)

 How to compute them?

 In general, if we compute arbitrary binary interpolants for

 , the second condition will not hold

A simple solution

 Compute as an interpolant of

 Compute as an interpolant of

 Claim: is an interpolant for

 Proof (sketch):

 By ind.hyp. is an interpolant for

so and

 Advantages:

 simple to implement

 can use any off-the-shelf binary interpolation

 Drawback: requires n-1 SMT calls

A more efficient algorithm

 Compute an SMT proof of unsatisfiablity P for

 Compute each

from the same proof P

 Theorem:

A more efficient algorithm

 Compute an SMT proof of unsatisfiablity P for

 Compute each

from the same proof P

 Theorem:

 Proof (sketch) – case n=3:

 Let C be a node of P with partial interpolants I' and I'' for the
partitionings and resp. Then we
can prove, by induction on the structure of P, that:

 The theorem then follows as a corollary

 Works also for DTC-rewritten proofs

Selected bibliography

DISCLAIMER: this is very incomplete. Apologies to missing
authors/works

 Interpolants in Formal Verification

 McMillan. Interpolation and SAT-based Model Checking. CAV
2003

 Henzinger, Jhala, Majumdar, McMillan. Abstractions from
Proofs. POPL 2004

 McMillan. Lazy Abstraction with Interpolants. CAV 2006

 Vizel, Grumberg. Interpolation-Sequence based model
checking. FMCAD 2009

 Albargouthi, Gurfinkel, Chechick. Whale: an interpolation-
based algorithm for inter-procedural verification. VMCAI
2012

Selected bibliography

 Interpolants in SAT and SMT

 McMillan. An Interpolating Theorem Prover. TCS 2005.

 Yorsh, Musuvathi. A Combination Method for Generating
Interpolants. CADE 2005

 Cimatti, Griggio, Sebastiani. Efficient Generation of Craig
Interpolants in SMT. TOCL 2010

 Rybalchenko, Sofronie-Stokkermans. Constraint solving for
interpolation. J. Symb. Comput. 45(11): 1212-1233 (2010)

 Griggio. Effective Word-Level Interpolation for Software
Verification. FMCAD 2011

 Brillout, Kroening, Rümmer, Wahl. An Interpolating Sequent
Calculus for Quantifier-Free Presburger Arithmetic. J. Autom.
Reasoning 47(4): 341-367 (2011)

Selected bibliography

 Interpolants in SAT and SMT

 D'Silva, Kroening, Purandare, Weissenbacher. Interpolant
strength. VMCAI 2010

 Goel, Krstic, Tinelli. Ground interpolation for the theory of
equality. Logical Methods in Computer Science 8(1) 2012

 Bruttomesso, Ghilardi, Ranise. Quantifier-free interpolation of
a Theory of Arrays. Logical Methods in Comp. Sci. 8(2) 2012

 Totla, Wies. Complete instantiation-based interpolation. POPL
2013

 Christ, Hoenicke, Nutz. Proof Tree Preserving Interpolation.
TACAS 2013

 Ruemmer, Subotic. Exploring Interpolants. FMCAD 2013

 Bruttomesso, Ghilardi, Ranise. Quantifier-free interpolation in
combinations of equality interpolating theories. TOCL 2014

Thank You

VTSA summer school 2015

Exploiting SMT for Verification
of Infinite-State Systems

3. SMT-based
Verification with IC3

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

Introduction

 IC3 very successful SAT-based model checking algorithm

 Incremental Construction

 of Inductive Clauses

 for Indubitable Correctness

 Key principles:

 Verification by induction

 Inductive invariant built incrementally

 by discovering (relatively-)inductive clauses

 Exploiting efficient SAT solvers

Introduction

 IC3 has been further generalized to SMT in various ways

 We will look in some detail at one such generalization, called

IC3 with Implicit Predicate Abstraction (IC3-IA)

 Exploits several features of modern SMT solvers that we have
discussed so far

 Incremental solving
 Assumptions and unsatisfiable cores
 Interpolation

 A “hands-down” approach

 We will build a (simple) real implementation on top of MathSAT

Proofs by Induction

 Given transition system and property

 Base case (initiation):

 Inductive step (consectution):

 Typically however, is not inductive

 Find an inductive invariant , stronger than

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

A (very) high level view of IC3

 Given a symbolic transition system and invariant property P,
build an inductive invariant F s.t.

 Trace of formulae s.t:

 for i > 0, F
i
 is a set of clauses

overapproximation of states reachable in up to i steps

Fi+1 µ Fi (so Fi j= Fi+1)
Fi ^ T j= F 0i+1
for all i < k; Fi j= P

:P
FkFk¡1I

T TT Fk¡2

F j= P
F0(X) ´ I; : : : ; Fk(X)

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on
 (i.e., check if)

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on
 (i.e., check if)

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

Check if s is inductive relative to F
k-1

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on
 (i.e., check if)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

FkI
TT s

Fk¡2T Fk¡1

:Ps

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

 SAT: s is reachable from in 1 step
 Get a cube c in the preimage of s and try

(recursively) to prove it unreachable from , …

 c is a counterexample to induction (CTI)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0

FkFk¡1I
TT s

Fk¡2T
c

:Ps

Fk¡1 ^ :s

Fk¡2

If I is reached,
counterexample

found

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

 UNSAT: is inductive relative to
 Generalize c to g and block by adding to

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

 UNSAT: is inductive relative to
 Generalize c to g and block by adding to

Fk j= P

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c

FkFk¡1I
sT T

Fk¡2Fk¡2
T Fk¡1

:Ps

A (very) high level view of IC3

Propagation: extend trace to and push forward clauses

For each i and each clause :

Call SAT solver on

If UNSAT, add c to

FkFk¡1I Fk¡2

:P
FkFk¡2 Fk¡1

T TT

Fk+1

Fi+1

c 2 Fi

A (very) high level view of IC3

Propagation: extend trace to and push forward clauses

For each i and each clause :

Call SAT solver on

If UNSAT, add c to

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

A (very) high level view of IC3

Propagation: extend trace to and push forward clauses

For each i and each clause :

Call SAT solver on

If UNSAT, add c to

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fi Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

If , P is proved,
otherwise start another round of blocking and propagation
Fi ´ Fi+1

IC3 pseudo-code

bool IC3(I, T, P):
 trace = [I] # first elem of trace is init formula
 trace.push() # add a new frame
 while True:
 # blocking phase
 while is_sat(trace.last() & ~P):
 c = extract_cube() # c |= trace.last() & ~P
 if not rec_block(c, trace.size()-1):
 return False # counterexample found

 # propagation phase
 trace.push()
 for i=1 to trace.size()-1:
 for each cube c in trace[i]:
 if not is_sat(trace[i] & ~c & T & c'):
 trace[i+1].append(c)
 if trace[i] == trace[i+1]:
 return True # property proved

IC3 pseudo-code

bool rec_block(s, i):
 if i == 0:
 return False # reached initial states
 while is_sat(trace[i-1] & ~s & T & s'):
 c = get_predecessor(i-1, T, s')
 if not rec_block(c, i-1):
 return False
 g = generalize(~s, i)
 trace[i].append(g)
 return True

Correctness (sketch)

 Consider the formula where s is a bad cube

 If UNSAT, then is strong enough to block s

 Since , then s is unreachable in k steps or less

 Since , then we can add s to all

Fi ^ T j= F 0i+1

Correctness (sketch)

 Consider the formula where s is a bad cube

 If UNSAT, then is strong enough to block s

 Since , then s is unreachable in k steps or less

 Since , then we can add s to all

 Consider now the relative induction check

 We know that because (base case)

 Since , then we know that holds up to k

Fi ^ T j= F 0i+1

Correctness (sketch)

 Consider the formula where s is a bad cube

 If UNSAT, then is strong enough to block s

 Since , then s is unreachable in k steps or less

 Since , then we can add s to all

 Consider now the relative induction check

 We know that because (base case)

 Since , then we know that holds up to k

 Propagation: for each , check

 we know that c holds up to i, if UNSAT then it holds up to i+1

 since , and ,

if then the fixpoint is an inductive invariant

Fi ^ T j= F 0i+1

Fi ^ T j= F 0i+1

Inductive Clause Generalization

 Crucial step of IC3

 Given a relatively inductive clause

compute a generalization that is still inductive

 Drop literals from and check that (1) still holds

 Accelerate with unsat cores returned by the SAT solver

 Using SAT under assumptions

 However, make sure the base case still holds

 If , then cannot be dropped

Simple iterative generalization

void indgen(c, i):
 done = False
 for iter = 1 to max_iters:
 if done:
 break
 done = True
 for each l in c:
 cand = c \ {l}
 if not is_sat(I & cand) and
 not is_sat(trace[i] & ~cand & T & cand'):
 c = get_unsat_core(cand)
 rest = cand \ c
 while is_sat(I & c):
 l1 = rest.pop()
 c.add(l1)
 done = False
 break

 When is satisfiable:

 s reaches in k-i steps

 s can be reached from in 1 step

 strengthen by blocking cubes c in the preimage of s

 Extract CTI c from the SAT assignment

 And generalize to represent multiple bad predecessors

 Use unsat cores, exploiting a functional encoding of the transition
relation

 If is functional, then
 check under assumptions

:P cs
s'

T

:P

Fi
Fi

Fi

CTI computation

SAT-based CTI generalization

void generalize_cti(cti, inputs, next):
 for i = 1 to max_iters:
 b = is_sat(cti & inputs & T & ~next')
 assert not b # assume T to be functional
 c = get_unsat_core(cti)
 if should_stop(c, cti):
 break
 cti = c

Example

No counterexamples of length 0

000 10x 01x 11x

001

[borrowed and adapted from F. Somenzi]

Example

Get bad cube in

000 10x 01x 11x

001

Example

000 10x 01x 11x

001

Is inductive relative to ?

Example

000 10x 01x 11x

001

Yes, generalize

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Update

Example

000 10x 01x 11x

001

Blocking done for . Add and propagate forward

Example

000 10x 01x 11x

001

No clause propagates from to

Example

000 10x 01x 11x

001

Get bad cube in

Example

000 10x 01x 11x

001

Is inductive relative to ?

Example

000 10x 01x 11x

001

No, found CTI

Example

000 10x 01x 11x

001

Try blocking at level 0:

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Update

Example

000 10x 01x 11x

001

Return to the original bad cube

Example

000 10x 01x 11x

001

Is inductive relative to ?

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Update and add new frame

Example

000 10x 01x 11x

001

Perform forward propagation

From to :

Example

000 10x 01x 11x

001

Perform forward propagation

Found fixpoint!

Example

000 10x 01x 11x

001

Perform forward propagation

Inductive invariant:

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

IC3 with SMT

 How to generalize from SAT to SMT?

IC3 with SMT

 How to generalize from SAT to SMT?

 Good news: replacing the SAT solver with an SMT solver is
enough for partial correctness

 but what about:

 termination?

 efficiency?

IC3 with SMT

 How to generalize from SAT to SMT?

 Good news: replacing the SAT solver with an SMT solver is
enough for partial correctness

 but what about:

 termination?

 Easy! (answer)
 the problem is in general undecidable, so no hope here

 efficiency?

 When is satisfiable:

 s reaches in k-i steps

 s can be reached from in 1 step

 strengthen by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA):

 Would exclude a single point
in an infinite space

:P cs
s'

T

:P

s'

s T
m

Single model m from SMT solver:

x = 3 ^ y = 7

Fi
Fi

Fi

Fi

RelInd(Fk¡1; T; s) with SMT

 When is satisfiable:

 s reaches in k-i steps

 s can be reached from in 1 step

 strengthen by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA): underapproximated quantifier elimination

 Encodes a set of predecessors

 Cheaper than full quantifier elimination

 But still potentially expensive

 Not always available

 E.g for UF+LRA

:P cs
s'

T

:P

Fi
Fi

Fi

RelInd(Fk¡1; T; s) with SMT

underapproximated preimage:

s'

s T
c

(x · 3) ^ (y ¸ 7)
Fi

 When is unsatisfiable:

 Compute a generalization g of s to block

 Block more than a single cube at a time

 In the Boolean case, use inductive generalization algorithms

 For SMT, Boolean algorithms plus theory-specific “ad hoc”
techniques

 Based on Farkas' lemma for LRA [HB SAT'12]

 [WK DATE'13] for BV

 [KJN FORMATS'12] for timed automata

RelInd(Fk¡1; T; s) with SMT

 gs
s'

T

:PFi

Implicit Predicate Abstraction [Tonetta FM'09]

 Abstract version of k-induction, avoiding explicit computation
of the abstract transition relation

 By embedding the abstraction in the SMT encoding

 Given a set of predicates and an unrolling depth ,

the abstract path is

P k

^

1·h<k
(T (Y h¡1; Xh) ^

^

p2P
(p(Xh)$ p(Y h)) ^ T (Y k¡1; Xk)

[Pathk;P

T

T

T

E
Q

E
Q

E
Q

E
QEQ

def
=V

p2P(p(Y)$ p(X))

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

T (X;X 0)

P

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If UNSAT ⇨inductive strengthening as in the Boolean case

 No theory-specific technique needed

 Theory reasoning confined within the SMT solver

T (X;X 0)

P

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If SAT ⇨ abstract predecessor from the SMT model

 No quantifier elimination needed

T (X;X 0)

P

c

c
def
= fp(X) j p 2 P ^ ¹ j= p(X)g [f:p(X) j ¹ 6j= p(X)g

¹

Example

 is SAT

 Compute a predecessor with

Example

 is SAT

 Compute a predecessor with

 Compute predecessor from SMT model

Example

 is SAT

 Compute a predecessor with

 Compute predecessor from SMT model

Abstraction Refinement

 Abstract predecessors are overapproximations

 Spurious counterexamples can be generated

 We can apply standard abstraction refinement techniques

 Use sequence interpolants to discover new predicates

 Sequence of abstract states

 SMT check on

 If unsat, compute sequence of interpolants for

 Add all the predicates in the interpolants to

Incrementality

 Abstraction refinement is fully incremental

 No restart from scratch

 Can keep all the clauses of

 Refinements monotonically strengthen

 All IC3 invariants on are preserved

 Abstract counterexample check can use incremental SMT

Fi+1 µ Fi (so Fi j= Fi+1)
for all i < k; Fi j= P

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Predicates

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check base case:

 Predicates

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube

 SMT check

 SAT with model

 Evaluate predicates wrt.

 Return

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 Check

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 Check

 Unsat core:

 Update

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 2

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 . . .

 Update

 . . .

 Update

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 3

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block c

 Check

 SMT model

 (Abstract) predecessor

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block s (at level 2)

 . . .

 Reached level 0, abstract cex:

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 SMT check

UNSAT

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

 Predicates

 Trace:

Update predicates

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

SAFE

 Predicates

 Trace:

Implementing IC3-IA

 Get the code at:
http://es-static.fbk.eu/people/griggio/vtsa2015/

 Open source (GPLv3) implementation on top of MathSAT
http://mathsat.fbk.eu/

 Incremental interface
 Assumptions and unsat core
 Interpolation

 Simple (~1700 lines of C++, including parser and statistics,
according to David A. Wheeler's 'SLOCCount') yet competitive

 Input in VMT format (a simple extension of SMT-LIB)

https://nuxmv.fbk.eu/index.php?n=Languages.VMT

 Let's analyse it!

http://es-static.fbk.eu/people/griggio/vtsa2015/
http://mathsat.fbk.eu/
https://nuxmv.fbk.eu/index.php?n=Languages.VMT

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

Linear Temporal Logic

 Syntax

 A (quantifier-free) first-order formula

 (neXt)

 (Until)

 Semantics

 Given an infinite path

 A system S satisfies an LTL formula () iff all inifinite
paths of S satisfy

 (Finally)

 (Globally)

LTL verification

 Automata-based approach:

 Given an LTL property , build a transition system
with a fairness condition , such that

 Finite-state case:

 lasso-shaped counterexamples, with at least once in the
loop

 liveness to safety transformation: absence of lasso-shaped
counterexamples as an invariant property

 Duplicate the state variables
 Non-deterministically save the current state
 Remember when in extra state var
 Invariant:

Liveness to Safety for Inifinite States

 Unsound for infinite-state systems

 Not all counterexamples are lasso-shaped

 Liveness to safety with Implicit Abstraction

 Apply the l2s transformation to the abstract system

 Save the values of the predicates instead of the concrete state
 Do it on-the-fly, tightly integrating l2s with IC3

 Sound but incomplete

 When abstract loop found, simulate in the concrete and refine
 Might still diverge during refinement

 Intrinsic limitation of state predicate abstraction

K-liveness

 Simple but effective technique for LTL verification of finite-
state systems

 Key insight: iff exists k such that
is visited at most k times

 Again, a safety property

 K-liveness: increase k incrementally, within IC3

 Liveness checking as a sequence of safety checks

 Exploits the highly incremental nature of IC3

 Sound also for infinite-state systems

 What about completeness?

K-liveness for hybrid automata

 K-liveness is incomplete for infinite-state systems

 Even if , there might be no concrete k
bound for the number of violations of

 K-zeno: extension of K-liveness for hybrid automata

 Key idea: exploit progress of time to make k-liveness converge

 By extending the original model with a “symbolic fairness
monitor” that forces time progress

 Under certain conditions, restores completeness of k-liveness

 If , then exists k such that
 visits at most k times

 (clearly, safety check can still diverge)

Selected bibliography

DISCLAIMER: again, this is definitely incomplete. Apologies to
missing authors/works

 IC3 for finite-state systems

 Bradley, Manna. Checking Safety by Inductive Generalization
of Counterexamples to Induction. FMCAD 2007

 Bradley. SAT-based Model Checking Without Unrolling.
VMCAI 2011

 Een, Mischenko, Brayton. Efficient Implementation of
Property-Directed Reachability. FMCAD 2011

 Hassan, Somenzi, Bradley. Better Generalization in IC3.
FMCAD 2013

 Vizel, Gurfinkel. Interpolating Property-Directed Reachability.
CAV 2014

Selected bibliography

 IC3 for infinite-state systems

 Hoder, Bjørner. Generalized Property-Directed Reachability.
SAT 2012

 Cimatti, Griggio, Mover, Tonetta. IC3 Modulo Theories with
Implicit Predicate Abstraction. TACAS 2013

 Komuravelli, Gurfinkel, Chaki. SMT-Based Model Checking for
Recursive Programs. CAV 2014

 Birgmeier, Bradley, Weissenbacher. Counterexample to
Induction-Guided Abstraction-Refinement (CTIGAR). CAV
2014

 Bjørner, Gurfinkel. Property Directed Polyhedral Abstraction.
VMCAI 2015

Selected bibliography

 IC3 for LTL verification

 Bradley, Somenzi, Hassan, Zhang. An incremental approach to
model checking progress properties. FMCAD 2011

 Claessen, Sörensson. A liveness checking algorithm that
counts. FMCAD 2012

 Cimatti, Griggio, Mover, Tonetta. Verifying LTL Properties of
Hybrid Systems with K-Liveness. CAV 2014

Thank You

