
VTSA summer school 2015

Exploiting SMT for Verification
of Infinite-State Systems

2. Interpolation in SMT
and in Verification

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy

Outline

Introduction

Interpolants in Formal Verification

Computing interpolants in SMT

Introduction

 (Craig) Interpolant for an ordered pair (A, B) of formulae s.t.

 is a formula I s.t.





 All the uninterpreted (in) symbols of I
are shared between A and B

 Why are interpolants useful?

 Overapproximation of A relative to B

 Overapprox. of

 “Local” explanation of why A is inconsistent with B

Importance of interpolation

Several important applications in formal verification:

 Approximate image computation for model checking of
infinite-state systems

 Predicate discovery for Counterexample-Guided Abstraction
Refinement

 Approximation of transition relation for infinite-state systems

 An alternative to (lazy) predicate abstraction for program
verification

 Automatic generation of loop invariants

 ...

Outline

Introduction

Interpolants in Formal Verification

Computing interpolants in SMT

Background

Symbolic transition systems

 State variables

 Initial states formula

 Transition relation formula

 A state is an assignment to the state vars

 A path of the system S is a sequence of states
such that and

 A k-step (symbolic) unrolling of S is a formula

 Encodes all possible paths of length up to k

 A state property is a formula over

 Encodes all the states such that

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Interpolation-based reachability

 Image computation requires quantifier elimination, which is
typically very expensive (both in theory and in practice)

 Interpolation-based algorithm (McMillan CAV'03): use
interpolants to overapproximate image computation

 much more efficient than the previous algorithm

 interpolation is often much cheaper than quantifier elimination
 abstraction (overapproximation) accelerates convergence

 termination is still guaranteed for finite-state systems

Interpolation-based reachability

 Set

 Check satisfiability of

T07!1 Tk¡1 7!k

Interpolation-based reachability

 Set

 Check satisfiability of

 If SAT:

 If , return REACHABLE the unrolling hits Bad

 else, increase k and repeat

T07!1 Tk¡1 7!k

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set

 is an abstraction of the forward image
 guided by the property

T07!1 Tk¡1 7!k

A

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set

 is an abstraction of the forward image
 guided by the property

 If , return UNREACHABLE fixpoint found

 else, set and continue

T07!1 Tk¡1 7!k

A

Interpolation-based Abstraction Refinement

(Lazy) Predicate abstraction

 Given a Transition System and predicates

 Abstract initial states

 Abstract forward image

 Standard technique applied in many
verification tools

 In conjunction with counterexample-guided
refinement (CEGAR)

 Extract new predicates from spurious counterexamples and compute
a more precise abstraction

P

Interpolation-based Abstraction Refinement

(Lazy) Predicate abstraction

 Given a Transition System and predicates

 Abstract initial states

 Abstract forward image

 Standard technique applied in many
verification tools

 In conjunction with counterexample-guided
refinement (CEGAR)

 Extract new predicates from spurious counterexamples and compute
a more precise abstraction

P
The strongest boolean combination
of predicates in that is implied
by

P

Interpolation-based Abstraction Refinement

(Lazy) Predicate abstraction

 Given a Transition System and predicates

 Abstract initial states

 Abstract forward image

 Standard technique applied in many
verification tools

 In conjunction with counterexample-guided
refinement (CEGAR)

 Extract new predicates from spurious counterexamples and compute
a more precise abstraction

P

Interpolation-based Abstraction Refinement

(Lazy) Predicate abstraction

 Given a Transition System and predicates

 Abstract initial states

 Abstract forward image

 Standard technique applied in many
verification tools

 In conjunction with counterexample-guided
refinement (CEGAR)

 Extract new predicates from spurious counterexamples and compute
a more precise abstraction

P

Interpolation-based Abstraction Refinement

 An abstract cex path (wrt.) might be spurious

 Because abstraction is overapproximating

T07!1 Tk¡1 7!k

Interpolation-based Abstraction Refinement

 An abstract cex path (wrt.) might be spurious

 Because abstraction is overapproximating

 Compute a sequence of interpolants

such that

T07!1 Tk¡1 7!k

Interpolation-based Abstraction Refinement

 An abstract cex path (wrt.) might be spurious

 Because abstraction is overapproximating

 Compute a sequence of interpolants

such that

T07!1 Tk¡1 7!k

Interpolation-based Abstraction Refinement

 An abstract cex path (wrt.) might be spurious

 Because abstraction is overapproximating

 Compute a sequence of interpolants

such that

T07!1 Tk¡1 7!k

Interpolation-based Abstraction Refinement

 An abstract cex path (wrt.) might be spurious

 Because abstraction is overapproximating

 Compute a sequence of interpolants

such that

T07!1 Tk¡1 7!k

Interpolation-based Abstraction Refinement

 An abstract cex path (wrt.) might be spurious

 Because abstraction is overapproximating

 Compute a sequence of interpolants

such that

 Let be the set of all the predicates in

 Set

 Theorem: is not an abstract cex path wrt.

T07!1 Tk¡1 7!k

Proof sketch

 is an overapproximation of the states reachable in i steps,
compatible with the abstract trace

 is also incompatible with the rest of the abstract trace
 (since it is an interpolant)

 By the requirement that

it follows that

 Therefore, and

 (since the trace is spurious)

 Since we add all the atomic predicates of
to and the abstraction is precise wrt. , then

Outline

Introduction

Interpolants in Formal Verification

Computing interpolants in SMT

Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the
computed interpolant

Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the
computed interpolant

 McMillan's annotation rules (others exist):

Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the
computed interpolant

 McMillan's annotation rules (others exist):

 For each leaf node (input clause) C in the proof:

 If , set
 Otherwise (), set

Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the
computed interpolant

 McMillan's annotation rules (others exist):

 For each leaf node (input clause) C in the proof:

 If , set
 Otherwise (), set

 For each inner node (resolution) with parents and
and annotations and

 If , set ; otherwise, set

Example

Example

Proof of correctness

 By induction on the structure of the resolution refutation

 Lemma: for each annotated node , we have

1)

2)

3) I contains only variables that occur in both A and B

 Then as a corollary, for the root , I is an interpolant

 The lemma trivially holds for leaf nodes (check)

Proof of correctness – resolution steps

Resolution step with parents and

 Case

1) By ind. hyp and

Therefore

2) By inductive hypotesis

which means

Similarly,

By resolution on , then

3) Trivial by the inductive hypothesis

Proof of correctness – resolution steps

Resolution step with parents and

 Case

1) By ind. hyp and

By resolution on , then

2) By ind. hyp and

Therefore and

 and so

3) Trivial by the inductive hypothesis

Interpolants in SMT

 Resolution refutations in SMT:

Boolean part
(ground resolution)

T-specific part for conjunctions
of constraints (negated T-lemmas)

Interpolants in SMT

 Resolution refutations in SMT:

Boolean part
(ground resolution)

T-specific part for conjunctions
of constraints (negated T-lemmas)

Standard Boolean
interpolation

T-specific interpolation
for conjunctions only

Theory interpolation only for sets of T-literals

Interpolants in SMT

 Resolution refutations in SMT:

 Annotation for a T-lemma C:

Boolean part
(ground resolution)

T-specific part for conjunctions
of constraints (negated T-lemmas)

Standard Boolean
interpolation

T-specific interpolation
for conjunctions only

Theory interpolation only for sets of T-literals

Equality (EUF)

 Interpolants from coloured congruence graphs

 Nodes with
colours:

 Edges with colours of the nodes they connect

 Uncolorable edge: connects nodes of two different colours
 Always possible to obtain a coloured graph

 (by introducing new nodes)

if term occurs in A

if term occurs in B

if term is shared

Equality (EUF)

 Interpolants from coloured congruence graphs

 Nodes with
colours:

 Edges with colours of the nodes they connect

 Uncolorable edge: connects nodes of two different colours
 Always possible to obtain a coloured graph

 (by introducing new nodes)

if term occurs in A

if term occurs in B

if term is shared

Uncolourable

Equality (EUF)

 Interpolants from coloured congruence graphs

 Nodes with
colours:

 Edges with colours of the nodes they connect

 Uncolorable edge: connects nodes of two different colours
 Always possible to obtain a coloured graph

 (by introducing new nodes)

if term occurs in A

if term occurs in B

if term is shared

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

and

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

 If an A-summary involves a congruence edge, compute
summaries recursively on function arguments

 Use B-summaries as premises for the A-summary

and

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

 If an A-summary involves a congruence edge, compute
summaries recursively on function arguments

 Use B-summaries as premises for the A-summary

 (Several cases to consider)

and

Example

Example

 Start from

 A-summaries for

Example

 Start from

 A-summaries for

 Recurse on edge

 Path

Example

 Start from

 A-summaries for

 Recurse on edge

 Path

 Recurse on edge
 Path , B-summary:

Example

 Start from

 A-summaries for

 Recurse on edge

 Path

 Recurse on edge
 Path , B-summary:

 Interpolant:

Linear Rational Arithmetic (LRA)

 Interpolants from proofs of unsatisfiability of a system of
inequalities

 Proof of unsatisfiability: linear combination of inequalities with
positive coefficients to derive a contradiction (with)

 Interpolant obtained out of the proof by combining inequalities
from A (using the same coefficients)

 Proof of unsatisfiability generated from the Simplex

Example

 tableau bounds candidate solution

Example

tableau bounds candidate solution

No suitable variable for pivoting!
Conflict

Example

tableau bounds candidate solution

Proof:

Example

tableau bounds candidate solution

Interpolant:

Linear Integer Arithmetic (LIA)

 Constraints of the form

 In general, no quantifier-free interpolation for LIA

 Solution: extend the signature to include modular equations
(divisibility predicates)

P
i cixi + c ./ 0; ./2 f·;=g

A := (y ¡ 2x = 0) B := (y ¡ 2z ¡ 1 = 0)Example:

9w:(y = 2w)The only interpolant is:

(t + c =d 0) ´ 9w:(t + c = d ¢ w); d 2 Z>0

The interpolant now becomes: (y =2 0)

SMT(LIA) with modular equations

 Modular equations can be eliminated via preprocessing:

 Replace every atom
with a fresh Boolean variable

 Add the 4 clauses

where are fresh integer variables

a := (t + c =d 0)
pa

pa ! (t + c¡ dw1 = 0)

(¡w2 + 1 · 0)

(w2 ¡ d + 1 · 0)

w1; w2

:pa ! (t+ c¡ dw1 ¡w2 = 0)

 Cutting-plane proof system: complete proof system for LIA

Hyp
¡

t · 0
Comb

t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Div

P
i cixi + c · 0P

i
ci
d xi + d cde · 0

; d > 0 divides the ci's

Interpolants from LIA-proofs

 Cutting-plane proof system: complete proof system for LIA

Hyp
¡

t · 0
Comb

t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Div

P
i cixi + c · 0P

i
ci
d xi + d cde · 0

; d > 0 divides the ci's

Interpolants from LIA-proofs

LRA rules

 Cutting-plane proof system: complete proof system for LIA

Hyp
¡

t · 0
Comb

t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Interpolants from LIA-proofs

Strenghten

P
i cixi + c · 0P

i cixi + d ¢ d cde · 0
; d > 0 divides the ci's

 Cutting-plane proof system: complete proof system for LIA

 Interpolation by annotating proof rules

 Annotation: a set of pairs

 When is derived, then

is the computed interpolant

Hyp
¡

t · 0
Comb

t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Interpolants from LIA-proofs

Strenghten

P
i cixi + c · 0P

i cixi + d ¢ d cde · 0
; d > 0 divides the ci's

fhti · 0;
V
j(tij = 0)igi

?
I :=

W
i(ti · 0 ^Vj ExistElim(xi 62 B):(tij = 0))

Interpolants from cutting-plane proofs

 Annotations for Hyp and Comb from McMillan
(same as LRA)

 k-Strengthen rule of [Brillout et al. IJCAR'10]

Comb
t1 · 0 [I1] t2 · 0 [I2]

c1 ¢ t1 + c2 ¢ t2 · 0 [I]

I := fhc1t0i + c2t0j · 0; Ei ^ Eji j ht0i; Eii 2 I1; ht0j ; Eji 2 I2g

Str.

P
i cixi + c · 0 [fht · 0;>ig]P

i cixi + d ¢ d cde · 0 [I]
; d > 0 divides the ci's

I := fh(t + n · 0); (t + n = 0)i j 0 · n < d ¢ d cde ¡ cg[
fh(t + d ¢ d c

d
e ¡ c · 0);>ig

Hyp
¡

t · 0 [fht · 0;>ig]
t0 =

½
t if t · 0 2 A
0 if t · 0 2 B

Interpolants from cutting-plane proofs

 Annotations for Hyp and Comb from McMillan
(same as LRA)

 k-Strengthen rule of [Brillout et al. IJCAR'10]

Comb
t1 · 0 [I1] t2 · 0 [I2]

c1 ¢ t1 + c2 ¢ t2 · 0 [I]

I := fhc1t0i + c2t0j · 0; Ei ^ Eji j ht0i; Eii 2 I1; ht0j ; Eji 2 I2g

Str.

P
i cixi + c · 0 [fht · 0;>ig]P

i cixi + d ¢ d cde · 0 [I]
; d > 0 divides the ci's

I := fh(t + n · 0); (t + n = 0)i j 0 · n < d ¢ d cde ¡ cg[
fh(t + d ¢ d c

d
e ¡ c · 0);>ig

Hyp
¡

t · 0 [fh0 · 0;>ig]
t0 =

½
t if t · 0 2 A
0 if t · 0 2 B

Example

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

4x¡ 4z + 1 · 0

4x¡ 4z + 1 + 3 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0

¡4x+ 4z ¡ 3 · 0

(1 · 0) ´ ?

Example – with annotations

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

4x¡ 4z + 1 · 0

4x¡ 4z + 1 + 3 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0

¡4x+ 4z ¡ 3 · 0

(1 · 0) ´ ?

[fhy + 4x · 0;>ig] [fh0 · 0;>ig]

[fhy + 4x · 0;>ig]
[fh0 · 0;>ig][fh¡y ¡ 4x¡ 1 · 0;>ig]

[fh¡y ¡ 4x¡ 1 · 0;>ig]

[fhn¡ 1 · 0; y + 4x+ n = 0i j 0 · n < 3g [fh2 ¡ 1 · 0;>ig]

[fhy + 4x+ n · 0; y + 4x + n = 0i j
0 · n < 3g [fhy + 4x+ 2 · 0;>ig]

 Interpolant:

Example – with annotations

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

4x¡ 4z + 1 · 0

4x¡ 4z + 1 + 3 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0

¡4x+ 4z ¡ 3 · 0

(1 · 0) ´ ?

[fhy + 4x · 0;>ig] [fh0 · 0;>ig]

[fhy + 4x · 0;>ig]
[fh0 · 0;>ig][fh¡y ¡ 4x¡ 1 · 0;>ig]

[fh¡y ¡ 4x¡ 1 · 0;>ig]

[fhn¡ 1 · 0; y + 4x+ n = 0i j 0 · n < 3g [fh2 ¡ 1 · 0;>ig]

[fhy + 4x+ n · 0; y + 4x + n = 0i j
0 · n < 3g [fhy + 4x+ 2 · 0;>ig]

Interpolant:

Drawback of Strengthen

 Interpolation of Strengthen creates potentially very big
disjunctions

 Linear in the strengthening factor

 Can be exponential in the size of the proof

k := dd c
d
e ¡ c

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

Example:

(y =4 0) _ (y + 1 =4 0)Interpolant:

Drawback of Strengthen

 Interpolation of Strengthen creates potentially very big
disjunctions

 Linear in the strengthening factor

 Can be exponential in the size of the proof

k := dd c
d
e ¡ c

Example:

Interpolant:

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

(y =2n 0) _ (y + 1 =2n 0) _ : : : _ (y =2n n¡ 1)

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

Drawback of Strengthen

 Interpolation of Strengthen creates potentially very big
disjunctions

 Linear in the strengthening factor

 Can be exponential in the size of the proof

 The problem are AB-mixed cuts:

k := dd c
d
e ¡ c

Example:

Interpolant:

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

(y =2n 0) _ (y + 1 =2n 0) _ : : : _ (y =2n n¡ 1)

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

Strengthen

P
xi 62B cixi +

P
yj 62A cjyj + c · 0

P
xi 62B cixi +

P
yj 62A cjyj + d ¢ d cde · 0

Interpolation with ceilings

 Idea: use a different extension of the signature of LIA, and
extend also its domain

 Introduce the ceiling function [Pudlák '97]

 Allow non-variable terms to be non-integers (e.g.)

 Much simpler interpolation procedure

 Proof annotations are single inequalities

d¢e
x
2

(t · 0)

Interpolation with ceilings

 Idea: use a different extension of the signature of LIA, and
extend also its domain

 Introduce the ceiling function [Pudlák '97]

 Allow non-variable terms to be non-integers (e.g.)

 Much simpler interpolation procedure

 Proof annotations are single inequalities

d¢e
x
2

(t · 0)

Comb
t1 · 0 [t01 · 0] t2 · 0 [t02 · 0]

c1 ¢ t1 + c2 ¢ t2 · 0 [c1 ¢ t01 + c2 ¢ t02 · 0]

d > 0 divides aj ; bk; ci

Hyp
¡

t · 0 [t0 · 0]

Div

P
yj 62B ajyj +

P
zk 62A bkzk +

P
xi2A\B cixi + c

[
P
yj 62B ajyj +

P
xi2A\B c

0
ixi + t0]

P
yj 62B

aj
d yj +

P
zk2B

bk
d zk +

P
xi2A\B

ci
d xi + d cde

[
P
yj 62B

aj
d yj + d

P
xi2A\B c

0
ixi+t

0

d e]

Interpolation with ceilings - example

 No blowup of interpolants wrt. the size of the proofs

(1 · 0) ´ ?

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

y + 2nx · 0 ¡y ¡ 2nz + 1 · 0

2nx¡ 2nz + 1 · 0
¡y ¡ 2nx¡ n + 1 · 0 y + 2nz ¡ n · 0

¡2nx+ 2nz ¡ 2n + 1 · 02n ¢ (x¡ z + 1 · 0)

Interpolation with ceilings - example

 No blowup of interpolants wrt. the size of the proofs

(1 · 0) ´ ?

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

y + 2nx · 0 ¡y ¡ 2nz + 1 · 0

2nx¡ 2nz + 1 · 0
¡y ¡ 2nx¡ n + 1 · 0 y + 2nz ¡ n · 0

¡2nx+ 2nz ¡ 2n + 1 · 02n ¢ (x¡ z + 1 · 0)

[y + 2nx · 0] [0 · 0]

[y + 2nx · 0] [¡y ¡ 2nx¡ n + 1 · 0] [0 · 0]

[¡y ¡ 2nx¡ n + 1 · 0]

[2nd y
2ne ¡ y ¡ n + 1 · 0]

[x + d y
2ne · 0]

 Interpolant:

Interpolation with ceilings - example

 No blowup of interpolants wrt. the size of the proofs

(1 · 0) ´ ?

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

y + 2nx · 0 ¡y ¡ 2nz + 1 · 0

2nx¡ 2nz + 1 · 0
¡y ¡ 2nx¡ n + 1 · 0 y + 2nz ¡ n · 0

¡2nx+ 2nz ¡ 2n + 1 · 02n ¢ (x¡ z + 1 · 0)

[y + 2nx · 0] [0 · 0]

[y + 2nx · 0] [¡y ¡ 2nx¡ n + 1 · 0] [0 · 0]

[¡y ¡ 2nx¡ n + 1 · 0]

[2nd y
2ne ¡ y ¡ n + 1 · 0]

Interpolant:

[x + d y
2ne · 0]

SMT(LIA) with ceilings

 Like modular equations, also ceilings can be eliminated via
preprocessing

 Replace every term
with a fresh integer variable

 Add the 2 unit clauses
(encoding the meaning of ceiling:)

where is the least common multiple of the denominators of the
coefficients in

dte
xdte

(l ¢ xdte ¡ l ¢ t + l · 0)

(l ¢ t¡ l ¢ xdte · 0)

l
t

Bit-vectors (BV)

 Interpolation for bit-vectors is hard

 Only some limited work done so far

 Most efficient solvers use eager encoding into SAT, which is
efficient but not good for interpolation

 Easy in principle, but not very useful interpolants

 Try to exploit lazy bit-blasting to incorporate BV into DPLL(T)

Interpolation via Bit-Blasting

 Interpolation via bit-blasting is easy…

 From and generate and

Each var of width n encoded with n Boolean vars

 Generate a Boolean interpolant for

 Replace every variable in with the bit-selection
and every Boolean connective with the corresponding bit-wise
connective:

 ...but quite impractical

 Generates “ugly” interpolants

 Word-level structure of the original problem completely lost

 How to apply word-level simplifications?

BBoolABV BBV
x bx1 : : : b

x
n

IBool

ABool

(ABool; BBool)
IBoolbxi x[i]

^ 7! &; _ 7! j; : 7!»

Interpolation via Bit-Blasting - Example

A word-level interpolant is:

...but with bit-blasting we get:

A
def
= (a[8] ¤ b[8] = 15[8]) ^ (a[8] = 3[8])

B
def
= :(b[8]%uc[8] = 1[8]) ^ (c[8] = 2[8])

I
def
= (b[8] ¤ 3[8] = 15[8])

I 0
def
= (b[8][0] = 1[1]) ^ ((b[8][0]& » ((((((» b[8][7]& » b[8][6])&

» b[8][5])& » b[8][4])& » b[8][3])&b[8][2])& » b[8][1])) = 0[1])

Alternative: lazy bit-blasting and DPLL(T)

 Exploit lazy bit-blasting

 Bit-blast only BV-atoms, not the whole formula

 Boolean skeleton of the formula handled by the “main” DPLL, like
in DPLL(T)

 Conjunctions of BV-atoms handled (via bit-blasting) by a “sub”-
DPLL (DPLL-BV) that acts as a BV-solver

Standard
Boolean Interpolation

BV-specific Interpolation
for conjunctions of constraints

Interpolation for BV constraints

 A layered approach

 Apply in sequence a chain of procedures of increasing
generality and cost

 Interpolation in EUF

 Interpolation via equality inlining

 Interpolation via Linear Integer Arithmetic encoding

 Interpolation via bit-blasting

Interpolation in EUF

 Treat all the BV-operators as uninterpreted functions

 Exploit cheap, efficient algorithms for solving and
interpolating modulo EUF

 Possible because we avoid bit-blasting upront!

Example: A
def
= (x1[32] = 3[32]) ^ (x3[32] = x1[32] ¢ x2[32])

B
def
= (x4[32] = x2[32]) ^ (x5[32] = 3[32] ¢ x4[32])^

:(x3[32] = x5[32])

IUF
def
= x3 = f ¢(f3; x2)

IBV
def
= x3[32] = 3[32] ¢ x2[32]

Interpolation via Equality Inlining

 Interpolation via quantifier elimination: given , an
interpolant can be computed by eliminating quantifiers from
 or from

 In general, this can be very expensive for BV

 Might require bit-blasting and can cause blow-up of the formula

 Cheap case: non-common variables occurring in “definitional”
equalities

Example: and does not occur in , then

(A;B)

9x 62BA 9x 62A:B

(x = e) ^ ' x e

9x((x = e) ^ ') =) '[x 7! e]

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

Example:

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Definitional equalities

Example:

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example:

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^

^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^

^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def
= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def
= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^

I
def
= (032 ·s (024 :: x2[8] ¡ 1[32])

Interpolation via LIA Encoding

 Simple idea (in principle):

 Encode a set of BV-constraints into an SMT(LIA)-formula

 Generate a LIA-interpolant using existing algorithms

 Map back to a BV-interpolant

 However, several problems to solve:

 Efficiency

 More importantly, soundness

Encoding BV into LIA

 Use well-known encodings from BV to SMT(LIA)

 Encode each BV term as an integer variable and the
constraints

 Encode each BV operation as a LIA-formula.

t[n] xt
(0 · xt) ^ (xt · 2n ¡ 1)

t[i¡j+1]
def
= t1[n][i : j] (xt = m) ^ (xt1 = 2i+1h + 2jm + l)^

l 2 [0; 2i) ^m 2 [0; 2i¡j+1) ^ h 2 [0; 2n¡i¡1)

t[n]
def
= t1[n] + t2[n] (xt = xt1 + xt2 ¡ 2n¾) ^ (0 · ¾ · 1)

t[n]
def
= t1[n] ¢ k (xt = k ¢ xt1 ¡ 2n¾) ^ (0 · ¾ · k)

Examples:

From LIA-interpolants to BV-interpolants

 “Invert” the LIA encoding to get a BV interpolant

 Unsound in general

 Issues due to overflow and (un)signedness of operations

 Our (very simple) solution: check the interpolants

 Given a candidate interpolant , use our SMT(BV) solver to

check the unsatisfiability of

 If successful, then is an interpolant

Î

Î

(A ^ :Î) _ (B ^ Î)

From LIA- to BV-interpolants: examples

Encoding into LIA:

ALIA
def
=(xy2 = 16xy5 + xy5) ^ (xy1 = xy2) ^ (xy5 = 1)^

(xy1 2 [0; 28)) ^ (xy2 2 [0; 28)) ^ (xy5 2 [0; 24))

BLIA
def
=:(xy4+1 · xy2) ^ (xy4+1 = xy4 + 1 ¡ 28¾)^

(xy4 = 1)^
(xy4+1 2 [0; 28)) ^ (xy4 2 [0; 28)) ^ (0 · ¾ · 1)

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])

From LIA- to BV-interpolants: examples

LIA-Interpolant:

BV-interpolant:

ILIA
def
= (17 · xy2)

I
def
= (17[8] ·u y2[8])

Good!

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])

From LIA- to BV-interpolants: examples

Encoding into LIA:

ALIA
def
=(xy2 = 81) ^ (xy3 = 0) ^ (xy4 = xy2)^

(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))

BLIA
def
=(xy13 = 28 ¢ 0 + xy4) ^ (255 · xy13+(0::y3))^

(xy13+(0::y3) = xy13 + 28 ¢ 0 + xy3 ¡ 216¾)^
(xy13 2 [0; 216)) ^ (xy13+(0::y3) 2 [0; 216))^
(0 · ¾ · 1)

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might
overflow in BV!

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might
overflow in BV!

A correct interpolant would be

I
def
= (0[1] :: y3[8] + 0[1] :: y4[8] ·u 81[9])

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

Encoding into LIA:

ALIA
def
=:(xy4+1 · xy3) ^ (xy2 = xy4+1)^

(xy4+1 = xy4 + 1 ¡ 28¾1)^
(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))^
(xy4+1 2 [0; 28)) ^ (0 · ¾1 · 1)

BLIA
def
=(xy2+1 · xy3) ^ (xy7 = 3) ^ (xy7 = xy2+1)^

(xy2+1 = xy2 + 1 ¡ 28¾2)^
(xy7 2 [0; 28)) ^ (xy2+1 2 [0; 28)) ^ (0 · ¾2 · 1)

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î0
def
= (65281[16] ·u (0[8] :: y2[8]) ¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î0
def
= (65281[16] ·u (0[8] :: y2[8]) ¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)

Still
Wrong!

In this case, the problem
is also the sign

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Correct interpolant

I
def
= (65281[16] ·s (0[8] :: y2[8]) ¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

Interpolation in combined theories

 Combination of theories
encoded directly in the
proof of unsatisfiability P

 -lemmas for the
individual theories

 P contains interface
equalities

 Delayed Theory Combination (DTC): use the DPLL engine to
perform theory combination

 Independent -solvers, that interact only with DPLL

 How: Boolean search space augmented with interface equalities

 Equalities between variables shared by the two theories

?

T1T2

T1

T1 T1

T2
T2

T2

P

Ti

Ti

Interpolation in combined theories

 How: Split each -lemma
 into
 with
using available algorithms

 's must be equality-
interpolating and convex

 Propagate the changes
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation:

 Some interface equalities (x = y) are AB-mixed:

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

?

T1T2

T1

T1 T1

T2
T2

T2

P

Interpolation in combined theories

 How: Split each -lemma
 into
 with
using available algorithms

 's must be equality-
interpolating and convex

 Propagate the changes
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation:

 Some interface equalities (x = y) are AB-mixed:

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

?

T1
T2

T1 T1 T1

T2
T2

T2
T2

T1

T2

P'

Interpolation in combined theories

 How: Split each -lemma
 into
 with
using available algorithms

 's must be equality-
interpolating and convex

 Propagate the changes
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation:

 Some interface equalities (x = y) are AB-mixed:

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

Problem: splitting can
cause exponential blow-up
in P

Solution: control the kind of
proofs generated by DPLL,
so that the splitting can be
performed efficiently
(ie-local proofs) ?

T1
T2

T1 T1 T1

T2
T2

T2
T2

T1

T2

P'

Interpolation in combined theories

 After splitting AB-mixed equalities, we can compute an
interpolant as usual

 Nothing special needed for theory combination!

 Because theory combination is encoded in the proof, we can
reuse the Boolean interpolation algorithm

 Features:

 No need of ad-hoc interpolant combination procedures

 Exploit state-of-the-art SMT solvers, based on (variants of) DTC

 Split only when necessary

Example

Example

T-lemmas:

?

£3

(a2 + z = 1)

(a1 + z = 0)

£4

£5

£6

£7

(z ¡ x2 = 1)

(a1 = f(x1))

(a2 = f(x2))

(z ¡ x1 = 1)

Example

T-lemmas: Pivot: (x
1
 = x

2
)

?

£3

(a2 + z = 1)

(a1 + z = 0)

£4

£5

£6

£7

(z ¡ x2 = 1)

(a1 = f(x1))

(a2 = f(x2))

(z ¡ x1 = 1)

C3 C2

£1 C1
£2

Pivot: (a
1
 = a

2
)

subproof
with int.eqs.

Example

C3 C2

C1£1

£2

Pie subproof:

T-lemmas:

Example

C3 C2

C1£1

£2

Pie subproof:

T-lemmas: Split (x
1
= x

2
) in C

1

Example

Pie subproof:

T-lemmas:
C3 C2

£1 C01

C001£02

£2

C01 ´(x1 = z ¡ 1) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

C 001 ´(z ¡ 1 = x2) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

Example

Pie subproof:

T-lemmas:
C3 C2

£1 C01

C001£02

£2

C01 ´(x1 = z ¡ 1) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

C 001 ´(z ¡ 1 = x2) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

Split (a
1
= a

2
) in C

2

Example

Pie subproof:

£1

£2

C001£02

C01£01

C002

C02C03
C02 ´(a1 = f(z ¡ 1)) _ :(a2 = f(x2))_

:(a1 = f(x1)) _ :(x1 = z ¡ 1)_
:(z ¡ 1 = x2)

C 002 ´(f(z ¡ 1) = a2) _ :(a2 = f(x2))_
:(a1 = f(x1)) _ :(x1 = z ¡ 1)_
:(z ¡ 1 = x2)

C03 ´:(a1 + z = 0) _ :(a2 + z = 1)_
:(a1 = f(z ¡ 1)) _ :(f(z ¡ 1) = a2)

Proof Tree Preserving Interpolation

 [Christ, Hoenicke and Nutz, TACAS 2013]

 Interpolants with AB-mixed literals without proof rewriting

 Replace AB-mixed terms with
in leaves, where is a fresh purification variable

 Eliminate the purification variable when resolving on

 Advantages:

 no need of proof rewriting

 handles also for non-convex theories

 Drawbacks:

 need T-specific interpolation rules for resolution steps

 more complex interpolation system

From Binary to Sequence Interpolants

 An ordered sequence of formulae such that

 We want a sequence of interpolants such that

 is an interpolant for

 for all

 Needed in various applications (e.g. abstraction refinement)

 How to compute them?

 In general, if we compute arbitrary binary interpolants for

 , the second condition will not hold

A simple solution

 Compute as an interpolant of

 Compute as an interpolant of

 Claim: is an interpolant for

 Proof (sketch):

 By ind.hyp. is an interpolant for

so and

 Advantages:

 simple to implement

 can use any off-the-shelf binary interpolation

 Drawback: requires n-1 SMT calls

A more efficient algorithm

 Compute an SMT proof of unsatisfiablity P for

 Compute each

from the same proof P

 Theorem:

A more efficient algorithm

 Compute an SMT proof of unsatisfiablity P for

 Compute each

from the same proof P

 Theorem:

 Proof (sketch) – case n=3:

 Let C be a node of P with partial interpolants I' and I'' for the
partitionings and resp. Then we
can prove, by induction on the structure of P, that:

 The theorem then follows as a corollary

 Works also for DTC-rewritten proofs

Selected bibliography

DISCLAIMER: this is very incomplete. Apologies to missing
authors/works

 Interpolants in Formal Verification

 McMillan. Interpolation and SAT-based Model Checking. CAV
2003

 Henzinger, Jhala, Majumdar, McMillan. Abstractions from
Proofs. POPL 2004

 McMillan. Lazy Abstraction with Interpolants. CAV 2006

 Vizel, Grumberg. Interpolation-Sequence based model
checking. FMCAD 2009

 Albargouthi, Gurfinkel, Chechick. Whale: an interpolation-
based algorithm for inter-procedural verification. VMCAI
2012

Selected bibliography

 Interpolants in SAT and SMT

 McMillan. An Interpolating Theorem Prover. TCS 2005.

 Yorsh, Musuvathi. A Combination Method for Generating
Interpolants. CADE 2005

 Cimatti, Griggio, Sebastiani. Efficient Generation of Craig
Interpolants in SMT. TOCL 2010

 Rybalchenko, Sofronie-Stokkermans. Constraint solving for
interpolation. J. Symb. Comput. 45(11): 1212-1233 (2010)

 Griggio. Effective Word-Level Interpolation for Software
Verification. FMCAD 2011

 Brillout, Kroening, Rümmer, Wahl. An Interpolating Sequent
Calculus for Quantifier-Free Presburger Arithmetic. J. Autom.
Reasoning 47(4): 341-367 (2011)

Selected bibliography

 Interpolants in SAT and SMT

 D'Silva, Kroening, Purandare, Weissenbacher. Interpolant
strength. VMCAI 2010

 Goel, Krstic, Tinelli. Ground interpolation for the theory of
equality. Logical Methods in Computer Science 8(1) 2012

 Bruttomesso, Ghilardi, Ranise. Quantifier-free interpolation of
a Theory of Arrays. Logical Methods in Comp. Sci. 8(2) 2012

 Totla, Wies. Complete instantiation-based interpolation. POPL
2013

 Christ, Hoenicke, Nutz. Proof Tree Preserving Interpolation.
TACAS 2013

 Ruemmer, Subotic. Exploring Interpolants. FMCAD 2013

 Bruttomesso, Ghilardi, Ranise. Quantifier-free interpolation in
combinations of equality interpolating theories. TOCL 2014

Thank You

VTSA summer school 2015

Exploiting SMT for Verification
of Infinite-State Systems

3. SMT-based
Verification with IC3

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

Introduction

 IC3 very successful SAT-based model checking algorithm

 Incremental Construction

 of Inductive Clauses

 for Indubitable Correctness

 Key principles:

 Verification by induction

 Inductive invariant built incrementally

 by discovering (relatively-)inductive clauses

 Exploiting efficient SAT solvers

Introduction

 IC3 has been further generalized to SMT in various ways

 We will look in some detail at one such generalization, called

IC3 with Implicit Predicate Abstraction (IC3-IA)

 Exploits several features of modern SMT solvers that we have
discussed so far

 Incremental solving
 Assumptions and unsatisfiable cores
 Interpolation

 A “hands-down” approach

 We will build a (simple) real implementation on top of MathSAT

Proofs by Induction

 Given transition system and property

 Base case (initiation):

 Inductive step (consectution):

 Typically however, is not inductive

 Find an inductive invariant , stronger than







Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

A (very) high level view of IC3

 Given a symbolic transition system and invariant property P,
build an inductive invariant F s.t.

 Trace of formulae s.t:

 for i > 0, F
i
 is a set of clauses

overapproximation of states reachable in up to i steps

Fi+1 µ Fi (so Fi j= Fi+1)
Fi ^ T j= F 0i+1
for all i < k; Fi j= P

:P
FkFk¡1I

T TT Fk¡2

F j= P
F0(X) ´ I; : : : ; Fk(X)

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on
 (i.e., check if)

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on
 (i.e., check if)

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

Check if s is inductive relative to F
k-1

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on
 (i.e., check if)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

FkI
TT s

Fk¡2T Fk¡1

:Ps

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

 SAT: s is reachable from in 1 step
 Get a cube c in the preimage of s and try

(recursively) to prove it unreachable from , …

 c is a counterexample to induction (CTI)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0

FkFk¡1I
TT s

Fk¡2T
c

:Ps

Fk¡1 ^ :s

Fk¡2

If I is reached,
counterexample

found

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

 UNSAT: is inductive relative to
 Generalize c to g and block by adding to

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

 UNSAT: is inductive relative to
 Generalize c to g and block by adding to

Fk j= P

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c

FkFk¡1I
sT T

Fk¡2Fk¡2
T Fk¡1

:Ps

A (very) high level view of IC3

Propagation: extend trace to and push forward clauses

For each i and each clause :

Call SAT solver on

If UNSAT, add c to

FkFk¡1I Fk¡2

:P
FkFk¡2 Fk¡1

T TT

Fk+1

Fi+1

c 2 Fi

A (very) high level view of IC3

Propagation: extend trace to and push forward clauses

For each i and each clause :

Call SAT solver on

If UNSAT, add c to

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

A (very) high level view of IC3

Propagation: extend trace to and push forward clauses

For each i and each clause :

Call SAT solver on

If UNSAT, add c to

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fi Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

If , P is proved,
otherwise start another round of blocking and propagation
Fi ´ Fi+1

IC3 pseudo-code

bool IC3(I, T, P):
 trace = [I] # first elem of trace is init formula
 trace.push() # add a new frame
 while True:
 # blocking phase
 while is_sat(trace.last() & ~P):
 c = extract_cube() # c |= trace.last() & ~P
 if not rec_block(c, trace.size()-1):
 return False # counterexample found

 # propagation phase
 trace.push()
 for i=1 to trace.size()-1:
 for each cube c in trace[i]:
 if not is_sat(trace[i] & ~c & T & c'):
 trace[i+1].append(c)
 if trace[i] == trace[i+1]:
 return True # property proved

IC3 pseudo-code

bool rec_block(s, i):
 if i == 0:
 return False # reached initial states
 while is_sat(trace[i-1] & ~s & T & s'):
 c = get_predecessor(i-1, T, s')
 if not rec_block(c, i-1):
 return False
 g = generalize(~s, i)
 trace[i].append(g)
 return True

Correctness (sketch)

 Consider the formula where s is a bad cube

 If UNSAT, then is strong enough to block s

 Since , then s is unreachable in k steps or less

 Since , then we can add s to all

Fi ^ T j= F 0i+1

Correctness (sketch)

 Consider the formula where s is a bad cube

 If UNSAT, then is strong enough to block s

 Since , then s is unreachable in k steps or less

 Since , then we can add s to all

 Consider now the relative induction check

 We know that because (base case)

 Since , then we know that holds up to k

Fi ^ T j= F 0i+1

Correctness (sketch)

 Consider the formula where s is a bad cube

 If UNSAT, then is strong enough to block s

 Since , then s is unreachable in k steps or less

 Since , then we can add s to all

 Consider now the relative induction check

 We know that because (base case)

 Since , then we know that holds up to k

 Propagation: for each , check

 we know that c holds up to i, if UNSAT then it holds up to i+1

 since , and ,

if then the fixpoint is an inductive invariant

Fi ^ T j= F 0i+1

Fi ^ T j= F 0i+1

Inductive Clause Generalization

 Crucial step of IC3

 Given a relatively inductive clause

compute a generalization that is still inductive

 Drop literals from and check that (1) still holds

 Accelerate with unsat cores returned by the SAT solver

 Using SAT under assumptions

 However, make sure the base case still holds

 If , then cannot be dropped

Simple iterative generalization

void indgen(c, i):
 done = False
 for iter = 1 to max_iters:
 if done:
 break
 done = True
 for each l in c:
 cand = c \ {l}
 if not is_sat(I & cand) and
 not is_sat(trace[i] & ~cand & T & cand'):
 c = get_unsat_core(cand)
 rest = cand \ c
 while is_sat(I & c):
 l1 = rest.pop()
 c.add(l1)
 done = False
 break

 When is satisfiable:

 s reaches in k-i steps

 s can be reached from in 1 step

 strengthen by blocking cubes c in the preimage of s

 Extract CTI c from the SAT assignment

 And generalize to represent multiple bad predecessors

 Use unsat cores, exploiting a functional encoding of the transition
relation

 If is functional, then
 check under assumptions

:P cs
s'

T

:P

Fi
Fi

Fi

CTI computation

SAT-based CTI generalization

void generalize_cti(cti, inputs, next):
 for i = 1 to max_iters:
 b = is_sat(cti & inputs & T & ~next')
 assert not b # assume T to be functional
 c = get_unsat_core(cti)
 if should_stop(c, cti):
 break
 cti = c

Example

No counterexamples of length 0

000 10x 01x 11x

001

[borrowed and adapted from F. Somenzi]

Example

Get bad cube in

000 10x 01x 11x

001

Example

000 10x 01x 11x

001

Is inductive relative to ?

Example

000 10x 01x 11x

001

Yes, generalize

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Update

Example

000 10x 01x 11x

001

Blocking done for . Add and propagate forward

Example

000 10x 01x 11x

001

No clause propagates from to

Example

000 10x 01x 11x

001

Get bad cube in

Example

000 10x 01x 11x

001

Is inductive relative to ?

Example

000 10x 01x 11x

001

No, found CTI

Example

000 10x 01x 11x

001

Try blocking at level 0:

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Update

Example

000 10x 01x 11x

001

Return to the original bad cube

Example

000 10x 01x 11x

001

Is inductive relative to ?

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Update and add new frame

Example

000 10x 01x 11x

001

Perform forward propagation

From to :

Example

000 10x 01x 11x

001

Perform forward propagation

Found fixpoint!

Example

000 10x 01x 11x

001

Perform forward propagation

Inductive invariant:

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

IC3 with SMT

 How to generalize from SAT to SMT?

IC3 with SMT

 How to generalize from SAT to SMT?

 Good news: replacing the SAT solver with an SMT solver is
enough for partial correctness

 but what about:

 termination?

 efficiency?

IC3 with SMT

 How to generalize from SAT to SMT?

 Good news: replacing the SAT solver with an SMT solver is
enough for partial correctness

 but what about:

 termination?

 Easy! (answer)
 the problem is in general undecidable, so no hope here

 efficiency?

 When is satisfiable:

 s reaches in k-i steps

 s can be reached from in 1 step

 strengthen by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA):

 Would exclude a single point
in an infinite space

:P cs
s'

T

:P

s'

s T
m

Single model m from SMT solver:

x = 3 ^ y = 7

Fi
Fi

Fi

Fi

RelInd(Fk¡1; T; s) with SMT

 When is satisfiable:

 s reaches in k-i steps

 s can be reached from in 1 step

 strengthen by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA): underapproximated quantifier elimination

 Encodes a set of predecessors

 Cheaper than full quantifier elimination

 But still potentially expensive

 Not always available

 E.g for UF+LRA

:P cs
s'

T

:P

Fi
Fi

Fi

RelInd(Fk¡1; T; s) with SMT

underapproximated preimage:

s'

s T
c

(x · 3) ^ (y ¸ 7)
Fi

 When is unsatisfiable:

 Compute a generalization g of s to block

 Block more than a single cube at a time

 In the Boolean case, use inductive generalization algorithms

 For SMT, Boolean algorithms plus theory-specific “ad hoc”
techniques

 Based on Farkas' lemma for LRA [HB SAT'12]

 [WK DATE'13] for BV

 [KJN FORMATS'12] for timed automata

RelInd(Fk¡1; T; s) with SMT

 gs
s'

T

:PFi

Implicit Predicate Abstraction [Tonetta FM'09]

 Abstract version of k-induction, avoiding explicit computation
of the abstract transition relation

 By embedding the abstraction in the SMT encoding

 Given a set of predicates and an unrolling depth ,

the abstract path is

P k

^

1·h<k
(T (Y h¡1; Xh) ^

^

p2P
(p(Xh)$ p(Y h)) ^ T (Y k¡1; Xk)

[Pathk;P

T

T

T

E
Q

E
Q

E
Q

E
QEQ

def
=V

p2P(p(Y)$ p(X))

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

T (X;X 0)

P

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If UNSAT ⇨inductive strengthening as in the Boolean case

 No theory-specific technique needed

 Theory reasoning confined within the SMT solver

T (X;X 0)

P

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If SAT ⇨ abstract predecessor from the SMT model



 No quantifier elimination needed

T (X;X 0)

P

c

c
def
= fp(X) j p 2 P ^ ¹ j= p(X)g [f:p(X) j ¹ 6j= p(X)g

¹

Example







 is SAT

 Compute a predecessor with

Example







 is SAT

 Compute a predecessor with



 Compute predecessor from SMT model

Example







 is SAT

 Compute a predecessor with



 Compute predecessor from SMT model

Abstraction Refinement

 Abstract predecessors are overapproximations

 Spurious counterexamples can be generated

 We can apply standard abstraction refinement techniques

 Use sequence interpolants to discover new predicates

 Sequence of abstract states

 SMT check on

 If unsat, compute sequence of interpolants for

 Add all the predicates in the interpolants to

Incrementality

 Abstraction refinement is fully incremental

 No restart from scratch

 Can keep all the clauses of

 Refinements monotonically strengthen

 All IC3 invariants on are preserved

 Abstract counterexample check can use incremental SMT

Fi+1 µ Fi (so Fi j= Fi+1)
for all i < k; Fi j= P

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Predicates

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check base case:

 Predicates

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube

 SMT check

 SAT with model

 Evaluate predicates wrt.

 Return

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 Check

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 Check

 Unsat core:

 Update

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 2



 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 . . .

 Update

 . . .

 Update

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 3



 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block c

 Check

 SMT model

 (Abstract) predecessor

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block s (at level 2)

 . . .

 Reached level 0, abstract cex:

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 SMT check

UNSAT

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

 Predicates

 Trace:

Update predicates

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

SAFE

 Predicates

 Trace:

Implementing IC3-IA

 Get the code at:
http://es-static.fbk.eu/people/griggio/vtsa2015/

 Open source (GPLv3) implementation on top of MathSAT
http://mathsat.fbk.eu/

 Incremental interface
 Assumptions and unsat core
 Interpolation

 Simple (~1700 lines of C++, including parser and statistics,
according to David A. Wheeler's 'SLOCCount') yet competitive

 Input in VMT format (a simple extension of SMT-LIB)

https://nuxmv.fbk.eu/index.php?n=Languages.VMT

 Let's analyse it!

http://es-static.fbk.eu/people/griggio/vtsa2015/
http://mathsat.fbk.eu/
https://nuxmv.fbk.eu/index.php?n=Languages.VMT

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

Linear Temporal Logic

 Syntax

 A (quantifier-free) first-order formula

 (neXt)

 (Until)

 Semantics

 Given an infinite path









 A system S satisfies an LTL formula () iff all inifinite
paths of S satisfy

 (Finally)

 (Globally)

LTL verification

 Automata-based approach:

 Given an LTL property , build a transition system
with a fairness condition , such that

 Finite-state case:

 lasso-shaped counterexamples, with at least once in the
loop

 liveness to safety transformation: absence of lasso-shaped
counterexamples as an invariant property

 Duplicate the state variables
 Non-deterministically save the current state
 Remember when in extra state var
 Invariant:

Liveness to Safety for Inifinite States

 Unsound for infinite-state systems

 Not all counterexamples are lasso-shaped

 Liveness to safety with Implicit Abstraction

 Apply the l2s transformation to the abstract system

 Save the values of the predicates instead of the concrete state
 Do it on-the-fly, tightly integrating l2s with IC3

 Sound but incomplete

 When abstract loop found, simulate in the concrete and refine
 Might still diverge during refinement

 Intrinsic limitation of state predicate abstraction

K-liveness

 Simple but effective technique for LTL verification of finite-
state systems

 Key insight: iff exists k such that
is visited at most k times

 Again, a safety property

 K-liveness: increase k incrementally, within IC3

 Liveness checking as a sequence of safety checks

 Exploits the highly incremental nature of IC3

 Sound also for infinite-state systems

 What about completeness?

K-liveness for hybrid automata

 K-liveness is incomplete for infinite-state systems

 Even if , there might be no concrete k
bound for the number of violations of

 K-zeno: extension of K-liveness for hybrid automata

 Key idea: exploit progress of time to make k-liveness converge

 By extending the original model with a “symbolic fairness
monitor” that forces time progress

 Under certain conditions, restores completeness of k-liveness

 If , then exists k such that
 visits at most k times

 (clearly, safety check can still diverge)

Selected bibliography

DISCLAIMER: again, this is definitely incomplete. Apologies to
missing authors/works

 IC3 for finite-state systems

 Bradley, Manna. Checking Safety by Inductive Generalization
of Counterexamples to Induction. FMCAD 2007

 Bradley. SAT-based Model Checking Without Unrolling.
VMCAI 2011

 Een, Mischenko, Brayton. Efficient Implementation of
Property-Directed Reachability. FMCAD 2011

 Hassan, Somenzi, Bradley. Better Generalization in IC3.
FMCAD 2013

 Vizel, Gurfinkel. Interpolating Property-Directed Reachability.
CAV 2014

Selected bibliography

 IC3 for infinite-state systems

 Hoder, Bjørner. Generalized Property-Directed Reachability.
SAT 2012

 Cimatti, Griggio, Mover, Tonetta. IC3 Modulo Theories with
Implicit Predicate Abstraction. TACAS 2013

 Komuravelli, Gurfinkel, Chaki. SMT-Based Model Checking for
Recursive Programs. CAV 2014

 Birgmeier, Bradley, Weissenbacher. Counterexample to
Induction-Guided Abstraction-Refinement (CTIGAR). CAV
2014

 Bjørner, Gurfinkel. Property Directed Polyhedral Abstraction.
VMCAI 2015

Selected bibliography

 IC3 for LTL verification

 Bradley, Somenzi, Hassan, Zhang. An incremental approach to
model checking progress properties. FMCAD 2011

 Claessen, Sörensson. A liveness checking algorithm that
counts. FMCAD 2012

 Cimatti, Griggio, Mover, Tonetta. Verifying LTL Properties of
Hybrid Systems with K-Liveness. CAV 2014

Thank You

