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Introduction

 (Craig) Interpolant for an ordered pair (A, B) of formulae s.t.    

                                                    is a formula I s.t.





 All the uninterpreted (in     ) symbols of I 
are shared between A and B

 Why are interpolants useful?

 Overapproximation of A relative to B

 Overapprox. of 

 “Local” explanation of why A is inconsistent with B



  

Importance of interpolation

Several important applications in formal verification:

 Approximate image computation for model checking of 
infinite-state systems 

 Predicate discovery for Counterexample-Guided Abstraction 
Refinement 

 Approximation of transition relation for infinite-state systems 

 An alternative to (lazy) predicate abstraction for program 
verification 

 Automatic generation of loop invariants

 ...
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Background

Symbolic transition systems

 State variables

 Initial states formula

 Transition relation formula

 A state     is an assignment to the state vars

 A path of the system S is a sequence of states
such that                and

 A k-step (symbolic) unrolling of S is a formula

 Encodes all possible paths of length up to k

 A state property is a formula     over

 Encodes all the states      such that



  

Forward reachability checking

 Forward image computation

 Compute all states reachable from     in one transition:

 Prove that a set of states                is not reachable:
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Forward reachability checking

 Forward image computation

 Compute all states reachable from     in one transition:

 Prove that a set of states                is not reachable:



  

Interpolation-based reachability

 Image computation requires quantifier elimination, which is 
typically very expensive (both in theory and in practice)

 Interpolation-based algorithm (McMillan CAV'03): use 
interpolants to overapproximate image computation

 much more efficient than the previous algorithm

 interpolation is often much cheaper than quantifier elimination
 abstraction (overapproximation) accelerates convergence

 termination is still guaranteed for finite-state systems



  

Interpolation-based reachability

 Set

 Check satisfiability of

T07!1 Tk¡1 7!k



  

Interpolation-based reachability

 Set

 Check satisfiability of

 If SAT:

 If            , return REACHABLE     the unrolling hits Bad

 else, increase k and repeat  

T07!1 Tk¡1 7!k



  

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set 

              is an abstraction of the forward image 
         guided by the property

T07!1 Tk¡1 7!k

A



  

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set 

              is an abstraction of the forward image 
         guided by the property

 If              , return UNREACHABLE      fixpoint found

 else, set                                            and continue

T07!1 Tk¡1 7!k

A



  

Interpolation-based Abstraction Refinement

(Lazy) Predicate abstraction

 Given a Transition System                     and predicates

 Abstract initial states

 Abstract forward image

 Standard technique applied in many 
verification tools

 In conjunction with counterexample-guided 
refinement (CEGAR)

 Extract new predicates from spurious counterexamples and compute 
a more precise abstraction

P
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The strongest boolean combination
of predicates in      that is implied
by
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Interpolation-based Abstraction Refinement

 An abstract cex path                    (wrt.    ) might be spurious

 Because abstraction is overapproximating
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Interpolation-based Abstraction Refinement

 An abstract cex path                    (wrt.    ) might be spurious

 Because abstraction is overapproximating

     

 Compute a sequence of interpolants                    

such that

 Let          be the set of all the predicates in                                

 Set

 Theorem:                    is not an abstract cex path wrt.

T07!1 Tk¡1 7!k



  

Proof sketch

       is an overapproximation of the states reachable in i steps,
compatible with the abstract trace

       is also incompatible with the rest of the abstract trace
                      (since it is an interpolant)

 By the requirement that

it follows that

 Therefore,                                                and 

                                                       (since the trace is spurious)

 Since we add all the atomic predicates of
to     and the abstraction is precise wrt.    , then
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Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be 
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a 
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the 
computed interpolant
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Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be 
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a 
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the 
computed interpolant

 McMillan's annotation rules (others exist):

 For each leaf node (input clause) C in the proof:

 If              , set 
 Otherwise (             ), set 

 For each inner node (resolution) with parents           and
and annotations      and

 If                    , set                        ; otherwise, set



  

Example



  

Example



  

Proof of correctness

 By induction on the structure of the resolution refutation

 Lemma: for each annotated node          , we have

1) 

2) 

3) I contains only variables that occur in both A and B

 Then as a corollary, for the root           , I is an interpolant

 The lemma trivially holds for leaf nodes (check)



  

Proof of correctness – resolution steps

Resolution step with parents                     and 

 Case 

1) By ind. hyp                                                             and

Therefore

2) By inductive hypotesis

which means

Similarly,

By resolution on            , then  

3) Trivial by the inductive hypothesis



  

Proof of correctness – resolution steps

Resolution step with parents                     and 

 Case 

1) By ind. hyp                                                                      and 

 

By resolution on           , then
 

2) By ind. hyp                                                                  and 
 

Therefore                                                                        and

 and so

3) Trivial by the inductive hypothesis



  

Interpolants in SMT

 Resolution refutations in SMT: 

Boolean part 
(ground resolution)

T-specific part for conjunctions 
of constraints (negated T-lemmas)
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Interpolants in SMT

 Resolution refutations in SMT: 

 Annotation for a T-lemma C:

Boolean part 
(ground resolution)

T-specific part for conjunctions 
of constraints (negated T-lemmas)

Standard Boolean
interpolation

T-specific interpolation
for conjunctions only

Theory interpolation only for sets of T-literals 



  

Equality (EUF)

 Interpolants from coloured congruence graphs

 Nodes with 
colours:

 Edges with colours of the nodes they connect

 Uncolorable edge: connects nodes of two different colours
 Always possible to obtain a coloured graph

 (by introducing new nodes)

if term occurs in A

if term occurs in B

if term is shared
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Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

and



  

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

 If an A-summary involves a congruence edge, compute 
summaries recursively on function arguments

 Use B-summaries as premises for the A-summary

and



  

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

 If an A-summary involves a congruence edge, compute 
summaries recursively on function arguments

 Use B-summaries as premises for the A-summary

 (Several cases to consider)

and



  

Example
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 Start from

 A-summaries for

 Recurse on edge

 Path

 Recurse on edge
 Path              ,   B-summary:

 



  

Example

 Start from

 A-summaries for

 Recurse on edge

 Path

 Recurse on edge
 Path              ,   B-summary:

 Interpolant: 



  

Linear Rational Arithmetic (LRA)

 Interpolants from proofs of unsatisfiability of a system of 
inequalities

 Proof of unsatisfiability: linear combination of inequalities with 
positive coefficients to derive a contradiction (          with         )

 Interpolant obtained out of the proof by combining inequalities 
from A (using the same coefficients)

 Proof of unsatisfiability generated from the Simplex



Example

 
 tableau                                 bounds                   candidate solution    



Example

 
tableau                                 bounds                   candidate solution    

No suitable variable for pivoting!
Conflict



Example

 
tableau                                 bounds                   candidate solution    

Proof:



Example

 
tableau                                 bounds                   candidate solution    

Interpolant:



  

Linear Integer Arithmetic (LIA)

 Constraints of the form

 In general, no quantifier-free interpolation for LIA

 Solution: extend the signature to include modular equations 
(divisibility predicates)

P
i cixi + c ./ 0; ./2 f·;=g

A := (y ¡ 2x = 0) B := (y ¡ 2z ¡ 1 = 0)Example:

9w:(y = 2w)The only interpolant is:

(t + c =d 0) ´ 9w:(t + c = d ¢ w); d 2 Z>0

The interpolant now becomes: (y =2 0)



  

SMT(LIA) with modular equations

 Modular equations can be eliminated via preprocessing:

 Replace every atom                         
with a fresh Boolean variable 

 Add the 4 clauses

where               are fresh integer variables

a := (t + c =d 0)
pa

pa ! (t + c¡ dw1 = 0)

(¡w2 + 1 · 0)

(w2 ¡ d + 1 · 0)

w1; w2

:pa ! (t+ c¡ dw1 ¡w2 = 0)



  

 Cutting-plane proof system: complete proof system for LIA

Hyp
¡

t · 0
Comb

t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Div

P
i cixi + c · 0P

i
ci
d xi + d cde · 0

; d > 0 divides the ci's

Interpolants from LIA-proofs



  

 Cutting-plane proof system: complete proof system for LIA

Hyp
¡

t · 0
Comb

t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Div

P
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i
ci
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Interpolants from LIA-proofs

LRA rules



  

 Cutting-plane proof system: complete proof system for LIA

Hyp
¡

t · 0
Comb

t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Interpolants from LIA-proofs

Strenghten

P
i cixi + c · 0P

i cixi + d ¢ d cde · 0
; d > 0 divides the ci's



  

 Cutting-plane proof system: complete proof system for LIA

 Interpolation by annotating proof rules 

 Annotation: a set of pairs

 When      is derived, then

is the computed interpolant

Hyp
¡

t · 0
Comb

t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Interpolants from LIA-proofs

Strenghten

P
i cixi + c · 0P

i cixi + d ¢ d cde · 0
; d > 0 divides the ci's

fhti · 0;
V
j(tij = 0)igi

?
I :=

W
i(ti · 0 ^Vj ExistElim(xi 62 B):(tij = 0))



  

Interpolants from cutting-plane proofs

 Annotations for Hyp and Comb from McMillan
(same as LRA)

 k-Strengthen rule of [Brillout et al. IJCAR'10] 

Comb
t1 · 0 [I1] t2 · 0 [I2]

c1 ¢ t1 + c2 ¢ t2 · 0 [I]

I := fhc1t0i + c2t0j · 0; Ei ^ Eji j ht0i; Eii 2 I1; ht0j ; Eji 2 I2g

Str.

P
i cixi + c · 0 [fht · 0;>ig]P

i cixi + d ¢ d cde · 0 [I]
; d > 0 divides the ci's

I := fh(t + n · 0); (t + n = 0)i j 0 · n < d ¢ d cde ¡ cg[
fh(t + d ¢ d c

d
e ¡ c · 0);>ig

Hyp
¡

t · 0 [fht · 0;>ig]
t0 =

½
t if t · 0 2 A
0 if t · 0 2 B



  

Interpolants from cutting-plane proofs

 Annotations for Hyp and Comb from McMillan
(same as LRA)

 k-Strengthen rule of [Brillout et al. IJCAR'10] 

Comb
t1 · 0 [I1] t2 · 0 [I2]

c1 ¢ t1 + c2 ¢ t2 · 0 [I]

I := fhc1t0i + c2t0j · 0; Ei ^ Eji j ht0i; Eii 2 I1; ht0j ; Eji 2 I2g

Str.

P
i cixi + c · 0 [fht · 0;>ig]P

i cixi + d ¢ d cde · 0 [I]
; d > 0 divides the ci's

I := fh(t + n · 0); (t + n = 0)i j 0 · n < d ¢ d cde ¡ cg[
fh(t + d ¢ d c

d
e ¡ c · 0);>ig

Hyp
¡

t · 0 [fh0 · 0;>ig]
t0 =

½
t if t · 0 2 A
0 if t · 0 2 B



  

Example

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

4x¡ 4z + 1 · 0

4x¡ 4z + 1 + 3 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0

¡4x+ 4z ¡ 3 · 0

(1 · 0) ´ ?



  

Example – with annotations

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

4x¡ 4z + 1 · 0

4x¡ 4z + 1 + 3 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0

¡4x+ 4z ¡ 3 · 0

(1 · 0) ´ ?

[fhy + 4x · 0;>ig] [fh0 · 0;>ig]

[fhy + 4x · 0;>ig]
[fh0 · 0;>ig][fh¡y ¡ 4x¡ 1 · 0;>ig]

[fh¡y ¡ 4x¡ 1 · 0;>ig]

[fhn¡ 1 · 0; y + 4x+ n = 0i j 0 · n < 3g [ fh2 ¡ 1 · 0;>ig]

[fhy + 4x+ n · 0; y + 4x + n = 0i j
0 · n < 3g [ fhy + 4x+ 2 · 0;>ig]



  Interpolant:

Example – with annotations

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

4x¡ 4z + 1 · 0

4x¡ 4z + 1 + 3 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0
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(1 · 0) ´ ?

[fhy + 4x · 0;>ig] [fh0 · 0;>ig]

[fhy + 4x · 0;>ig]
[fh0 · 0;>ig][fh¡y ¡ 4x¡ 1 · 0;>ig]

[fh¡y ¡ 4x¡ 1 · 0;>ig]

[fhn¡ 1 · 0; y + 4x+ n = 0i j 0 · n < 3g [ fh2 ¡ 1 · 0;>ig]

[fhy + 4x+ n · 0; y + 4x + n = 0i j
0 · n < 3g [ fhy + 4x+ 2 · 0;>ig]

Interpolant:



  

Drawback of Strengthen

 Interpolation of Strengthen creates potentially very big 
disjunctions

 Linear in the strengthening factor 

 Can be exponential in the size of the proof

k := dd c
d
e ¡ c

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

Example:

(y =4 0) _ (y + 1 =4 0)Interpolant:
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 Interpolation of Strengthen creates potentially very big 
disjunctions

 Linear in the strengthening factor 

 Can be exponential in the size of the proof

k := dd c
d
e ¡ c

Example:

Interpolant:

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

(y =2n 0) _ (y + 1 =2n 0) _ : : : _ (y =2n n¡ 1)

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0



  

Drawback of Strengthen

 Interpolation of Strengthen creates potentially very big 
disjunctions

 Linear in the strengthening factor 

 Can be exponential in the size of the proof

 The problem are AB-mixed cuts:

k := dd c
d
e ¡ c

Example:

Interpolant:

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

(y =2n 0) _ (y + 1 =2n 0) _ : : : _ (y =2n n¡ 1)

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

Strengthen

P
xi 62B cixi +

P
yj 62A cjyj + c · 0

P
xi 62B cixi +

P
yj 62A cjyj + d ¢ d cde · 0



  

Interpolation with ceilings

 Idea: use a different extension of the signature of LIA, and 
extend also its domain

 Introduce the ceiling function         [Pudlák '97]

 Allow non-variable terms to be non-integers (e.g.    )

 Much simpler interpolation procedure

 Proof annotations are single inequalities

d¢e
x
2

(t · 0)



  

Interpolation with ceilings

 Idea: use a different extension of the signature of LIA, and 
extend also its domain

 Introduce the ceiling function         [Pudlák '97]

 Allow non-variable terms to be non-integers (e.g.    )

 Much simpler interpolation procedure

 Proof annotations are single inequalities

d¢e
x
2

(t · 0)

Comb
t1 · 0 [t01 · 0] t2 · 0 [t02 · 0]

c1 ¢ t1 + c2 ¢ t2 · 0 [c1 ¢ t01 + c2 ¢ t02 · 0]

d > 0 divides aj ; bk; ci

Hyp
¡

t · 0 [t0 · 0]

Div

P
yj 62B ajyj +

P
zk 62A bkzk +

P
xi2A\B cixi + c

[
P
yj 62B ajyj +

P
xi2A\B c

0
ixi + t0]

P
yj 62B

aj
d yj +

P
zk2B

bk
d zk +

P
xi2A\B

ci
d xi + d cde

[
P
yj 62B

aj
d yj + d

P
xi2A\B c

0
ixi+t

0

d e]



  

Interpolation with ceilings - example

 No blowup of interpolants wrt. the size of the proofs

(1 · 0) ´ ?

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

y + 2nx · 0 ¡y ¡ 2nz + 1 · 0

2nx¡ 2nz + 1 · 0
¡y ¡ 2nx¡ n + 1 · 0 y + 2nz ¡ n · 0

¡2nx+ 2nz ¡ 2n + 1 · 02n ¢ (x¡ z + 1 · 0)
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½
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2nx¡ 2nz + 1 · 0
¡y ¡ 2nx¡ n + 1 · 0 y + 2nz ¡ n · 0

¡2nx+ 2nz ¡ 2n + 1 · 02n ¢ (x¡ z + 1 · 0)

[y + 2nx · 0] [0 · 0]

[y + 2nx · 0] [¡y ¡ 2nx¡ n + 1 · 0] [0 · 0]

[¡y ¡ 2nx¡ n + 1 · 0]

[2nd y
2ne ¡ y ¡ n + 1 · 0]

[x + d y
2ne · 0]



  Interpolant:

Interpolation with ceilings - example
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y + 2nz ¡ n · 0

y + 2nx · 0 ¡y ¡ 2nz + 1 · 0

2nx¡ 2nz + 1 · 0
¡y ¡ 2nx¡ n + 1 · 0 y + 2nz ¡ n · 0

¡2nx+ 2nz ¡ 2n + 1 · 02n ¢ (x¡ z + 1 · 0)

[y + 2nx · 0] [0 · 0]

[y + 2nx · 0] [¡y ¡ 2nx¡ n + 1 · 0] [0 · 0]

[¡y ¡ 2nx¡ n + 1 · 0]

[2nd y
2ne ¡ y ¡ n + 1 · 0]

Interpolant:

[x + d y
2ne · 0]



  

SMT(LIA) with ceilings

 Like modular equations, also ceilings can be eliminated via 
preprocessing

 Replace every term                         
with a fresh integer variable 

 Add the 2 unit clauses 
(encoding the meaning of ceiling:                                )

where     is the least common multiple of the denominators of the 
coefficients in 

dte
xdte

(l ¢ xdte ¡ l ¢ t + l · 0)

(l ¢ t¡ l ¢ xdte · 0)

l
t



  

Bit-vectors (BV)

 Interpolation for bit-vectors is hard

 Only some limited work done so far

 Most efficient solvers use eager encoding into SAT, which is 
efficient but not good for interpolation

 Easy in principle, but not very useful interpolants

 Try to exploit lazy bit-blasting to incorporate BV into DPLL(T)



  

Interpolation via Bit-Blasting

 Interpolation via bit-blasting is easy…

 From          and           generate            and 

Each var     of width n encoded with n Boolean vars

 Generate a Boolean interpolant           for

 Replace every variable      in          with the bit-selection
and every Boolean connective with the corresponding bit-wise 
connective:

 ...but quite impractical

 Generates “ugly” interpolants

 Word-level structure of the original problem completely lost

 How to apply word-level simplifications?

BBoolABV BBV
x bx1 : : : b

x
n

IBool

ABool

(ABool; BBool)
IBoolbxi x[i]

^ 7! &; _ 7! j; : 7!»



  

Interpolation via Bit-Blasting - Example

 

A word-level interpolant is:

...but with bit-blasting we get:

A
def
= (a[8] ¤ b[8] = 15[8]) ^ (a[8] = 3[8])

B
def
= :(b[8]%uc[8] = 1[8]) ^ (c[8] = 2[8])

I
def
= (b[8] ¤ 3[8] = 15[8])

I 0
def
= (b[8][0] = 1[1]) ^ ((b[8][0]& » ((((((» b[8][7]& » b[8][6])&

» b[8][5])& » b[8][4])& » b[8][3])&b[8][2])& » b[8][1])) = 0[1])



  

Alternative: lazy bit-blasting and DPLL(T)

 Exploit lazy bit-blasting

 Bit-blast only BV-atoms, not the whole formula

 Boolean skeleton of the formula handled by the “main” DPLL, like 
in DPLL(T)

 Conjunctions of BV-atoms handled (via bit-blasting) by a “sub”-
DPLL (DPLL-BV) that acts as a BV-solver

Standard
Boolean Interpolation

BV-specific Interpolation
for conjunctions of constraints



  

Interpolation for BV constraints

 A layered approach

 Apply in sequence a chain of procedures of increasing 
generality and cost

 Interpolation in EUF

 Interpolation via equality inlining

 Interpolation via Linear Integer Arithmetic encoding

 Interpolation via bit-blasting



  

Interpolation in EUF

 Treat all the BV-operators as uninterpreted functions

 Exploit cheap, efficient algorithms for solving and 
interpolating  modulo EUF

 Possible because we avoid bit-blasting upront!

Example: A
def
= (x1[32] = 3[32]) ^ (x3[32] = x1[32] ¢ x2[32])

B
def
= (x4[32] = x2[32]) ^ (x5[32] = 3[32] ¢ x4[32])^

:(x3[32] = x5[32])

IUF
def
= x3 = f ¢(f3; x2)

IBV
def
= x3[32] = 3[32] ¢ x2[32]



  

Interpolation via Equality Inlining

 Interpolation via quantifier elimination: given           , an 
interpolant can be computed by eliminating quantifiers from
               or from

 In general, this can be very expensive for BV

 Might require bit-blasting and can cause blow-up of the formula

 Cheap case: non-common variables occurring in “definitional” 
equalities

Example:                         and      does not occur in    , then

(A;B)

9x 62BA 9x 62A:B

(x = e) ^ ' x e

9x((x = e) ^ ') =) '[x 7! e]



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

Example:

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Definitional equalities

Example:



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 
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B
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= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example:
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(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])
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def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^

^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^

^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def
= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def
= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^

I
def
= (032 ·s (024 :: x2[8] ¡ 1[32])



  

Interpolation via LIA Encoding

 Simple idea (in principle):

 Encode a set of BV-constraints into an SMT(LIA)-formula

 Generate a LIA-interpolant using existing algorithms

 Map back to a BV-interpolant

 However, several problems to solve:

 Efficiency

 More importantly, soundness



  

Encoding BV into LIA

 Use well-known encodings from BV to SMT(LIA)

 Encode each BV term       as an integer variable        and the 
constraints

 Encode each BV operation as a LIA-formula. 

t[n] xt
(0 · xt) ^ (xt · 2n ¡ 1)

t[i¡j+1]
def
= t1[n][i : j] (xt = m) ^ (xt1 = 2i+1h + 2jm + l)^

l 2 [0; 2i) ^m 2 [0; 2i¡j+1) ^ h 2 [0; 2n¡i¡1)

t[n]
def
= t1[n] + t2[n] (xt = xt1 + xt2 ¡ 2n¾) ^ (0 · ¾ · 1)

t[n]
def
= t1[n] ¢ k (xt = k ¢ xt1 ¡ 2n¾) ^ (0 · ¾ · k)

Examples:



  

From LIA-interpolants to BV-interpolants

 “Invert” the LIA encoding to get a BV interpolant

 Unsound in general

 Issues due to overflow and (un)signedness of operations

 Our (very simple) solution: check the interpolants

 Given a candidate interpolant    , use our SMT(BV) solver to 

check the unsatisfiability of 

 If successful, then     is an interpolant

Î

Î

(A ^ :Î) _ (B ^ Î)



  

From LIA- to BV-interpolants: examples

 

Encoding into LIA:

ALIA
def
=(xy2 = 16xy5 + xy5) ^ (xy1 = xy2) ^ (xy5 = 1)^

(xy1 2 [0; 28)) ^ (xy2 2 [0; 28)) ^ (xy5 2 [0; 24))

BLIA
def
=:(xy4+1 · xy2) ^ (xy4+1 = xy4 + 1 ¡ 28¾)^

(xy4 = 1)^
(xy4+1 2 [0; 28)) ^ (xy4 2 [0; 28)) ^ (0 · ¾ · 1)

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])



  

From LIA- to BV-interpolants: examples

 

LIA-Interpolant:

BV-interpolant:

ILIA
def
= (17 · xy2)

I
def
= (17[8] ·u y2[8])

Good!

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])



  

From LIA- to BV-interpolants: examples

 

Encoding into LIA:

ALIA
def
=(xy2 = 81) ^ (xy3 = 0) ^ (xy4 = xy2)^

(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))

BLIA
def
=(xy13 = 28 ¢ 0 + xy4) ^ (255 · xy13+(0::y3))^

(xy13+(0::y3) = xy13 + 28 ¢ 0 + xy3 ¡ 216¾)^
(xy13 2 [0; 216)) ^ (xy13+(0::y3) 2 [0; 216))^
(0 · ¾ · 1)

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might 
overflow in BV!

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might 
overflow in BV!

A correct interpolant would be

I
def
= (0[1] :: y3[8] + 0[1] :: y4[8] ·u 81[9])

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

Encoding into LIA:

ALIA
def
=:(xy4+1 · xy3) ^ (xy2 = xy4+1)^

(xy4+1 = xy4 + 1 ¡ 28¾1)^
(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))^
(xy4+1 2 [0; 28)) ^ (0 · ¾1 · 1)

BLIA
def
=(xy2+1 · xy3) ^ (xy7 = 3) ^ (xy7 = xy2+1)^

(xy2+1 = xy2 + 1 ¡ 28¾2)^
(xy7 2 [0; 28)) ^ (xy2+1 2 [0; 28)) ^ (0 · ¾2 · 1)

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î0
def
= (65281[16] ·u (0[8] :: y2[8]) ¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î0
def
= (65281[16] ·u (0[8] :: y2[8]) ¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)

Still
Wrong!

In this case, the problem
is also the sign



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Correct interpolant

I
def
= (65281[16] ·s (0[8] :: y2[8]) ¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])



  

Interpolation in combined theories

 Combination of theories 
encoded directly in the 
proof of unsatisfiability P

    -lemmas for the 
individual theories

 P contains interface 
equalities 

 Delayed Theory Combination (DTC): use the DPLL engine to 
perform theory combination 

 Independent     -solvers, that interact only with DPLL

 How: Boolean search space augmented with interface equalities

 Equalities between variables shared by the two theories

?

T1T2

T1

T1 T1

T2
T2

T2

P

Ti

Ti



  

Interpolation in combined theories

 How: Split each   -lemma       
                into                         
                with                  
using available algorithms 

     's must be equality-
interpolating and convex

 Propagate the changes 
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation: 

 Some interface equalities (x = y) are AB-mixed: 

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

?

T1T2

T1

T1 T1

T2
T2

T2

P



  

Interpolation in combined theories

 How: Split each   -lemma       
                into                         
                with                  
using available algorithms 

     's must be equality-
interpolating and convex

 Propagate the changes 
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation: 

 Some interface equalities (x = y) are AB-mixed: 

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

?

T1
T2

T1 T1 T1

T2
T2

T2
T2

T1

T2

P'



  

Interpolation in combined theories

 How: Split each   -lemma       
                into                         
                with                  
using available algorithms 

     's must be equality-
interpolating and convex

 Propagate the changes 
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation: 

 Some interface equalities (x = y) are AB-mixed: 

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

Problem: splitting can 
cause exponential blow-up 
in P

Solution: control the kind of 
proofs generated by DPLL,
so that the splitting can be
performed efficiently
(ie-local proofs) ?

T1
T2

T1 T1 T1

T2
T2

T2
T2

T1

T2

P'



  

Interpolation in combined theories

 After splitting AB-mixed equalities, we can compute an 
interpolant as usual

 Nothing special needed for theory combination!

 Because theory combination is encoded in the proof, we can 
reuse the Boolean interpolation algorithm

 Features:

 No need of ad-hoc interpolant combination procedures 

 Exploit state-of-the-art SMT solvers, based on (variants of) DTC

 Split only when necessary



  

Example



  

Example

T-lemmas:

?

£3

(a2 + z = 1)

(a1 + z = 0)

£4

£5

£6

£7

(z ¡ x2 = 1)

(a1 = f(x1))

(a2 = f(x2))

(z ¡ x1 = 1)



  

Example

T-lemmas: Pivot: (x
1
 = x

2
)

?

£3

(a2 + z = 1)

(a1 + z = 0)

£4

£5

£6

£7

(z ¡ x2 = 1)

(a1 = f(x1))

(a2 = f(x2))

(z ¡ x1 = 1)

C3 C2

£1 C1
£2

Pivot: (a
1
 = a

2
)

subproof 
with int.eqs.



  

Example

C3 C2

C1£1

£2

Pie subproof:

T-lemmas:



  

Example

C3 C2

C1£1

£2

Pie subproof:

T-lemmas: Split (x
1 
= x

2
) in C

1



  

Example

Pie subproof:

T-lemmas:
C3 C2

£1 C01

C001£02

£2

C01 ´(x1 = z ¡ 1) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

C 001 ´(z ¡ 1 = x2) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)



  

Example

Pie subproof:

T-lemmas:
C3 C2

£1 C01

C001£02

£2

C01 ´(x1 = z ¡ 1) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

C 001 ´(z ¡ 1 = x2) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

Split (a
1 
= a

2
) in C

2



  

Example

Pie subproof:

£1

£2

C001£02

C01£01

C002

C02C03
C02 ´(a1 = f(z ¡ 1)) _ :(a2 = f(x2))_

:(a1 = f(x1)) _ :(x1 = z ¡ 1)_
:(z ¡ 1 = x2)

C 002 ´(f(z ¡ 1) = a2) _ :(a2 = f(x2))_
:(a1 = f(x1)) _ :(x1 = z ¡ 1)_
:(z ¡ 1 = x2)

C03 ´:(a1 + z = 0) _ :(a2 + z = 1)_
:(a1 = f(z ¡ 1)) _ :(f(z ¡ 1) = a2)



  

Proof Tree Preserving Interpolation

 [Christ, Hoenicke and Nutz, TACAS 2013]

 Interpolants with AB-mixed literals without proof rewriting

 Replace AB-mixed terms              with                       
in leaves, where     is a fresh purification variable

 Eliminate the purification variable when resolving on

 

 Advantages: 

 no need of proof rewriting

 handles also for non-convex theories

 Drawbacks: 

 need T-specific interpolation rules for resolution steps

 more complex interpolation system



  

From Binary to Sequence Interpolants

 An ordered sequence of formulae                     such that

 We want a sequence of interpolants                     such that

      is an interpolant for

                               for all

 Needed in various applications (e.g. abstraction refinement)

 How to compute them?

 In general, if we compute arbitrary binary interpolants for

                                     , the second condition will not hold



  

A simple solution

 Compute       as an interpolant of

 Compute       as an interpolant of

 Claim:      is an interpolant for

 Proof (sketch):

 By ind.hyp.          is an interpolant for

so                                and

 

 Advantages: 

 simple to implement

 can use any off-the-shelf binary interpolation 

 Drawback: requires n-1 SMT calls
 



  

A more efficient algorithm

 Compute an SMT proof of unsatisfiablity P for 

 Compute each

from the same proof P

 Theorem:



  

A more efficient algorithm

 Compute an SMT proof of unsatisfiablity P for 

 Compute each

from the same proof P

 Theorem:

 Proof (sketch) – case n=3:

 Let C be a node of P with partial interpolants I' and I'' for the 
partitionings                         and                         resp. Then we 
can prove, by induction on the structure of P, that:

 The theorem then follows as a corollary

 Works also for DTC-rewritten proofs
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Introduction

 IC3 very successful SAT-based model checking algorithm

 Incremental Construction

 of Inductive Clauses

 for Indubitable Correctness

 Key principles:

 Verification by induction

 Inductive invariant built incrementally

 by discovering (relatively-)inductive clauses

 Exploiting efficient SAT solvers



  

Introduction

 IC3 has been further generalized to SMT in various ways

 We will look in some detail at one such generalization, called

IC3 with Implicit Predicate Abstraction (IC3-IA)

 Exploits several features of modern SMT solvers that we have 
discussed so far

 Incremental solving
 Assumptions and unsatisfiable cores
 Interpolation

 A “hands-down” approach

 We will build a (simple) real implementation on top of MathSAT



  

Proofs by Induction

 Given transition system                               and property

 Base case (initiation):

 Inductive step (consectution):

 Typically however,     is not inductive

 Find an inductive invariant               , stronger than






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A (very) high level view of IC3

 Given a symbolic transition system and invariant property P,
build an inductive invariant F s.t.

 Trace of formulae                                       s.t:

 for i > 0, F
i
 is a set of clauses

overapproximation of states reachable in up to i steps

Fi+1 µ Fi (so Fi j= Fi+1)
Fi ^ T j= F 0i+1
for all i < k; Fi j= P

:P
FkFk¡1I

T TT Fk¡2

F j= P
F0(X) ´ I; : : : ; Fk(X)



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           
    (i.e., check if                                     )

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           
    (i.e., check if                                     )

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

Check if s is inductive relative to F
k-1



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           
    (i.e., check if                                     )

Fk j= P

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

FkI
TT s

Fk¡2T Fk¡1

:Ps



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

 SAT: s is reachable from                     in 1 step
 Get a cube c in the preimage of s and try 

(recursively) to prove it unreachable from           , …

 c is a counterexample to induction (CTI)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0

FkFk¡1I
TT s

Fk¡2T
c

:Ps

Fk¡1 ^ :s

Fk¡2

If I is reached,
counterexample

found



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

 UNSAT:       is inductive relative to          
 Generalize c to g and block by adding        to

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

 UNSAT:       is inductive relative to          
 Generalize c to g and block by adding        to

Fk j= P

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c

FkFk¡1I
sT T

Fk¡2Fk¡2
T Fk¡1

:Ps



  

A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

FkFk¡1I Fk¡2

:P
FkFk¡2 Fk¡1

T TT

Fk+1

Fi+1

c 2 Fi



  

A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T



  

A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fi Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

If                    , P is proved,
otherwise start another round of blocking and propagation
Fi ´ Fi+1



  

IC3 pseudo-code

bool IC3(I, T, P):
    trace = [I]   # first elem of trace is init formula
    trace.push()  # add a new frame
    while True:
        # blocking phase
        while is_sat(trace.last() & ~P):
            c = extract_cube() # c |= trace.last() & ~P
            if not rec_block(c, trace.size()-1):
                return False # counterexample found

        # propagation phase
        trace.push()
        for i=1 to trace.size()-1:
            for each cube c in trace[i]:
                if not is_sat(trace[i] & ~c & T & c'):
                    trace[i+1].append(c)
            if trace[i] == trace[i+1]: 
                return True # property proved



  

IC3 pseudo-code

bool rec_block(s, i):
    if i == 0:
        return False  # reached initial states
    while is_sat(trace[i-1] & ~s & T & s'):
        c = get_predecessor(i-1, T, s')
        if not rec_block(c, i-1):
            return False
    g = generalize(~s, i)
    trace[i].append(g)
    return True



  

Correctness (sketch)

 Consider the formula                          where s is a bad cube

 If UNSAT, then           is strong enough to block s

 Since                           , then s is unreachable in k steps or less 

 Since                    , then we can add s to all 

 

Fi ^ T j= F 0i+1
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Correctness (sketch)

 Consider the formula                          where s is a bad cube

 If UNSAT, then           is strong enough to block s

 Since                           , then s is unreachable in k steps or less 

 Since                    , then we can add s to all 

 Consider now the relative induction check

 We know that                        because              (base case)

 Since                   , then we know that       holds up to k
 

 Propagation: for each            , check  

 we know that c holds up to i, if UNSAT then it holds up to i+1

 since                    ,                             and               , 

if                    then the fixpoint is an inductive invariant 

Fi ^ T j= F 0i+1

Fi ^ T j= F 0i+1



  

Inductive Clause Generalization

 Crucial step of IC3

 Given a relatively inductive clause      

compute a generalization            that is still inductive

 Drop literals from    and check that (1) still holds

 Accelerate with unsat cores returned by the SAT solver

 Using SAT under assumptions

 However, make sure the base case still holds

 If                        , then     cannot be dropped



  

Simple iterative generalization

void indgen(c, i):
    done = False
    for iter = 1 to max_iters:
        if done:
            break
        done = True
        for each l in c:
            cand = c \ {l}
            if not is_sat(I & cand) and 
               not is_sat(trace[i] & ~cand & T & cand'):
                c = get_unsat_core(cand)
                rest = cand \ c
                while is_sat(I & c):
                   l1 = rest.pop()
                   c.add(l1)
                done = False
                break



  

 When                             is satisfiable:

 s reaches        in k-i steps

 s can be reached from      in 1 step

 strengthen      by blocking cubes c in the preimage of s

 Extract CTI c from the SAT assignment

 And generalize to represent multiple bad predecessors

 Use unsat cores, exploiting a functional encoding of the transition 
relation

 If       is functional, then
 check                                 under assumptions

:P cs
s'

T

:P

Fi
Fi

Fi

CTI computation



  

SAT-based CTI generalization

void generalize_cti(cti, inputs, next):
    for i = 1 to max_iters:
        b = is_sat(cti & inputs & T & ~next')
        assert not b # assume T to be functional
        c = get_unsat_core(cti)
        if should_stop(c, cti):
            break
        cti = c



  

Example

No counterexamples of length 0

000 10x 01x 11x

001

[borrowed and adapted from F. Somenzi] 



  

Example 

Get bad cube                      in 

000 10x 01x 11x

001



  

Example 

000 10x 01x 11x

001

Is       inductive relative to      ? 
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Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Update



  

Example 

000 10x 01x 11x

001

Blocking done for     . Add       and propagate forward



  

Example 

000 10x 01x 11x

001

No clause propagates from      to



  

Example 

000 10x 01x 11x

001

Get bad cube                         in 



  

Example 

000 10x 01x 11x

001

Is       inductive relative to      ? 



  

Example 

000 10x 01x 11x

001

No, found CTI 



  

Example 

000 10x 01x 11x

001

Try blocking      at level 0: 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Update 



  

Example 

000 10x 01x 11x

001

Return to the original bad cube



  

Example 

000 10x 01x 11x

001

Is       inductive relative to      ? 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Update       and add new frame



  

Example 

000 10x 01x 11x

001

Perform forward propagation

From      to      :



  

Example 

000 10x 01x 11x

001

Perform forward propagation

Found fixpoint!



  

Example 

000 10x 01x 11x

001

Perform forward propagation

Inductive invariant:
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IC3 with SMT

 How to generalize from SAT to SMT?

 Good news: replacing the SAT solver with an SMT solver is 
enough for partial correctness

 but what about:

 termination?

 efficiency?



  

IC3 with SMT

 How to generalize from SAT to SMT?

 Good news: replacing the SAT solver with an SMT solver is 
enough for partial correctness

 but what about:

 termination?

 Easy! (answer)  
 the problem is in general undecidable, so no hope here

 efficiency?



  

 When                             is satisfiable:

 s reaches        in k-i steps

 s can be reached from      in 1 step

 strengthen      by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA):

 Would exclude a single point 
in an infinite space

:P cs
s'

T

:P

s'

s T
m

Single model m from SMT solver:

x = 3 ^ y = 7

Fi
Fi

Fi

Fi

RelInd(Fk¡1; T; s)                                   with SMT



  

 When                             is satisfiable:

 s reaches        in k-i steps

 s can be reached from      in 1 step

 strengthen      by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA): underapproximated quantifier elimination

 Encodes a set of predecessors

 Cheaper than full quantifier elimination

 But still potentially expensive

 Not always available

 E.g for UF+LRA

:P cs
s'

T

:P

Fi
Fi

Fi

RelInd(Fk¡1; T; s)                                   with SMT

underapproximated preimage:

s'

s T
c

(x · 3) ^ (y ¸ 7)
Fi



  

 When                             is unsatisfiable:

 Compute a generalization g of s to block

 Block more than a single cube at a time

 In the Boolean case, use inductive generalization algorithms

 For SMT, Boolean algorithms plus theory-specific “ad hoc” 
techniques

 Based on Farkas' lemma for LRA [HB SAT'12]

 [WK DATE'13] for BV

 [KJN FORMATS'12] for timed automata

RelInd(Fk¡1; T; s)                                   with SMT

   gs
s'

T

:PFi



  

Implicit Predicate Abstraction [Tonetta FM'09]

 Abstract version of k-induction, avoiding explicit computation 
of the abstract transition relation

 By embedding the abstraction in the SMT encoding

 Given a set of predicates     and an unrolling depth    ,

the abstract path                is 

P k

^

1·h<k
(T (Y h¡1; Xh) ^

^

p2P
(p(Xh)$ p(Y h)) ^ T (Y k¡1; Xk)

[Pathk;P

T

T

T

E
Q

E
Q

E
Q

E
QEQ

def
=V

p2P(p(Y )$ p(X))



  

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation                 instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

T (X;X 0)

P



  

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation                 instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If UNSAT ⇨inductive strengthening as in the Boolean case

 No theory-specific technique needed

 Theory reasoning confined within the SMT solver

T (X;X 0)

P



  

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation                 instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If SAT   ⇨ abstract predecessor    from the SMT model



 No quantifier elimination needed

T (X;X 0)

P

c

c
def
= fp(X) j p 2 P ^ ¹ j= p(X)g [ f:p(X) j ¹ 6j= p(X)g

¹
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Example







                            is SAT

 Compute a predecessor with 



 Compute predecessor from SMT model



  

Abstraction Refinement

 Abstract predecessors are overapproximations

 Spurious counterexamples can be generated

 We can apply standard abstraction refinement techniques

 Use sequence interpolants to discover new predicates

 Sequence of abstract states

 SMT check on

 If unsat, compute sequence of interpolants for

 Add all the predicates in the interpolants to 



  

Incrementality

 Abstraction refinement is fully incremental

 No restart from scratch

 Can keep all the clauses of 

 Refinements monotonically strengthen 

 All IC3 invariants on                      are preserved 

 Abstract counterexample check can use incremental SMT

Fi+1 µ Fi (so Fi j= Fi+1)
for all i < k; Fi j= P
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 Predicates       
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Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube

 SMT check

 SAT with model

 Evaluate predicates wrt.

 Return 

 

 Predicates       

 Trace:
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Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 Check

 Unsat core:

 Update 

 

 Predicates       

 Trace:
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Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 2



 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 . . .

 Update

 . . .

 Update
 

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Forward propagation
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Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 3



 

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block c

 Check

 

 SMT model

 (Abstract) predecessor

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block s (at level 2)

 . . .

 Reached level 0, abstract cex:

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 SMT check                                                         

UNSAT

 Predicates       

 Trace:
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Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

                                                                                   

 Predicates       

 Trace:

Update predicates
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 . . .
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SAFE
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 Trace:



  

Implementing IC3-IA

 Get the code at: 
http://es-static.fbk.eu/people/griggio/vtsa2015/

 Open source (GPLv3) implementation on top of MathSAT 
http://mathsat.fbk.eu/

 Incremental interface
 Assumptions and unsat core
 Interpolation

 Simple (~1700 lines of C++, including parser and statistics, 
according to David A. Wheeler's 'SLOCCount') yet competitive

 Input in VMT format (a simple extension of SMT-LIB)

https://nuxmv.fbk.eu/index.php?n=Languages.VMT

 Let's analyse it!

http://es-static.fbk.eu/people/griggio/vtsa2015/
http://mathsat.fbk.eu/
https://nuxmv.fbk.eu/index.php?n=Languages.VMT
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Linear Temporal Logic

 Syntax

 A (quantifier-free) first-order formula

           (neXt     )

             (     Until     )

 Semantics

 Given an infinite path









 A system S satisfies an LTL formula      (             ) iff all inifinite 
paths of S satisfy

           (Finally     )

           (Globally     )



  

LTL verification

 Automata-based approach:

 Given an LTL property     , build a transition system       
with a fairness condition         , such that

 

 Finite-state case: 

 lasso-shaped counterexamples, with        at least once in the 
loop

 liveness to safety transformation: absence of lasso-shaped 
counterexamples as an invariant property

 Duplicate the state variables
 Non-deterministically save the current state
 Remember when         in extra state var  
 Invariant: 



  

Liveness to Safety for Inifinite States

 Unsound for infinite-state systems

 Not all counterexamples are lasso-shaped

 Liveness to safety with Implicit Abstraction

 Apply the l2s transformation to the abstract system

 Save the values of the predicates instead of the concrete state
 Do it on-the-fly, tightly integrating l2s with IC3

 Sound but incomplete

 When abstract loop found, simulate in the concrete and refine
 Might still diverge during refinement

 Intrinsic limitation of state predicate abstraction



  

K-liveness

 Simple but effective technique for LTL verification of finite-
state systems

 Key insight:                                        iff exists k such that   
is visited at most k times

 Again, a safety property

 K-liveness: increase k incrementally, within IC3

 Liveness checking as a sequence of safety checks

 Exploits the highly incremental nature of IC3

 Sound also for infinite-state systems

 What about completeness?



  

K-liveness for hybrid automata

 K-liveness is incomplete for infinite-state systems

 Even if                                         , there might be no concrete k
bound for the number of violations of 

 K-zeno: extension of K-liveness for hybrid automata

 Key idea: exploit progress of time to make k-liveness converge

 By extending the original model with a “symbolic fairness 
monitor”       that forces time progress

 Under certain conditions, restores completeness of k-liveness

 If                                           , then exists k such that 
                                visits        at most k times

 (clearly, safety check can still diverge)
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