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Introduction

 (Craig) Interpolant for an ordered pair (A, B) of formulae s.t.    

                                                    is a formula I s.t.





 All the uninterpreted (in     ) symbols of I 
are shared between A and B

 Why are interpolants useful?

 Overapproximation of A relative to B

 Overapprox. of 

 “Local” explanation of why A is inconsistent with B



  

Importance of interpolation

Several important applications in formal verification:

 Approximate image computation for model checking of 
infinite-state systems 

 Predicate discovery for Counterexample-Guided Abstraction 
Refinement 

 Approximation of transition relation for infinite-state systems 

 An alternative to (lazy) predicate abstraction for program 
verification 

 Automatic generation of loop invariants

 ...
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Background

Symbolic transition systems

 State variables

 Initial states formula

 Transition relation formula

 A state     is an assignment to the state vars

 A path of the system S is a sequence of states
such that                and

 A k-step (symbolic) unrolling of S is a formula

 Encodes all possible paths of length up to k

 A state property is a formula     over

 Encodes all the states      such that



  

Forward reachability checking

 Forward image computation

 Compute all states reachable from     in one transition:

 Prove that a set of states                is not reachable:
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Forward reachability checking

 Forward image computation

 Compute all states reachable from     in one transition:

 Prove that a set of states                is not reachable:



  

Interpolation-based reachability

 Image computation requires quantifier elimination, which is 
typically very expensive (both in theory and in practice)

 Interpolation-based algorithm (McMillan CAV'03): use 
interpolants to overapproximate image computation

 much more efficient than the previous algorithm

 interpolation is often much cheaper than quantifier elimination
 abstraction (overapproximation) accelerates convergence

 termination is still guaranteed for finite-state systems



  

Interpolation-based reachability

 Set

 Check satisfiability of

T07!1 Tk¡1 7!k



  

Interpolation-based reachability

 Set

 Check satisfiability of

 If SAT:

 If            , return REACHABLE     the unrolling hits Bad

 else, increase k and repeat  

T07!1 Tk¡1 7!k



  

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set 

              is an abstraction of the forward image 
         guided by the property

T07!1 Tk¡1 7!k

A



  

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set 

              is an abstraction of the forward image 
         guided by the property

 If              , return UNREACHABLE      fixpoint found

 else, set                                            and continue

T07!1 Tk¡1 7!k

A



  

Interpolation-based Abstraction Refinement

(Lazy) Predicate abstraction

 Given a Transition System                     and predicates

 Abstract initial states

 Abstract forward image

 Standard technique applied in many 
verification tools

 In conjunction with counterexample-guided 
refinement (CEGAR)

 Extract new predicates from spurious counterexamples and compute 
a more precise abstraction

P
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 Abstract initial states

 Abstract forward image

 Standard technique applied in many 
verification tools

 In conjunction with counterexample-guided 
refinement (CEGAR)

 Extract new predicates from spurious counterexamples and compute 
a more precise abstraction

P
The strongest boolean combination
of predicates in      that is implied
by

P
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Interpolation-based Abstraction Refinement

 An abstract cex path                    (wrt.    ) might be spurious

 Because abstraction is overapproximating

     

T07!1 Tk¡1 7!k
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Interpolation-based Abstraction Refinement

 An abstract cex path                    (wrt.    ) might be spurious

 Because abstraction is overapproximating

     

 Compute a sequence of interpolants                    
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T07!1 Tk¡1 7!k



  

Interpolation-based Abstraction Refinement

 An abstract cex path                    (wrt.    ) might be spurious

 Because abstraction is overapproximating

     

 Compute a sequence of interpolants                    

such that

 Let          be the set of all the predicates in                                

 Set

 Theorem:                    is not an abstract cex path wrt.

T07!1 Tk¡1 7!k



  

Proof sketch

       is an overapproximation of the states reachable in i steps,
compatible with the abstract trace

       is also incompatible with the rest of the abstract trace
                      (since it is an interpolant)

 By the requirement that

it follows that

 Therefore,                                                and 

                                                       (since the trace is spurious)

 Since we add all the atomic predicates of
to     and the abstraction is precise wrt.    , then
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Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be 
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a 
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the 
computed interpolant
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Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be 
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a 
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the 
computed interpolant

 McMillan's annotation rules (others exist):

 For each leaf node (input clause) C in the proof:

 If              , set 
 Otherwise (             ), set 



  

Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be 
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a 
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the 
computed interpolant

 McMillan's annotation rules (others exist):

 For each leaf node (input clause) C in the proof:

 If              , set 
 Otherwise (             ), set 

 For each inner node (resolution) with parents           and
and annotations      and

 If                    , set                        ; otherwise, set



  

Example



  

Example



  

Proof of correctness

 By induction on the structure of the resolution refutation

 Lemma: for each annotated node          , we have

1) 

2) 

3) I contains only variables that occur in both A and B

 Then as a corollary, for the root           , I is an interpolant

 The lemma trivially holds for leaf nodes (check)



  

Proof of correctness – resolution steps

Resolution step with parents                     and 

 Case 

1) By ind. hyp                                                             and

Therefore

2) By inductive hypotesis

which means

Similarly,

By resolution on            , then  

3) Trivial by the inductive hypothesis



  

Proof of correctness – resolution steps

Resolution step with parents                     and 

 Case 

1) By ind. hyp                                                                      and 

 

By resolution on           , then
 

2) By ind. hyp                                                                  and 
 

Therefore                                                                        and

 and so

3) Trivial by the inductive hypothesis



  

Interpolants in SMT

 Resolution refutations in SMT: 

Boolean part 
(ground resolution)

T-specific part for conjunctions 
of constraints (negated T-lemmas)



  

Interpolants in SMT

 Resolution refutations in SMT: 

Boolean part 
(ground resolution)

T-specific part for conjunctions 
of constraints (negated T-lemmas)

Standard Boolean
interpolation

T-specific interpolation
for conjunctions only

Theory interpolation only for sets of T-literals 



  

Interpolants in SMT

 Resolution refutations in SMT: 

 Annotation for a T-lemma C:

Boolean part 
(ground resolution)

T-specific part for conjunctions 
of constraints (negated T-lemmas)

Standard Boolean
interpolation

T-specific interpolation
for conjunctions only

Theory interpolation only for sets of T-literals 



  

Equality (EUF)

 Interpolants from coloured congruence graphs

 Nodes with 
colours:

 Edges with colours of the nodes they connect

 Uncolorable edge: connects nodes of two different colours
 Always possible to obtain a coloured graph

 (by introducing new nodes)

if term occurs in A

if term occurs in B

if term is shared



  

Equality (EUF)

 Interpolants from coloured congruence graphs

 Nodes with 
colours:

 Edges with colours of the nodes they connect

 Uncolorable edge: connects nodes of two different colours
 Always possible to obtain a coloured graph

 (by introducing new nodes)

if term occurs in A

if term occurs in B

if term is shared

Uncolourable



  

Equality (EUF)

 Interpolants from coloured congruence graphs

 Nodes with 
colours:

 Edges with colours of the nodes they connect

 Uncolorable edge: connects nodes of two different colours
 Always possible to obtain a coloured graph

 (by introducing new nodes)

if term occurs in A

if term occurs in B

if term is shared



  

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

and



  

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

 If an A-summary involves a congruence edge, compute 
summaries recursively on function arguments

 Use B-summaries as premises for the A-summary

and



  

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

 If an A-summary involves a congruence edge, compute 
summaries recursively on function arguments

 Use B-summaries as premises for the A-summary

 (Several cases to consider)

and



  

Example

 



  

Example

 Start from

 A-summaries for

 



  

Example

 Start from

 A-summaries for

 Recurse on edge

 Path

 



  

Example

 Start from

 A-summaries for

 Recurse on edge

 Path

 Recurse on edge
 Path              ,   B-summary:

 



  

Example

 Start from

 A-summaries for

 Recurse on edge

 Path

 Recurse on edge
 Path              ,   B-summary:

 Interpolant: 



  

Linear Rational Arithmetic (LRA)

 Interpolants from proofs of unsatisfiability of a system of 
inequalities

 Proof of unsatisfiability: linear combination of inequalities with 
positive coefficients to derive a contradiction (          with         )

 Interpolant obtained out of the proof by combining inequalities 
from A (using the same coefficients)

 Proof of unsatisfiability generated from the Simplex



Example

 
 tableau                                 bounds                   candidate solution    



Example

 
tableau                                 bounds                   candidate solution    

No suitable variable for pivoting!
Conflict



Example

 
tableau                                 bounds                   candidate solution    

Proof:



Example

 
tableau                                 bounds                   candidate solution    

Interpolant:



  

Linear Integer Arithmetic (LIA)

 Constraints of the form

 In general, no quantifier-free interpolation for LIA

 Solution: extend the signature to include modular equations 
(divisibility predicates)

P
i cixi + c ./ 0; ./2 f·;=g

A := (y ¡ 2x = 0) B := (y ¡ 2z ¡ 1 = 0)Example:

9w:(y = 2w)The only interpolant is:

(t + c =d 0) ´ 9w:(t + c = d ¢ w); d 2 Z>0

The interpolant now becomes: (y =2 0)



  

SMT(LIA) with modular equations

 Modular equations can be eliminated via preprocessing:

 Replace every atom                         
with a fresh Boolean variable 

 Add the 4 clauses

where               are fresh integer variables

a := (t + c =d 0)
pa

pa ! (t + c¡ dw1 = 0)

(¡w2 + 1 · 0)

(w2 ¡ d + 1 · 0)

w1; w2

:pa ! (t+ c¡ dw1 ¡w2 = 0)



  

 Cutting-plane proof system: complete proof system for LIA

Hyp
¡

t · 0
Comb

t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Div

P
i cixi + c · 0P

i
ci
d xi + d cde · 0

; d > 0 divides the ci's

Interpolants from LIA-proofs
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Div

P
i cixi + c · 0P

i
ci
d xi + d cde · 0

; d > 0 divides the ci's

Interpolants from LIA-proofs

LRA rules



  

 Cutting-plane proof system: complete proof system for LIA

Hyp
¡

t · 0
Comb

t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Interpolants from LIA-proofs

Strenghten

P
i cixi + c · 0P

i cixi + d ¢ d cde · 0
; d > 0 divides the ci's



  

 Cutting-plane proof system: complete proof system for LIA

 Interpolation by annotating proof rules 

 Annotation: a set of pairs

 When      is derived, then

is the computed interpolant

Hyp
¡

t · 0
Comb

t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Interpolants from LIA-proofs

Strenghten

P
i cixi + c · 0P

i cixi + d ¢ d cde · 0
; d > 0 divides the ci's

fhti · 0;
V
j(tij = 0)igi

?
I :=

W
i(ti · 0 ^Vj ExistElim(xi 62 B):(tij = 0))



  

Interpolants from cutting-plane proofs

 Annotations for Hyp and Comb from McMillan
(same as LRA)

 k-Strengthen rule of [Brillout et al. IJCAR'10] 

Comb
t1 · 0 [I1] t2 · 0 [I2]

c1 ¢ t1 + c2 ¢ t2 · 0 [I]

I := fhc1t0i + c2t0j · 0; Ei ^ Eji j ht0i; Eii 2 I1; ht0j ; Eji 2 I2g

Str.

P
i cixi + c · 0 [fht · 0;>ig]P

i cixi + d ¢ d cde · 0 [I]
; d > 0 divides the ci's

I := fh(t + n · 0); (t + n = 0)i j 0 · n < d ¢ d cde ¡ cg[
fh(t + d ¢ d c

d
e ¡ c · 0);>ig

Hyp
¡

t · 0 [fht · 0;>ig]
t0 =

½
t if t · 0 2 A
0 if t · 0 2 B



  

Interpolants from cutting-plane proofs

 Annotations for Hyp and Comb from McMillan
(same as LRA)

 k-Strengthen rule of [Brillout et al. IJCAR'10] 

Comb
t1 · 0 [I1] t2 · 0 [I2]

c1 ¢ t1 + c2 ¢ t2 · 0 [I]

I := fhc1t0i + c2t0j · 0; Ei ^ Eji j ht0i; Eii 2 I1; ht0j ; Eji 2 I2g

Str.

P
i cixi + c · 0 [fht · 0;>ig]P

i cixi + d ¢ d cde · 0 [I]
; d > 0 divides the ci's

I := fh(t + n · 0); (t + n = 0)i j 0 · n < d ¢ d cde ¡ cg[
fh(t + d ¢ d c

d
e ¡ c · 0);>ig

Hyp
¡

t · 0 [fh0 · 0;>ig]
t0 =

½
t if t · 0 2 A
0 if t · 0 2 B



  

Example

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

4x¡ 4z + 1 · 0

4x¡ 4z + 1 + 3 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0

¡4x+ 4z ¡ 3 · 0

(1 · 0) ´ ?



  

Example – with annotations

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

4x¡ 4z + 1 · 0

4x¡ 4z + 1 + 3 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0

¡4x+ 4z ¡ 3 · 0

(1 · 0) ´ ?

[fhy + 4x · 0;>ig] [fh0 · 0;>ig]

[fhy + 4x · 0;>ig]
[fh0 · 0;>ig][fh¡y ¡ 4x¡ 1 · 0;>ig]

[fh¡y ¡ 4x¡ 1 · 0;>ig]

[fhn¡ 1 · 0; y + 4x+ n = 0i j 0 · n < 3g [ fh2 ¡ 1 · 0;>ig]

[fhy + 4x+ n · 0; y + 4x + n = 0i j
0 · n < 3g [ fhy + 4x+ 2 · 0;>ig]



  Interpolant:

Example – with annotations

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

4x¡ 4z + 1 · 0

4x¡ 4z + 1 + 3 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0

¡4x+ 4z ¡ 3 · 0

(1 · 0) ´ ?

[fhy + 4x · 0;>ig] [fh0 · 0;>ig]

[fhy + 4x · 0;>ig]
[fh0 · 0;>ig][fh¡y ¡ 4x¡ 1 · 0;>ig]

[fh¡y ¡ 4x¡ 1 · 0;>ig]

[fhn¡ 1 · 0; y + 4x+ n = 0i j 0 · n < 3g [ fh2 ¡ 1 · 0;>ig]

[fhy + 4x+ n · 0; y + 4x + n = 0i j
0 · n < 3g [ fhy + 4x+ 2 · 0;>ig]

Interpolant:



  

Drawback of Strengthen

 Interpolation of Strengthen creates potentially very big 
disjunctions

 Linear in the strengthening factor 

 Can be exponential in the size of the proof

k := dd c
d
e ¡ c

B :=

½
¡y ¡ 4z + 1 · 0
y + 4z ¡ 2 · 0

A :=

½
¡y ¡ 4x¡ 1 · 0
y + 4x · 0

Example:

(y =4 0) _ (y + 1 =4 0)Interpolant:



  

Drawback of Strengthen

 Interpolation of Strengthen creates potentially very big 
disjunctions

 Linear in the strengthening factor 

 Can be exponential in the size of the proof

k := dd c
d
e ¡ c

Example:

Interpolant:

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

(y =2n 0) _ (y + 1 =2n 0) _ : : : _ (y =2n n¡ 1)

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0



  

Drawback of Strengthen

 Interpolation of Strengthen creates potentially very big 
disjunctions

 Linear in the strengthening factor 

 Can be exponential in the size of the proof

 The problem are AB-mixed cuts:

k := dd c
d
e ¡ c

Example:

Interpolant:

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

(y =2n 0) _ (y + 1 =2n 0) _ : : : _ (y =2n n¡ 1)

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

Strengthen

P
xi 62B cixi +

P
yj 62A cjyj + c · 0

P
xi 62B cixi +

P
yj 62A cjyj + d ¢ d cde · 0



  

Interpolation with ceilings

 Idea: use a different extension of the signature of LIA, and 
extend also its domain

 Introduce the ceiling function         [Pudlák '97]

 Allow non-variable terms to be non-integers (e.g.    )

 Much simpler interpolation procedure

 Proof annotations are single inequalities

d¢e
x
2

(t · 0)



  

Interpolation with ceilings

 Idea: use a different extension of the signature of LIA, and 
extend also its domain

 Introduce the ceiling function         [Pudlák '97]

 Allow non-variable terms to be non-integers (e.g.    )

 Much simpler interpolation procedure

 Proof annotations are single inequalities

d¢e
x
2

(t · 0)

Comb
t1 · 0 [t01 · 0] t2 · 0 [t02 · 0]

c1 ¢ t1 + c2 ¢ t2 · 0 [c1 ¢ t01 + c2 ¢ t02 · 0]

d > 0 divides aj ; bk; ci

Hyp
¡

t · 0 [t0 · 0]

Div

P
yj 62B ajyj +

P
zk 62A bkzk +

P
xi2A\B cixi + c

[
P
yj 62B ajyj +

P
xi2A\B c

0
ixi + t0]

P
yj 62B

aj
d yj +

P
zk2B

bk
d zk +

P
xi2A\B

ci
d xi + d cde

[
P
yj 62B

aj
d yj + d

P
xi2A\B c

0
ixi+t

0

d e]



  

Interpolation with ceilings - example

 No blowup of interpolants wrt. the size of the proofs

(1 · 0) ´ ?

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

y + 2nx · 0 ¡y ¡ 2nz + 1 · 0

2nx¡ 2nz + 1 · 0
¡y ¡ 2nx¡ n + 1 · 0 y + 2nz ¡ n · 0

¡2nx+ 2nz ¡ 2n + 1 · 02n ¢ (x¡ z + 1 · 0)



  

Interpolation with ceilings - example

 No blowup of interpolants wrt. the size of the proofs

(1 · 0) ´ ?

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

y + 2nx · 0 ¡y ¡ 2nz + 1 · 0

2nx¡ 2nz + 1 · 0
¡y ¡ 2nx¡ n + 1 · 0 y + 2nz ¡ n · 0

¡2nx+ 2nz ¡ 2n + 1 · 02n ¢ (x¡ z + 1 · 0)

[y + 2nx · 0] [0 · 0]

[y + 2nx · 0] [¡y ¡ 2nx¡ n + 1 · 0] [0 · 0]

[¡y ¡ 2nx¡ n + 1 · 0]

[2nd y
2ne ¡ y ¡ n + 1 · 0]

[x + d y
2ne · 0]



  Interpolant:

Interpolation with ceilings - example

 No blowup of interpolants wrt. the size of the proofs

(1 · 0) ´ ?

A :=

½
¡y ¡ 2nx¡ n + 1 · 0
y + 2nx · 0

B :=

½
¡y ¡ 2nz + 1 · 0
y + 2nz ¡ n · 0

y + 2nx · 0 ¡y ¡ 2nz + 1 · 0

2nx¡ 2nz + 1 · 0
¡y ¡ 2nx¡ n + 1 · 0 y + 2nz ¡ n · 0

¡2nx+ 2nz ¡ 2n + 1 · 02n ¢ (x¡ z + 1 · 0)

[y + 2nx · 0] [0 · 0]

[y + 2nx · 0] [¡y ¡ 2nx¡ n + 1 · 0] [0 · 0]

[¡y ¡ 2nx¡ n + 1 · 0]

[2nd y
2ne ¡ y ¡ n + 1 · 0]

Interpolant:

[x + d y
2ne · 0]



  

SMT(LIA) with ceilings

 Like modular equations, also ceilings can be eliminated via 
preprocessing

 Replace every term                         
with a fresh integer variable 

 Add the 2 unit clauses 
(encoding the meaning of ceiling:                                )

where     is the least common multiple of the denominators of the 
coefficients in 

dte
xdte

(l ¢ xdte ¡ l ¢ t + l · 0)

(l ¢ t¡ l ¢ xdte · 0)

l
t



  

Bit-vectors (BV)

 Interpolation for bit-vectors is hard

 Only some limited work done so far

 Most efficient solvers use eager encoding into SAT, which is 
efficient but not good for interpolation

 Easy in principle, but not very useful interpolants

 Try to exploit lazy bit-blasting to incorporate BV into DPLL(T)



  

Interpolation via Bit-Blasting

 Interpolation via bit-blasting is easy…

 From          and           generate            and 

Each var     of width n encoded with n Boolean vars

 Generate a Boolean interpolant           for

 Replace every variable      in          with the bit-selection
and every Boolean connective with the corresponding bit-wise 
connective:

 ...but quite impractical

 Generates “ugly” interpolants

 Word-level structure of the original problem completely lost

 How to apply word-level simplifications?

BBoolABV BBV
x bx1 : : : b

x
n

IBool

ABool

(ABool; BBool)
IBoolbxi x[i]

^ 7! &; _ 7! j; : 7!»



  

Interpolation via Bit-Blasting - Example

 

A word-level interpolant is:

...but with bit-blasting we get:

A
def
= (a[8] ¤ b[8] = 15[8]) ^ (a[8] = 3[8])

B
def
= :(b[8]%uc[8] = 1[8]) ^ (c[8] = 2[8])

I
def
= (b[8] ¤ 3[8] = 15[8])

I 0
def
= (b[8][0] = 1[1]) ^ ((b[8][0]& » ((((((» b[8][7]& » b[8][6])&

» b[8][5])& » b[8][4])& » b[8][3])&b[8][2])& » b[8][1])) = 0[1])



  

Alternative: lazy bit-blasting and DPLL(T)

 Exploit lazy bit-blasting

 Bit-blast only BV-atoms, not the whole formula

 Boolean skeleton of the formula handled by the “main” DPLL, like 
in DPLL(T)

 Conjunctions of BV-atoms handled (via bit-blasting) by a “sub”-
DPLL (DPLL-BV) that acts as a BV-solver

Standard
Boolean Interpolation

BV-specific Interpolation
for conjunctions of constraints



  

Interpolation for BV constraints

 A layered approach

 Apply in sequence a chain of procedures of increasing 
generality and cost

 Interpolation in EUF

 Interpolation via equality inlining

 Interpolation via Linear Integer Arithmetic encoding

 Interpolation via bit-blasting



  

Interpolation in EUF

 Treat all the BV-operators as uninterpreted functions

 Exploit cheap, efficient algorithms for solving and 
interpolating  modulo EUF

 Possible because we avoid bit-blasting upront!

Example: A
def
= (x1[32] = 3[32]) ^ (x3[32] = x1[32] ¢ x2[32])

B
def
= (x4[32] = x2[32]) ^ (x5[32] = 3[32] ¢ x4[32])^

:(x3[32] = x5[32])

IUF
def
= x3 = f ¢(f3; x2)

IBV
def
= x3[32] = 3[32] ¢ x2[32]



  

Interpolation via Equality Inlining

 Interpolation via quantifier elimination: given           , an 
interpolant can be computed by eliminating quantifiers from
               or from

 In general, this can be very expensive for BV

 Might require bit-blasting and can cause blow-up of the formula

 Cheap case: non-common variables occurring in “definitional” 
equalities

Example:                         and      does not occur in    , then

(A;B)

9x 62BA 9x 62A:B

(x = e) ^ ' x e

9x((x = e) ^ ') =) '[x 7! e]



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

Example:

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Definitional equalities

Example:



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
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Example:



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^

^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^

^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def
= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def
= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^

I
def
= (032 ·s (024 :: x2[8] ¡ 1[32])



  

Interpolation via LIA Encoding

 Simple idea (in principle):

 Encode a set of BV-constraints into an SMT(LIA)-formula

 Generate a LIA-interpolant using existing algorithms

 Map back to a BV-interpolant

 However, several problems to solve:

 Efficiency

 More importantly, soundness



  

Encoding BV into LIA

 Use well-known encodings from BV to SMT(LIA)

 Encode each BV term       as an integer variable        and the 
constraints

 Encode each BV operation as a LIA-formula. 

t[n] xt
(0 · xt) ^ (xt · 2n ¡ 1)

t[i¡j+1]
def
= t1[n][i : j] (xt = m) ^ (xt1 = 2i+1h + 2jm + l)^

l 2 [0; 2i) ^m 2 [0; 2i¡j+1) ^ h 2 [0; 2n¡i¡1)

t[n]
def
= t1[n] + t2[n] (xt = xt1 + xt2 ¡ 2n¾) ^ (0 · ¾ · 1)

t[n]
def
= t1[n] ¢ k (xt = k ¢ xt1 ¡ 2n¾) ^ (0 · ¾ · k)

Examples:



  

From LIA-interpolants to BV-interpolants

 “Invert” the LIA encoding to get a BV interpolant

 Unsound in general

 Issues due to overflow and (un)signedness of operations

 Our (very simple) solution: check the interpolants

 Given a candidate interpolant    , use our SMT(BV) solver to 

check the unsatisfiability of 

 If successful, then     is an interpolant

Î

Î

(A ^ :Î) _ (B ^ Î)



  

From LIA- to BV-interpolants: examples

 

Encoding into LIA:

ALIA
def
=(xy2 = 16xy5 + xy5) ^ (xy1 = xy2) ^ (xy5 = 1)^

(xy1 2 [0; 28)) ^ (xy2 2 [0; 28)) ^ (xy5 2 [0; 24))

BLIA
def
=:(xy4+1 · xy2) ^ (xy4+1 = xy4 + 1 ¡ 28¾)^

(xy4 = 1)^
(xy4+1 2 [0; 28)) ^ (xy4 2 [0; 28)) ^ (0 · ¾ · 1)

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])



  

From LIA- to BV-interpolants: examples

 

LIA-Interpolant:

BV-interpolant:

ILIA
def
= (17 · xy2)

I
def
= (17[8] ·u y2[8])

Good!

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])



  

From LIA- to BV-interpolants: examples

 

Encoding into LIA:

ALIA
def
=(xy2 = 81) ^ (xy3 = 0) ^ (xy4 = xy2)^

(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))

BLIA
def
=(xy13 = 28 ¢ 0 + xy4) ^ (255 · xy13+(0::y3))^

(xy13+(0::y3) = xy13 + 28 ¢ 0 + xy3 ¡ 216¾)^
(xy13 2 [0; 216)) ^ (xy13+(0::y3) 2 [0; 216))^
(0 · ¾ · 1)

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might 
overflow in BV!

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might 
overflow in BV!

A correct interpolant would be

I
def
= (0[1] :: y3[8] + 0[1] :: y4[8] ·u 81[9])

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

Encoding into LIA:

ALIA
def
=:(xy4+1 · xy3) ^ (xy2 = xy4+1)^

(xy4+1 = xy4 + 1 ¡ 28¾1)^
(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))^
(xy4+1 2 [0; 28)) ^ (0 · ¾1 · 1)

BLIA
def
=(xy2+1 · xy3) ^ (xy7 = 3) ^ (xy7 = xy2+1)^

(xy2+1 = xy2 + 1 ¡ 28¾2)^
(xy7 2 [0; 28)) ^ (xy2+1 2 [0; 28)) ^ (0 · ¾2 · 1)

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î0
def
= (65281[16] ·u (0[8] :: y2[8]) ¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î0
def
= (65281[16] ·u (0[8] :: y2[8]) ¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)

Still
Wrong!

In this case, the problem
is also the sign



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Correct interpolant

I
def
= (65281[16] ·s (0[8] :: y2[8]) ¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])



  

Interpolation in combined theories

 Combination of theories 
encoded directly in the 
proof of unsatisfiability P

    -lemmas for the 
individual theories

 P contains interface 
equalities 

 Delayed Theory Combination (DTC): use the DPLL engine to 
perform theory combination 

 Independent     -solvers, that interact only with DPLL

 How: Boolean search space augmented with interface equalities

 Equalities between variables shared by the two theories

?

T1T2

T1

T1 T1

T2
T2

T2

P

Ti

Ti



  

Interpolation in combined theories

 How: Split each   -lemma       
                into                         
                with                  
using available algorithms 

     's must be equality-
interpolating and convex

 Propagate the changes 
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation: 

 Some interface equalities (x = y) are AB-mixed: 

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

?

T1T2

T1

T1 T1

T2
T2

T2

P



  

Interpolation in combined theories

 How: Split each   -lemma       
                into                         
                with                  
using available algorithms 

     's must be equality-
interpolating and convex

 Propagate the changes 
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation: 

 Some interface equalities (x = y) are AB-mixed: 

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

?

T1
T2

T1 T1 T1

T2
T2

T2
T2

T1

T2

P'



  

Interpolation in combined theories

 How: Split each   -lemma       
                into                         
                with                  
using available algorithms 

     's must be equality-
interpolating and convex

 Propagate the changes 
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation: 

 Some interface equalities (x = y) are AB-mixed: 

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

Problem: splitting can 
cause exponential blow-up 
in P

Solution: control the kind of 
proofs generated by DPLL,
so that the splitting can be
performed efficiently
(ie-local proofs) ?

T1
T2

T1 T1 T1

T2
T2

T2
T2

T1

T2

P'



  

Interpolation in combined theories

 After splitting AB-mixed equalities, we can compute an 
interpolant as usual

 Nothing special needed for theory combination!

 Because theory combination is encoded in the proof, we can 
reuse the Boolean interpolation algorithm

 Features:

 No need of ad-hoc interpolant combination procedures 

 Exploit state-of-the-art SMT solvers, based on (variants of) DTC

 Split only when necessary



  

Example



  

Example

T-lemmas:

?

£3

(a2 + z = 1)

(a1 + z = 0)

£4

£5

£6

£7

(z ¡ x2 = 1)

(a1 = f(x1))

(a2 = f(x2))

(z ¡ x1 = 1)



  

Example

T-lemmas: Pivot: (x
1
 = x

2
)

?

£3

(a2 + z = 1)

(a1 + z = 0)

£4

£5

£6

£7

(z ¡ x2 = 1)

(a1 = f(x1))

(a2 = f(x2))

(z ¡ x1 = 1)

C3 C2

£1 C1
£2

Pivot: (a
1
 = a

2
)

subproof 
with int.eqs.



  

Example

C3 C2

C1£1

£2

Pie subproof:

T-lemmas:



  

Example

C3 C2

C1£1

£2

Pie subproof:

T-lemmas: Split (x
1 
= x

2
) in C

1



  

Example

Pie subproof:

T-lemmas:
C3 C2

£1 C01

C001£02

£2

C01 ´(x1 = z ¡ 1) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

C 001 ´(z ¡ 1 = x2) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)



  

Example

Pie subproof:

T-lemmas:
C3 C2

£1 C01

C001£02

£2

C01 ´(x1 = z ¡ 1) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

C 001 ´(z ¡ 1 = x2) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

Split (a
1 
= a

2
) in C

2



  

Example

Pie subproof:

£1

£2

C001£02

C01£01

C002

C02C03
C02 ´(a1 = f(z ¡ 1)) _ :(a2 = f(x2))_

:(a1 = f(x1)) _ :(x1 = z ¡ 1)_
:(z ¡ 1 = x2)

C 002 ´(f(z ¡ 1) = a2) _ :(a2 = f(x2))_
:(a1 = f(x1)) _ :(x1 = z ¡ 1)_
:(z ¡ 1 = x2)

C03 ´:(a1 + z = 0) _ :(a2 + z = 1)_
:(a1 = f(z ¡ 1)) _ :(f(z ¡ 1) = a2)



  

Proof Tree Preserving Interpolation

 [Christ, Hoenicke and Nutz, TACAS 2013]

 Interpolants with AB-mixed literals without proof rewriting

 Replace AB-mixed terms              with                       
in leaves, where     is a fresh purification variable

 Eliminate the purification variable when resolving on

 

 Advantages: 

 no need of proof rewriting

 handles also for non-convex theories

 Drawbacks: 

 need T-specific interpolation rules for resolution steps

 more complex interpolation system



  

From Binary to Sequence Interpolants

 An ordered sequence of formulae                     such that

 We want a sequence of interpolants                     such that

      is an interpolant for

                               for all

 Needed in various applications (e.g. abstraction refinement)

 How to compute them?

 In general, if we compute arbitrary binary interpolants for

                                     , the second condition will not hold



  

A simple solution

 Compute       as an interpolant of

 Compute       as an interpolant of

 Claim:      is an interpolant for

 Proof (sketch):

 By ind.hyp.          is an interpolant for

so                                and

 

 Advantages: 

 simple to implement

 can use any off-the-shelf binary interpolation 

 Drawback: requires n-1 SMT calls
 



  

A more efficient algorithm

 Compute an SMT proof of unsatisfiablity P for 

 Compute each

from the same proof P

 Theorem:



  

A more efficient algorithm

 Compute an SMT proof of unsatisfiablity P for 

 Compute each

from the same proof P

 Theorem:

 Proof (sketch) – case n=3:

 Let C be a node of P with partial interpolants I' and I'' for the 
partitionings                         and                         resp. Then we 
can prove, by induction on the structure of P, that:

 The theorem then follows as a corollary

 Works also for DTC-rewritten proofs
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Introduction

 IC3 very successful SAT-based model checking algorithm

 Incremental Construction

 of Inductive Clauses

 for Indubitable Correctness

 Key principles:

 Verification by induction

 Inductive invariant built incrementally

 by discovering (relatively-)inductive clauses

 Exploiting efficient SAT solvers



  

Introduction

 IC3 has been further generalized to SMT in various ways

 We will look in some detail at one such generalization, called

IC3 with Implicit Predicate Abstraction (IC3-IA)

 Exploits several features of modern SMT solvers that we have 
discussed so far

 Incremental solving
 Assumptions and unsatisfiable cores
 Interpolation

 A “hands-down” approach

 We will build a (simple) real implementation on top of MathSAT



  

Proofs by Induction

 Given transition system                               and property

 Base case (initiation):

 Inductive step (consectution):

 Typically however,     is not inductive

 Find an inductive invariant               , stronger than
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A (very) high level view of IC3

 Given a symbolic transition system and invariant property P,
build an inductive invariant F s.t.

 Trace of formulae                                       s.t:

 for i > 0, F
i
 is a set of clauses

overapproximation of states reachable in up to i steps

Fi+1 µ Fi (so Fi j= Fi+1)
Fi ^ T j= F 0i+1
for all i < k; Fi j= P

:P
FkFk¡1I

T TT Fk¡2

F j= P
F0(X) ´ I; : : : ; Fk(X)



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           
    (i.e., check if                                     )

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           
    (i.e., check if                                     )

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

Check if s is inductive relative to F
k-1



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           
    (i.e., check if                                     )

Fk j= P

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

FkI
TT s

Fk¡2T Fk¡1

:Ps



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

 SAT: s is reachable from                     in 1 step
 Get a cube c in the preimage of s and try 

(recursively) to prove it unreachable from           , …

 c is a counterexample to induction (CTI)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0

FkFk¡1I
TT s

Fk¡2T
c

:Ps

Fk¡1 ^ :s

Fk¡2

If I is reached,
counterexample

found



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

 UNSAT:       is inductive relative to          
 Generalize c to g and block by adding        to

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

 UNSAT:       is inductive relative to          
 Generalize c to g and block by adding        to

Fk j= P

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c

FkFk¡1I
sT T

Fk¡2Fk¡2
T Fk¡1

:Ps



  

A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

FkFk¡1I Fk¡2

:P
FkFk¡2 Fk¡1

T TT

Fk+1

Fi+1

c 2 Fi



  

A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T



  

A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fi Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

If                    , P is proved,
otherwise start another round of blocking and propagation
Fi ´ Fi+1



  

IC3 pseudo-code

bool IC3(I, T, P):
    trace = [I]   # first elem of trace is init formula
    trace.push()  # add a new frame
    while True:
        # blocking phase
        while is_sat(trace.last() & ~P):
            c = extract_cube() # c |= trace.last() & ~P
            if not rec_block(c, trace.size()-1):
                return False # counterexample found

        # propagation phase
        trace.push()
        for i=1 to trace.size()-1:
            for each cube c in trace[i]:
                if not is_sat(trace[i] & ~c & T & c'):
                    trace[i+1].append(c)
            if trace[i] == trace[i+1]: 
                return True # property proved



  

IC3 pseudo-code

bool rec_block(s, i):
    if i == 0:
        return False  # reached initial states
    while is_sat(trace[i-1] & ~s & T & s'):
        c = get_predecessor(i-1, T, s')
        if not rec_block(c, i-1):
            return False
    g = generalize(~s, i)
    trace[i].append(g)
    return True



  

Correctness (sketch)

 Consider the formula                          where s is a bad cube

 If UNSAT, then           is strong enough to block s

 Since                           , then s is unreachable in k steps or less 

 Since                    , then we can add s to all 

 

Fi ^ T j= F 0i+1
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Correctness (sketch)

 Consider the formula                          where s is a bad cube

 If UNSAT, then           is strong enough to block s

 Since                           , then s is unreachable in k steps or less 

 Since                    , then we can add s to all 

 Consider now the relative induction check

 We know that                        because              (base case)

 Since                   , then we know that       holds up to k
 

 Propagation: for each            , check  

 we know that c holds up to i, if UNSAT then it holds up to i+1

 since                    ,                             and               , 

if                    then the fixpoint is an inductive invariant 

Fi ^ T j= F 0i+1

Fi ^ T j= F 0i+1



  

Inductive Clause Generalization

 Crucial step of IC3

 Given a relatively inductive clause      

compute a generalization            that is still inductive

 Drop literals from    and check that (1) still holds

 Accelerate with unsat cores returned by the SAT solver

 Using SAT under assumptions

 However, make sure the base case still holds

 If                        , then     cannot be dropped



  

Simple iterative generalization

void indgen(c, i):
    done = False
    for iter = 1 to max_iters:
        if done:
            break
        done = True
        for each l in c:
            cand = c \ {l}
            if not is_sat(I & cand) and 
               not is_sat(trace[i] & ~cand & T & cand'):
                c = get_unsat_core(cand)
                rest = cand \ c
                while is_sat(I & c):
                   l1 = rest.pop()
                   c.add(l1)
                done = False
                break



  

 When                             is satisfiable:

 s reaches        in k-i steps

 s can be reached from      in 1 step

 strengthen      by blocking cubes c in the preimage of s

 Extract CTI c from the SAT assignment

 And generalize to represent multiple bad predecessors

 Use unsat cores, exploiting a functional encoding of the transition 
relation

 If       is functional, then
 check                                 under assumptions

:P cs
s'

T

:P

Fi
Fi

Fi

CTI computation



  

SAT-based CTI generalization

void generalize_cti(cti, inputs, next):
    for i = 1 to max_iters:
        b = is_sat(cti & inputs & T & ~next')
        assert not b # assume T to be functional
        c = get_unsat_core(cti)
        if should_stop(c, cti):
            break
        cti = c



  

Example

No counterexamples of length 0

000 10x 01x 11x

001

[borrowed and adapted from F. Somenzi] 



  

Example 

Get bad cube                      in 

000 10x 01x 11x

001
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Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Update



  

Example 

000 10x 01x 11x

001

Blocking done for     . Add       and propagate forward



  

Example 

000 10x 01x 11x
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No clause propagates from      to



  

Example 

000 10x 01x 11x

001

Get bad cube                         in 



  

Example 

000 10x 01x 11x

001

Is       inductive relative to      ? 



  

Example 

000 10x 01x 11x

001

No, found CTI 



  

Example 

000 10x 01x 11x

001

Try blocking      at level 0: 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Update 



  

Example 

000 10x 01x 11x

001

Return to the original bad cube



  

Example 

000 10x 01x 11x

001

Is       inductive relative to      ? 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Update       and add new frame



  

Example 

000 10x 01x 11x

001

Perform forward propagation

From      to      :



  

Example 

000 10x 01x 11x

001

Perform forward propagation

Found fixpoint!



  

Example 

000 10x 01x 11x

001

Perform forward propagation

Inductive invariant:
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IC3 with SMT

 How to generalize from SAT to SMT?
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enough for partial correctness
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 termination?
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IC3 with SMT

 How to generalize from SAT to SMT?

 Good news: replacing the SAT solver with an SMT solver is 
enough for partial correctness

 but what about:

 termination?

 Easy! (answer)  
 the problem is in general undecidable, so no hope here

 efficiency?



  

 When                             is satisfiable:

 s reaches        in k-i steps

 s can be reached from      in 1 step

 strengthen      by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA):

 Would exclude a single point 
in an infinite space

:P cs
s'

T

:P

s'

s T
m

Single model m from SMT solver:

x = 3 ^ y = 7

Fi
Fi

Fi

Fi

RelInd(Fk¡1; T; s)                                   with SMT



  

 When                             is satisfiable:

 s reaches        in k-i steps

 s can be reached from      in 1 step

 strengthen      by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA): underapproximated quantifier elimination

 Encodes a set of predecessors

 Cheaper than full quantifier elimination

 But still potentially expensive

 Not always available

 E.g for UF+LRA

:P cs
s'

T

:P

Fi
Fi

Fi

RelInd(Fk¡1; T; s)                                   with SMT

underapproximated preimage:

s'

s T
c

(x · 3) ^ (y ¸ 7)
Fi



  

 When                             is unsatisfiable:

 Compute a generalization g of s to block

 Block more than a single cube at a time

 In the Boolean case, use inductive generalization algorithms

 For SMT, Boolean algorithms plus theory-specific “ad hoc” 
techniques

 Based on Farkas' lemma for LRA [HB SAT'12]

 [WK DATE'13] for BV

 [KJN FORMATS'12] for timed automata

RelInd(Fk¡1; T; s)                                   with SMT

   gs
s'

T

:PFi



  

Implicit Predicate Abstraction [Tonetta FM'09]

 Abstract version of k-induction, avoiding explicit computation 
of the abstract transition relation

 By embedding the abstraction in the SMT encoding

 Given a set of predicates     and an unrolling depth    ,

the abstract path                is 

P k

^

1·h<k
(T (Y h¡1; Xh) ^

^

p2P
(p(Xh)$ p(Y h)) ^ T (Y k¡1; Xk)

[Pathk;P

T

T

T

E
Q

E
Q

E
Q

E
QEQ

def
=V

p2P(p(Y )$ p(X))



  

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation                 instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

T (X;X 0)

P



  

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation                 instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If UNSAT ⇨inductive strengthening as in the Boolean case

 No theory-specific technique needed

 Theory reasoning confined within the SMT solver

T (X;X 0)

P



  

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation                 instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If SAT   ⇨ abstract predecessor    from the SMT model



 No quantifier elimination needed

T (X;X 0)

P

c

c
def
= fp(X) j p 2 P ^ ¹ j= p(X)g [ f:p(X) j ¹ 6j= p(X)g

¹



  

Example







                            is SAT

 Compute a predecessor with 
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                            is SAT
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 Compute predecessor from SMT model



  

Example







                            is SAT

 Compute a predecessor with 



 Compute predecessor from SMT model



  

Abstraction Refinement

 Abstract predecessors are overapproximations

 Spurious counterexamples can be generated

 We can apply standard abstraction refinement techniques

 Use sequence interpolants to discover new predicates

 Sequence of abstract states

 SMT check on

 If unsat, compute sequence of interpolants for

 Add all the predicates in the interpolants to 



  

Incrementality

 Abstraction refinement is fully incremental

 No restart from scratch

 Can keep all the clauses of 

 Refinements monotonically strengthen 

 All IC3 invariants on                      are preserved 

 Abstract counterexample check can use incremental SMT

Fi+1 µ Fi (so Fi j= Fi+1)
for all i < k; Fi j= P
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 Init:
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Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:
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 Predicates       



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube

 SMT check

 SAT with model

 Evaluate predicates wrt.

 Return 

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:
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 Rec. block c

 Check 

 

 Predicates       

 Trace:
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Example

 System S with 2 state vars c and d

 Init:

 Trans:
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 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 2



 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 . . .

 Update

 . . .

 Update
 

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Forward propagation

 

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 3



 

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block c

 Check

 

 SMT model

 (Abstract) predecessor

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block s (at level 2)

 . . .

 Reached level 0, abstract cex:

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 SMT check                                                         

UNSAT

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

                                                                                   

 Predicates       

 Trace:
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 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

                                                                                   

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

                                                                                   

 Predicates       

 Trace:

Update predicates



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Predicates       

 Trace:
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 Trans:
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 System S with 2 state vars c and d
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 Trans:
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 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

SAFE

 Predicates       

 Trace:



  

Implementing IC3-IA

 Get the code at: 
http://es-static.fbk.eu/people/griggio/vtsa2015/

 Open source (GPLv3) implementation on top of MathSAT 
http://mathsat.fbk.eu/

 Incremental interface
 Assumptions and unsat core
 Interpolation

 Simple (~1700 lines of C++, including parser and statistics, 
according to David A. Wheeler's 'SLOCCount') yet competitive

 Input in VMT format (a simple extension of SMT-LIB)

https://nuxmv.fbk.eu/index.php?n=Languages.VMT

 Let's analyse it!

http://es-static.fbk.eu/people/griggio/vtsa2015/
http://mathsat.fbk.eu/
https://nuxmv.fbk.eu/index.php?n=Languages.VMT
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Linear Temporal Logic

 Syntax

 A (quantifier-free) first-order formula

           (neXt     )

             (     Until     )

 Semantics

 Given an infinite path









 A system S satisfies an LTL formula      (             ) iff all inifinite 
paths of S satisfy

           (Finally     )

           (Globally     )



  

LTL verification

 Automata-based approach:

 Given an LTL property     , build a transition system       
with a fairness condition         , such that

 

 Finite-state case: 

 lasso-shaped counterexamples, with        at least once in the 
loop

 liveness to safety transformation: absence of lasso-shaped 
counterexamples as an invariant property

 Duplicate the state variables
 Non-deterministically save the current state
 Remember when         in extra state var  
 Invariant: 



  

Liveness to Safety for Inifinite States

 Unsound for infinite-state systems

 Not all counterexamples are lasso-shaped

 Liveness to safety with Implicit Abstraction

 Apply the l2s transformation to the abstract system

 Save the values of the predicates instead of the concrete state
 Do it on-the-fly, tightly integrating l2s with IC3

 Sound but incomplete

 When abstract loop found, simulate in the concrete and refine
 Might still diverge during refinement

 Intrinsic limitation of state predicate abstraction



  

K-liveness

 Simple but effective technique for LTL verification of finite-
state systems

 Key insight:                                        iff exists k such that   
is visited at most k times

 Again, a safety property

 K-liveness: increase k incrementally, within IC3

 Liveness checking as a sequence of safety checks

 Exploits the highly incremental nature of IC3

 Sound also for infinite-state systems

 What about completeness?



  

K-liveness for hybrid automata

 K-liveness is incomplete for infinite-state systems

 Even if                                         , there might be no concrete k
bound for the number of violations of 

 K-zeno: extension of K-liveness for hybrid automata

 Key idea: exploit progress of time to make k-liveness converge

 By extending the original model with a “symbolic fairness 
monitor”       that forces time progress

 Under certain conditions, restores completeness of k-liveness

 If                                           , then exists k such that 
                                visits        at most k times

 (clearly, safety check can still diverge)
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