
SAT-based Approaches for Test & Verification of
Integrated Circuits

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert
Chair of Computer Architecture
Institute of Computer Science
Faculty of Engineering
schubert@informatik.uni-freiburg.de

Summer School on Verification Technology, Systems & Applications 2015

About Me

Just a very short CV

Studied computer science & microsystems engineering at the
University of Freiburg

Made my PhD working on efficient parallel SAT solving at the
University of Freiburg

Member of the Transregional Collaborative Research Center 14
AVACS – Automatic Verification and Analysis of Complex
Systems

Principal investigator within the cluster of excellence
BrainLinks-BrainTools

Member of the part-time distance learning program Intelligent
Embedded Microsystems

VTSA’15 Tobias Schubert – SAT-based Test & Verification 2 / 192

About Me

My research interests include

Efficient (parallel) algorithms for SAT and related domains

Real-world applications using
SAT,
#SAT,
MaxSAT,
QBF, and
SMT solvers

as the underlying backend

Embedded & cyber-physical systems

Industrial internet & internet of things

E-learning, blended learning, distance teaching

VTSA’15 Tobias Schubert – SAT-based Test & Verification 3 / 192

Collaborators

University of Freiburg

Bernd Becker

Jan Burchard

Alejandro Czutro

Linus Feiten

Karina Gitina

Paolo Marin

Sven Reimer

Matthias Sauer

Karsten Scheibler

Christoph Scholl

Ralf Wimmer

University of Bremen

Rolf Drechsler

University of Oldenburg

Martin Fränzle

University of Passau

Ilia Polian

University of Potsdam

Torsten Schaub

MPI Saarbrücken

Christoph Weidenbach

VTSA’15 Tobias Schubert – SAT-based Test & Verification 4 / 192

Motivation: Embedded Systems

Embedded Systems

Information processing systems
embedded into a “larger” product

Without Embedded Systems

No cars would drive today

No planes would fly today

No factory would work today

No mobile communication would be
possible

Verifying designs and testing produced
chips are mandatory tasks, in particular for
safety-critical applications!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 5 / 192

Motivation: Embedded Systems

Embedded Systems

Information processing systems
embedded into a “larger” product

Without Embedded Systems

No cars would drive today

No planes would fly today

No factory would work today

No mobile communication would be
possible

Verifying designs and testing produced
chips are mandatory tasks, in particular for
safety-critical applications!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 5 / 192

Motivation: Automotive Area

Many functions controlled by embedded systems
Multiple networks / system busses
Up to 70 different processors within one car

VTSA’15 Tobias Schubert – SAT-based Test & Verification 6 / 192

Motivation: Automotive Area

Consequences

Increasing system complexity

Increasing number of dependencies between different
subsystems

Up to 40% of the total costs are caused by electronics & software

Up to 90% of the innovations are driven by electronics & software

40–50% of all car breakdowns are caused by electronics &
software

Errors related to electronics or software are responsible for more
than 40% of all call-backs

Reliable function is of outmost importance, because otherwise
human lives can be endangered!

⇒ Safety-critical application of embedded systems!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 7 / 192

Verifying Integrated Circuit Designs

Focus is on detecting design errors

Errors which occur during the translation of a specification into
the final integrated circuit (implementation)

Errors in the design make all produced chips erroneous

⇒ Formal methods to avoid design errors before producing any
chip

VTSA’15 Tobias Schubert – SAT-based Test & Verification 8 / 192

Testing Integrated Circuits

Focus is on production errors
Defects which are caused during the production of single chips
and which change their functionality
Causes are contaminations, shifted exposure masks, wrong
doping, . . .

⇒ Formal methods to ensure that all production errors can be found

VTSA’15 Tobias Schubert – SAT-based Test & Verification 9 / 192

But why using SAT Solvers?

Tremendous performance improvements within the last 15 years

Nowadays SAT solvers (and their extensions) are able to . . .

solve problems coming from real-world applications (e.g.,
large industrial circuits)
handle optimization & enumeration problems, multi-valued
domains, hybrid systems

VTSA’15 Tobias Schubert – SAT-based Test & Verification 10 / 192

Typical SAT-based Flow

VTSA’15 Tobias Schubert – SAT-based Test & Verification 11 / 192

Outline

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

VTSA’15 Tobias Schubert – SAT-based Test & Verification 12 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 13 / 192

Boolean Satisfiability Problem (SAT)

Given
A Boolean formula ϕ in Conjunctive Normal Form (CNF)

A CNF is a conjunction of clauses: C1∧ . . .∧Cm
A clause is a disjunction of literals: (l1∨ . . .∨ lk)
A literal l is a Boolean variable or its negation: l or ¬l

Question
Is there a valuation of the variables that satisfies ϕ?

Example
x1 = x2 = 0,x3 = 1 satisfies
ϕ = (¬x1∨x2∨x3)∧ (x1∨¬x2∨¬x3)

Techniques for solving instances of the SAT problem are called
SAT algorithms or SAT solvers
Complexity of the “general” SAT problem: NP-complete
(S.A. Cook, 1971)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 14 / 192

Overview of SAT Algorithms

Focus here is on complete methods

Due to a systematic procedure complete solvers are able to
prove the unsatisfiability of a CNF formula

DP algorithm
M. Davis, H. Putnam, 1960
Based on resolution

DLL algorithm
M. Davis, G. Logemann, D. Loveland, 1962
Based on depth-first search

Modern SAT algorithms
Based on the DLL algorithm, but enriched with efficient
data structures and several acceleration & optimization
techniques
zChaff, MiniSat, MiraXT, lingeling, antom, Glucose

VTSA’15 Tobias Schubert – SAT-based Test & Verification 15 / 192

Preliminaries

Definition (Empty Clause)

The empty clause, denoted with 2, describes the empty set of literals,
and it is unsatisfiable by definition.

Definition (Empty Formula)

The empty formula describes an empty set of clauses and it is
satisfiable by definition.

VTSA’15 Tobias Schubert – SAT-based Test & Verification 16 / 192

Preliminaries

Definition (Pure Literal)

Let F be a CNF formula and L be a literal contained in F . L is called a
pure literal iff L occurs in F only positive or only negative.

Steps in order to simplify a CNF formula F

Delete from F all clauses in which a pure literal L occurs,
because these ones will be satisfied by an appropriate
assignment to L

Remark

As it is rather time consuming, pure literal detection is applied by
modern SAT solvers during pre-/inprocessing only

VTSA’15 Tobias Schubert – SAT-based Test & Verification 17 / 192

Preliminaries

Definition (Unit Clause)

A clause consisting of a single literal L is called a unit clause with L
being the corresponding unit literal.

Steps in order to simplify a CNF formula F

Assign a unit literal L to 1

Delete from F all clauses containing L

Delete all occurrences of ¬L

VTSA’15 Tobias Schubert – SAT-based Test & Verification 18 / 192

Preliminaries

Definition (Subsumption)

Let C1 and C2 be two clauses. C1 subsumes C2 iff all literals
occurring in C1 also occur in C2: C1 ⊆ C2.

Steps in order to simplify a CNF formula F

Delete all clauses from F that are subsumed by at least one
other clause of F

Remark

Typically, modern SAT solvers apply subsumption checks during
pre-/inprocessing only

VTSA’15 Tobias Schubert – SAT-based Test & Verification 19 / 192

Preliminaries

Definition (Resolution)

Let C1 and C2 be two clauses and L be a literal with the following
property: L ∈ C1 and ¬L ∈ C2. Then one can compute the clause R

R =
(
C1−{L}

)
∪
(
C2−{¬L}

)
that is denoted as the resolvent of the clauses C1 and C2 over L.
Typically, the notation R = C1⊗LC2 is used.

Lemma (Resolution Lemma)

Let F be a CNF formula and R be the resolvent of two clauses C1 and
C2 from F. Then F and F ∪{R} are equivalent: F ≡ F ∪{R}.

VTSA’15 Tobias Schubert – SAT-based Test & Verification 20 / 192

Preliminaries

Definition
Let F be a CNF formula. Then Res(F) is defined as

Res(F) = F ∪{R |R is the resolvent of two clauses in F}.

Moreover, let us define:

Res0(F) = F

Rest+1(F) = Res(Rest(F)) for t ≥ 0
Res∗(F) = limt≥0 Rest(F)

Theorem (Resolution Theorem)

A CNF formula F is unsatisfiable iff 2 ∈ Res∗(F).

VTSA’15 Tobias Schubert – SAT-based Test & Verification 21 / 192

Preliminaries

Definition
Let F be a CNF formula and xi a variable occurring in F with L = xi
and ¬L = ¬xi . The we define P, N and W as follows:

P is the set of clauses in F which contain L:

P = {C ∈ F |L ∈ C}

N is the set of clauses in F which contain ¬L:
N = {C ∈ F |¬L ∈ C}

W is the set of clauses in F which contain neither L nor ¬L:
W = {C ∈ F |L 6∈ C∧¬L 6∈ C}

Obviously, we have F = P∪N∪W .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 22 / 192

Preliminaries

Definition (Pairwise Resolution)

Using this partitioning of the clauses we define P⊗xi N as the set of
clauses, which can be constructed by resolution of all pairs
(p,n) ∈ P×N:

P⊗xi N = {R |(R = C1⊗xi C2)∧ (C1 ∈ P)∧ (C2 ∈ N)}.

Theorem (Variable Elimination)

Let F be a formula in CNF and xi a variable which appears both
positive and negative in F. Further let the sets P, N, and W be the
partition of F as defined before.
Then F = P∪N∪W and F ′ = (P⊗xi N)∧W are satisfiability
equivalent.

VTSA’15 Tobias Schubert – SAT-based Test & Verification 23 / 192

DLL Algorithm

Main idea: If a CNF formula F is satisfiable, then for an arbitrary
variable xi occuring in F either xi = 1 or xi = 0 must hold
⇒ Try both cases one after the other
⇒ Depth-first search

Applying unit clause & pure literal rule to accelerate the search

Recursive algorithm, in particular the given formula gets
modified when going from recursion level r to r +1

In the literature both “DLL” and “DPLL” can be found

VTSA’15 Tobias Schubert – SAT-based Test & Verification 24 / 192

DLL Algorithm

bool DLL(CNF F)
{

if (F = /0) { return SATISFIABLE; } // Empty set of clauses
if (2 ∈ F) { return UNSATISFIABLE; } // Empty Clause
if (F contains a unit clause (L)) // Unit Clause
{

// Unit Subsumption.
F ′ = F −{C |(L ∈ C)∧ (C ∈ F)∧ (C 6= (L))};
// Unit Resolution.
P = {(L)};
N = {C |(¬L ∈ C)∧ (C ∈ F ′)};
W = F ′−P−N;
return DLL([P⊗L N]∧W);

}
if (F contains a pure literal L) // Pure Literal

{
// Delete from F every clause containing L.
F ′ = F −{C |(L ∈ C)∧ (C ∈ F)};
return DLL(F ′);

}
L = SelectLiteral(F); // Choose a Literal
if (DLL(F ∪{(L)}) == SATISFIABLE) // Case distinction

{ return SATISFIABLE; }
else

{ return DLL(F ∪{(¬L)}); }
}

VTSA’15 Tobias Schubert – SAT-based Test & Verification 25 / 192

DLL Algorithm

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1
1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x1 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1
1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x1 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x2 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x2 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Unit clauses x3 = 0 and x3 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Contradiction/conflict

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x2 = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x2 = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Unit clauses x3 = 0 and x3 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Contradiction/conflict

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

10

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x1 = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

10

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x1 = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

x2

10

0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Pure literal x2 = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

x2

10

0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Pure literal x2 = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

x2

10

0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Formula satisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

From DLL to modern SAT Algorithms

Overall

DLL algorithm
Recursive procedure
For the transition from recursion level r to level r +1 the
given formula gets modified
For backtracking from level r +1 to r the original
(sub)formula at level r has to be restored

Modern SAT algorithms
Non-recursive implementation
Apart from special cases (preprocessing), the CNF remains
unmodified
Typically, the pure literal rule is not applied

VTSA’15 Tobias Schubert – SAT-based Test & Verification 27 / 192

From DLL to modern SAT Algorithms

Unit clause

DLL algorithm
A clause consisting exactly one literal

Modern SAT algorithms
In addition to the rule above, clauses where all literals but
one are assigned with negated polarity are also referred to
as unit clauses
Example: Assignment x1 = 0,x2 = 1 turns (x1,¬x2,x3) into a
unit clause
In the example, the evaluation x1 = 0,x2 = 1 forces the
assignment x3 = 1 in order to satisfy the clause (x1,¬x2,x3)
⇒ implication

VTSA’15 Tobias Schubert – SAT-based Test & Verification 28 / 192

From DLL to modern SAT Algorithms

Unit propagation to determine all implications forced by a variable
assignment

DLL algorithm
Repeated application of the unit clause rule on successsive
recursion levels until the rule cannot be applied anymore

Modern SAT algorithms
Done non-recursively, also called Boolean Constraint
Propagation (BCP)
Example: For the CNF F = (x1,¬x2)∧ (x1,x2,x3)∧ (¬x3,x4),
x1 = 0 leads to the implications x2 = 0,x3 = 1,x4 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 29 / 192

From DLL to modern SAT Algorithms

Contradiction/conflict

DLL algorithm
Empty clause

Modern SAT algorithms
Unsatisfied clause
Example: Valuation x1 = 0,x2 = 1,x3 = 0 makes
(x1,¬x2,x3) unsatisfied, and so the whole CNF formula
containing it cannot be satisfied anymore

VTSA’15 Tobias Schubert – SAT-based Test & Verification 30 / 192

From DLL to modern SAT Algorithms

Conflict analysis & backtracking

DLL algorithm
The combination of the decisions done before will always
be considered as the origin of a conflict
Backtracking to the recursion level of the last “branching” in
which one case for a variable assignment has not been
explored yet
If such a recursion level does not exist, the given CNF
formula is unsatisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 31 / 192

From DLL to modern SAT Algorithms

Conflict analysis & backtracking

Modern SAT algorithms
Complex analysis of the conflict setting, because not all
“branchings” done before have to be involved in the current
conflict
Learning of a conflict clause via resolution to avoid running
into the same conflict again
(Non-)chronological backtracking according to the derived
conflict clause
If a conflict occurs on decision level 0, the given CNF
formula is unsatisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 32 / 192

Modern SAT Algorithms

Main techniques of today’s SAT solvers

Preprocessing

In turn. . .
Choose the next decision variable
Boolean constraint propagation / unit propagation
If necessary, conflict analysis & backtracking

At some fixed points during the search process
Unlearning (of some conflict clauses)
Restarts
Inprocessing

In case of a satisfiable CNF formula
Output the satisfying variable assignment⇒ model

VTSA’15 Tobias Schubert – SAT-based Test & Verification 33 / 192

Modern SAT Algorithms

bool SequentialSatEngine(CNF F)
{

if (PreprocessCNF(F) == CONFLICT) // Preprocessing the CNF formula
{ return UNSATISFIABLE; } // Problem unsatisfiable

while (true)
{

if (DecideNextBranch()) // Choice of the next unassigned variable
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation
{

BLevel = AnalyzeConflict(); // Conflict analysis
if (BLevel > 0)

{ Backtrack(BLevel); } // Cancel the „incorrect“ assignment
else

{ return UNSATISFIABLE; } // Problem unsatisfiable
}

}
else
{ return SATISFIABLE; } // All variables assigned, problem satisfiable

}
}

Not explicitly stated: Inprocessing, unlearning, restarts, model output

VTSA’15 Tobias Schubert – SAT-based Test & Verification 34 / 192

Modern SAT Algorithms

bool SequentialSatEngine(CNF F)
{

if (PreprocessCNF(F) == CONFLICT) // Preprocessing the CNF formula
{ return UNSATISFIABLE; } // Problem unsatisfiable

while (true)
{

if (DecideNextBranch()) // Choice of the next unassigned variable
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation
{

BLevel = AnalyzeConflict(); // Conflict analysis
if (BLevel > 0)

{ Backtrack(BLevel); } // Cancel the „incorrect“ assignment
else

{ return UNSATISFIABLE; } // Problem unsatisfiable
}

}
else
{ return SATISFIABLE; } // All variables assigned, problem satisfiable

}
}

Not explicitly stated: Inprocessing, unlearning, restarts, model output

VTSA’15 Tobias Schubert – SAT-based Test & Verification 35 / 192

Preprocessing

Goal
Reduce the formula’s size in terms of clauses and literals to
speed up the search process

Observation from the experience
As a rule of thumb, the size of a formula is related to the
time necessary for the SAT algorithm to solve it

Identification & preprocessing of unit clauses within the original
set of clauses belong to the common operations done in modern
SAT algorithms

It is very important to find a good compromise between the
additional effort required by preprocessing and the expected
saving during the search process

VTSA’15 Tobias Schubert – SAT-based Test & Verification 36 / 192

Preprocessing

Unit Propagation Lookahead (UPLA)

Fix a variable xi to 0, check implications; then change its value
to xi = 1, check implications. Simplify the formula exploiting the
following consequences:

(xi = 0→ conflict)∧ (xi = 1→ conflict)⇒ UNSAT
(xi = 0→ conflict)⇒ xi = 1
(xi = 1→ conflict)⇒ xi = 0
(xi = 0→ xj = 1)∧ (xi = 1→ xj = 1)⇒ xj = 1
(xi = 0→ xj = 0)∧ (xi = 1→ xj = 0)⇒ xj = 0
(xi = 0→ xj = 0)∧ (xi = 1→ xj = 1)⇒ xi ≡ xj

VTSA’15 Tobias Schubert – SAT-based Test & Verification 37 / 192

Preprocessing

Unit Propagation Lookahead (UPLA)

Advantage
Built on top of the components already available in the
solver

Disadvantages
Requires binary clauses in the original formula
Necessary to extend the model when e. g. xi ≡ xj is
detected and all the occurrences of xi are substituted with xj
In general quite time consuming, in particular if all the
variables are tested

VTSA’15 Tobias Schubert – SAT-based Test & Verification 38 / 192

Preprocessing

Application of resolution

Advantages
No particular kind of clauses necessary in the original
formula
Usually, simplifies effectively within a manageable time

Disadvantages
In case of a satisfiable CNF formula, model extension
required

Techniques (SatELite)
Self-subsuming resolution
Elimination by clause distribution
Variable elimination by substitution
Forward subsumption
Backward subsumption

VTSA’15 Tobias Schubert – SAT-based Test & Verification 39 / 192

Preprocessing

Self-subsuming resolution

Original formula
F = (x1∨¬x3)∧ (x1∨x2∨x3)∧ . . .

Resolution applied to the first two clauses
(x1∨¬x3)⊗x3 (x1∨x2∨x3) = (x1∨x2)

⇒ (x1∨x2) subsumes (x1∨x2∨x3)
⇒ Replace (x1∨x2∨x3) with (x1∨x2)

Simplified formula
F ′ = (x1∨¬x3)∧ (x1∨x2)∧ . . .

Saving
1 literal

VTSA’15 Tobias Schubert – SAT-based Test & Verification 40 / 192

Preprocessing

Elimination by clause distribution

Sometimes also called variable elimination

Original formula
F = (x1∨x2)∧ (x1∨¬x3)∧ (¬x1∨x3)∧ (¬x1∨¬x2)

Variable elimination applied to x1 leads to
F ′ = (x2∨x3)∧ (¬x3∨¬x2)

Saving
1 variable, 2 clauses, 4 literals

Applied only if it leads to a reduction of the formula’s size

VTSA’15 Tobias Schubert – SAT-based Test & Verification 41 / 192

Preprocessing

Variable elimination by substitution
Original formula

F = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2) ∧
(x4∨¬x5)∧ (¬x4∨x5∨x6)

The first three clauses represent an AND gate (Tseitin
transformation)

[(¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)]↔ [x5 ≡ x1∧x2]

Removing the first three clauses, and replacing the occurrences
of x5 by x1∧x2 in the other clauses leads to

F ′ = (x4∨¬(x1∧x2))∧ (¬x4∨ (x1∧x2)∨x6)

Transformation into CNF
F ′′ = (x4∨¬x1∨¬x2)∧ (¬x4∨x1∨x6)∧ (¬x4∨x2∨x6)

Saving: 1 variable, 2 clauses, 3 literals
Applied only if it leads to a reduction of the formula’s size
Procedure for OR, NAND, other “basic gates” quite similar

VTSA’15 Tobias Schubert – SAT-based Test & Verification 42 / 192

Preprocessing

Forward subsumption

Test if a clause generated during one of the preprocessing
techniques described before is already subsumed by one clause
of the current CNF formula

Backward subsumption

Test if a clause generated during one of the preprocessing
techniques described before subsumes one (or more) clauses of
the current CNF formula

⇒ Remove all the clauses subsumed

VTSA’15 Tobias Schubert – SAT-based Test & Verification 43 / 192

Modern SAT Algorithms

bool SequentialSatEngine(CNF F)
{

if (PreprocessCNF(F) == CONFLICT) // Preprocessing the CNF formula
{ return UNSATISFIABLE; } // Problem unsatisfiable

while (true)
{

if (DecideNextBranch()) // Choice of the next unassigned variable
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation
{

BLevel = AnalyzeConflict(); // Conflict analysis
if (BLevel > 0)

{ Backtrack(BLevel); } // Cancel the „incorrect“ assignment
else

{ return UNSATISFIABLE; } // Problem unsatisfiable
}

}
else
{ return SATISFIABLE; } // All variables assigned, problem satisfiable

}
}

Not explicitly stated: Inprocessing, unlearning, restarts, model output

VTSA’15 Tobias Schubert – SAT-based Test & Verification 44 / 192

Decision Stack

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 1

x8 = 1

x4 = 1

x23 = 1

x13 = 0

x19 = 1 x10 = 1 Central data structure of modern SAT
algorithms
Decision stack stores the order of the
executed assignments
If a model for a CNF formula could be
found, the decision stack stores the
satisfying assignment

VTSA’15 Tobias Schubert – SAT-based Test & Verification 45 / 192

Decision Stack

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 1

x8 = 1

x4 = 1

x23 = 1

x13 = 0

x19 = 1 x10 = 1

Each variable assignment has an
associated decision level
Decision level gets initialized with 0;
before a decision is made, it is
incremented by one; backtracking
decrements the decision level
appropriately
Decision level 0 plays a special role: It
stores only implications from unit
clauses in the original formula, but no
decisions
A conflict on decision level 0 means
that the CNF is unsatisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 46 / 192

Decision Stack – First Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 1

x2 = 1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

Conflict!

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 1

x3 = 0x2 = 1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 1 x2 = 0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

Conflict!

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 1 x2 = 0 x3 = 0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

x2 = 0

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

x2 = 0

x3 = 1

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

x2 = 0

x3 = 1

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 0

⇒ Formula satisfiable with, e. g., x1 = 0,x2 = 0,x3 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – Second Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

x1 = 0

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

x1 = 0

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1

x2 = 1

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

Conflict!x1 = 0

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1

x2 = 1 x3 = 0

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1 x1 = 1

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1 x1 = 1 x3 = 1

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

Conflict!

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1 x1 = 1 x3 = 1 x2 = 0

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

Conflict!

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1 x1 = 1 x3 = 1 x2 = 0

⇒ Formula unsatisfiable due to a conflict on decision level 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Modern SAT Algorithms

bool SequentialSatEngine(CNF F)
{

if (PreprocessCNF(F) == CONFLICT) // Preprocessing the CNF formula
{ return UNSATISFIABLE; } // Problem unsatisfiable

while (true)
{

if (DecideNextBranch()) // Choice of the next unassigned variable
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation
{

BLevel = AnalyzeConflict(); // Conflict analysis
if (BLevel > 0)

{ Backtrack(BLevel); } // Cancel the „incorrect“ assignment
else

{ return UNSATISFIABLE; } // Problem unsatisfiable
}

}
else
{ return SATISFIABLE; } // All variables assigned, problem satisfiable

}
}

Not explicitly stated: Inprocessing, unlearning, restarts, model output

VTSA’15 Tobias Schubert – SAT-based Test & Verification 49 / 192

Decision Heuristics

Have the role of choosing the next decision variable

Comparable with “case distinction” in the DLL algorithm

Affects the search process significantly

Modern SAT algorithms do not test whether the CNF formula is
already satisfied during the search, rather it is indirectly
guaranteed from assigning all variables without running into a
conflict

Example: F = (x1,x2,x3)∧ (¬x1,x4)
⇒ A satisfying assignment is for example x1 = 1,x4 = 1
⇒ Today’s solvers do no test whether x1 = x4 = 1 already

satisfies all the clauses, but assign the remaining variables
without generating a conflict (e. g., x2 = x3 = 0) before they
conclude that the CNF is satisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 50 / 192

Decision Heuristics

Classical decision heuristics
Several flavors

Dynamic Largest Individual/Combined Sum
Maximum Occurrences on Clauses of Minimal Size

Choice criteria
“How often does a still unassigned variable occur in
currently unresolved clauses?”
Among the unassigned variables, choose the one that
occurs most frequently in unresolved clauses
In most cases also weighted with the length of those
clauses

These heuristics are quite time consuming, because both the
status of each clause and the distribution of the variables within
the set of clauses have to be computed and kept up to date
⇒ Computation complexity defined over #clauses

VTSA’15 Tobias Schubert – SAT-based Test & Verification 51 / 192

Decision Heuristics

Variable State Independent Decaying Sum (VSIDS)

Today’s standard method used by almost every SAT solver

Computation complexity defined over #variables

No update is mandatory during the backtrack phase

Each variable xi has two activity counters Pxi and Nxi

For each literal L in a learned clause C the activity is
incremented as follows:

Pxi = Pxi +1, if L = xi
Nxi = Nxi +1, if L = ¬xi

The unassigned variable xi with the highest activity (Pxi or Nxi) is
chosen as the next decision variable

Polarity depends on whether Pxi > Nxi holds or not

VTSA’15 Tobias Schubert – SAT-based Test & Verification 52 / 192

Decision Heuristics

Variable State Independent Decaying Sum (VSIDS)

Periodically, the activities are “normalized”, i. e., divided by a
constant factor
⇒ After the normalization, the recently learned clauses have a

higher weight in comparison to the clauses learned before
the last normalization process

⇒ Takes into account the “history” of the search process

Several optimizations possible
By which amount should the activities be incremented?
How often should the normalization take place?
By which factor should the activity scores be divided?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 53 / 192

Modern SAT Algorithms

bool SequentialSatEngine(CNF F)
{

if (PreprocessCNF(F) == CONFLICT) // Preprocessing the CNF formula
{ return UNSATISFIABLE; } // Problem unsatisfiable

while (true)
{

if (DecideNextBranch()) // Choice of the next unassigned variable
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation
{

BLevel = AnalyzeConflict(); // Conflict analysis
if (BLevel > 0)

{ Backtrack(BLevel); } // Cancel the „incorrect“ assignment
else

{ return UNSATISFIABLE; } // Problem unsatisfiable
}

}
else
{ return SATISFIABLE; } // All variables assigned, problem satisfiable

}
}

Not explicitly stated: Inprocessing, unlearning, restarts, model output

VTSA’15 Tobias Schubert – SAT-based Test & Verification 54 / 192

Boolean Constraint Propagation

Tasks
Detect all implications forced by a variable assignment
Detect conflicts

Comparable to the repeated application of the unit clause rule of
the DLL algorithm

Efficient implementation mandatory, because roughly 80% of the
runtime of a SAT algorithm is spent by the BCP routine

VTSA’15 Tobias Schubert – SAT-based Test & Verification 55 / 192

Boolean Constraint Propagation

General flow

After every variable assignment, identify the implications that
have arisen, and push them into the implication queue

As long as there are items in the implication queue. . .
1 Remove the first element from the queue
2 Assign to each implied variable its forced truth value
3 Check which consecutive implications arise, and push them

into the implication queue
4 Check for conflicts

VTSA’15 Tobias Schubert – SAT-based Test & Verification 56 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

Implication Queue

x8 = 1

x4 = 1

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

Implication Queue

x8 = 1

x4 = 1

x12 = 0 x16 = 1

x23 = 1

x13 = 0

x19 = 1

x11 = 1

4 6

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

Implication Queue

x8 = 1

x4 = 1

x12 = 0

x12 = 0 x16 = 1

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0

Implication Queue

x8 = 1

x4 = 1

x16 = 1x12 = 0

x12 = 0 x16 = 1

7

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0

x2 = 0

Implication Queue

8

x8 = 1

x4 = 1

x16 = 1x12 = 0

x12 = 0 x16 = 1

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x10 = 0

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0

x2 = 0 x5 = 0 x3 = 1 x1 = 1

Implication Queue

x8 = 1

x4 = 1

x16 = 1x12 = 0

x12 = 0 x16 = 1

x23 = 1

x13 = 0

x19 = 1

x11 = 1 x10 = 0

x10 = 0

10 11 12

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0

x2 = 0 x5 = 0 x3 = 1 x1 = 1

Implication Queue

x8 = 1

x4 = 1

x16 = 1x12 = 0

x12 = 0 x16 = 1

x23 = 1

x13 = 0

x19 = 1

x11 = 1 x10 = 0

x10 = 0

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

Implication Queue

13

x8 = 1

x4 = 1

x16 = 1x12 = 0

x12 = 0 x16 = 1 x18 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1 x10 = 0

x10 = 0

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

14

Implication Queue

x8 = 1

x4 = 1

x16 = 1x12 = 0

x12 = 0 x16 = 1 x18 = 1x18 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1 x10 = 0

x10 = 0

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

Implication Queue

Conflict!

x8 = 1

x4 = 1

x16 = 1x12 = 0

x12 = 0 x16 = 1 x18 = 0 x18 = 1

x18 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1 x10 = 0

x10 = 0

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation

Approaches for the implementation of a BCP routine

Counter-Based Schemes

Watched Literals / 2-Literal Watching Scheme

VTSA’15 Tobias Schubert – SAT-based Test & Verification 58 / 192

Boolean Constraint Propagation

Counter-Based Schemes

2-Counter Scheme
Two counters for each clause

One counter for the literals which satisfy the clause
One counter for the unassigned literals

1-Counter Scheme
One counter for each clause to count the number of not
falsifying literals

Disadvantages
“Unnecessary” counter updates
Adjustment of the counter values during backtrack
Requires a list for each variable and polarity to store all the
clauses where the “related literal” (variable having that
polarity) occurs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 59 / 192

Boolean Constraint Propagation

Watched Literals

For each clause mark two different literals

Invariant
Watched literals of a clause are either unassigned or satisfy
the clause

Advantages in comparison to counter-based schemes
Update operations only when necessary, i. e., when an
assignment “breaks” the invariant
One list for each variable and polarity (like before), but
containing only the clauses currently watched by that literal

Disadvantage
Literals of a clause are checked several times

VTSA’15 Tobias Schubert – SAT-based Test & Verification 60 / 192

Watched Literals

¬x1 x18 ¬x3 x5x17

(a) Initial state

¬x1 x18 ¬x3 x5x17

(b) x17 = 0

¬x1 x18x17 ¬x3 x5

(c) x5 = 0

x17 ¬x3 x5x18¬x1

(d) x3 = 1

x17 ¬x3 x5x18¬x1

(e) x1 = 1 ⇒ x18 = 1

x17 ¬x3 x5x18¬x1

(f) x18 = 0 ⇒ Conflict!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 61 / 192

Watched Literals

Possible optimizations

Always store the watched literals in the first two positions of a
clause

Allows for a fast access to the “second” watched literal of a
clause
If the second watched literal satisfies the clause, it is not
necessary to find a replacement for the first one (in case
the status of the first one switches from unresolved to false)

Nowadays, the BCP procedures of almost all modern SAT solvers are
based on watched literals!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 62 / 192

Modern SAT Algorithms

bool SequentialSatEngine(CNF F)
{

if (PreprocessCNF(F) == CONFLICT) // Preprocessing the CNF formula
{ return UNSATISFIABLE; } // Problem unsatisfiable

while (true)
{

if (DecideNextBranch()) // Choice of the next unassigned variable
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation
{

BLevel = AnalyzeConflict(); // Conflict analysis
if (BLevel > 0)

{ Backtrack(BLevel); } // Cancel the „incorrect“ assignment
else

{ return UNSATISFIABLE; } // Problem unsatisfiable
}

}
else
{ return SATISFIABLE; } // All variables assigned, problem satisfiable

}
}

Not explicitly stated: Inprocessing, unlearning, restarts, model output

VTSA’15 Tobias Schubert – SAT-based Test & Verification 63 / 192

Conflict Analysis & Backtracking

DLL algorithm

The combination of the decisions done before will always be
considered as the origin of a conflict

Backtracking to the recursion level of the last “branching” in
which one case for a variable assignment has not been explored
yet (chronological backtracking)

If such a recursion level does not exist, the given CNF formula is
unsatisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 64 / 192

Conflict Analysis & Backtracking

Chronological Backtracking

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

x8 = 1

x4 = 1

x12 = 0

x4 = 1

x11 = 0

x8 = 1

x16 = 1 x18 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

x23 = 1

x13 = 0

x19 = 1

x54 = 0

x10 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 65 / 192

Conflict Analysis & Backtracking

Modern SAT algorithms

Complex analysis of the conflict setting, because not all
“branchings” done before have to be involved in the current
conflict

Learning of a conflict clause via resolution to avoid running into
the same conflict again

(Non-)chronological backtracking according to the derived
conflict clause

If a conflict occurs on decision level 0, the given CNF formula is
unsatisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 66 / 192

Conflict Analysis & Backtracking

Implication graph

Data structure for performing the conflict analysis in today’s SAT
solvers

Directed, acyclic graph

Nodes represent assignments to variables

Edges represent which set of assignments have caused an
implication

Implication graph gets updated after every variable assignment
and after every backtrack operation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 67 / 192

Conflict Analysis & Backtracking

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x4 = 1@3

x8 = 1@2
x19 = 1@3

Conflict!
x2 = 0@5

x10 = 0@5

x6 = 0@1

x11 = 1@5

x13 = 0@2

x8 = 1

x4 = 1

x12 = 0 x16 = 1 x18 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

x10 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 68 / 192

Conflict Analysis & Backtracking

During the conflict analysis the implication graph gets traversed
backwards (in reverse order of the assignments stored by the
decision stack) starting from the conflicting point, to allow to
compute the succession of resolution steps which finally lead to
the conflict clause

Different termination criteria for interrupting the resolution steps
lead to different conflict clauses

Implementations
1UIP (standard technique explained in the following)
RelSat
Grasp
. . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 69 / 192

Conflict Analysis & Backtracking

x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12 ,¬x16 ,¬x2)∧ (x2 ,¬x4,¬x10)∧
(¬x19,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10 ,¬x8 ,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1 ,x18 ,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3,x5)⊗x18 (¬x19 ,¬x18,¬x3) = (x17,¬x1,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3,x5 ,¬x19)⊗x1 (x1 ,x10 ,¬x8) = (x17 ,¬x3 ,x5 ,¬x19 ,x10 ,¬x8)

R3 = (x17,¬x3 ,x5,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5 ,¬x19 ,x10 ,¬x8)

R4 = (x17,x5 ,¬x19,x10,¬x8)⊗x5 (x10,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause

VTSA’15 Tobias Schubert – SAT-based Test & Verification 70 / 192

Conflict Analysis & Backtracking

x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12 ,¬x16 ,¬x2)∧ (x2 ,¬x4,¬x10)∧
(¬x19,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10 ,¬x8 ,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1 ,x18 ,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3,x5)⊗x18 (¬x19 ,¬x18,¬x3) = (x17,¬x1,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3,x5 ,¬x19)⊗x1 (x1 ,x10 ,¬x8) = (x17 ,¬x3 ,x5 ,¬x19 ,x10 ,¬x8)

R3 = (x17,¬x3 ,x5,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5 ,¬x19 ,x10 ,¬x8)

R4 = (x17,x5 ,¬x19,x10,¬x8)⊗x5 (x10,¬x5) = (x17,¬x19,x10,¬x8)⇐ Finale Konflikt-Klausel

VTSA’15 Tobias Schubert – SAT-based Test & Verification 70 / 192

Conflict Analysis & Backtracking

x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12 ,¬x16 ,¬x2)∧ (x2 ,¬x4,¬x10)∧
(¬x19,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10 ,¬x8 ,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1 ,x18 ,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3,x5)⊗x18 (¬x19 ,¬x18,¬x3) = (x17,¬x1,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3,x5 ,¬x19)⊗x1 (x1 ,x10 ,¬x8) = (x17 ,¬x3 ,x5 ,¬x19 ,x10 ,¬x8)

R3 = (x17,¬x3 ,x5,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5 ,¬x19 ,x10 ,¬x8)

R4 = (x17,x5 ,¬x19,x10,¬x8)⊗x5 (x10,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause

VTSA’15 Tobias Schubert – SAT-based Test & Verification 70 / 192

Conflict Analysis & Backtracking

x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12 ,¬x16 ,¬x2)∧ (x2 ,¬x4,¬x10)∧
(¬x19,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10 ,¬x8 ,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1 ,x18 ,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3,x5)⊗x18 (¬x19 ,¬x18,¬x3) = (x17,¬x1,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3,x5 ,¬x19)⊗x1 (x1 ,x10 ,¬x8) = (x17 ,¬x3 ,x5 ,¬x19 ,x10 ,¬x8)

R3 = (x17,¬x3 ,x5,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5 ,¬x19 ,x10 ,¬x8)

R4 = (x17,x5 ,¬x19,x10,¬x8)⊗x5 (x10,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause

VTSA’15 Tobias Schubert – SAT-based Test & Verification 70 / 192

Conflict Analysis & Backtracking

x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12 ,¬x16 ,¬x2)∧ (x2 ,¬x4,¬x10)∧
(¬x19,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10 ,¬x8 ,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1 ,x18 ,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3,x5)⊗x18 (¬x19 ,¬x18,¬x3) = (x17,¬x1,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3,x5 ,¬x19)⊗x1 (x1 ,x10 ,¬x8) = (x17 ,¬x3 ,x5 ,¬x19 ,x10 ,¬x8)

R3 = (x17,¬x3 ,x5,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5 ,¬x19 ,x10 ,¬x8)

R4 = (x17,x5 ,¬x19,x10,¬x8)⊗x5 (x10,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause

VTSA’15 Tobias Schubert – SAT-based Test & Verification 70 / 192

Conflict Analysis & Backtracking

x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12 ,¬x16 ,¬x2)∧ (x2 ,¬x4,¬x10)∧
(¬x19,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10 ,¬x8 ,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1 ,x18 ,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3,x5)⊗x18 (¬x19 ,¬x18,¬x3) = (x17,¬x1,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3,x5 ,¬x19)⊗x1 (x1 ,x10 ,¬x8) = (x17 ,¬x3 ,x5 ,¬x19 ,x10 ,¬x8)

R3 = (x17,¬x3 ,x5,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5 ,¬x19 ,x10 ,¬x8)

R4 = (x17,x5 ,¬x19,x10,¬x8)⊗x5 (x10,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause

VTSA’15 Tobias Schubert – SAT-based Test & Verification 70 / 192

Conflict Analysis & Backtracking

x2 = 0 x5 = 0 x3 = 1 x1 = 1

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x4 = 1@3

x8 = 1@2
x19 = 1@3

Conflict!
x2 = 0@5

x10 = 0@5

x6 = 0@1

x11 = 1@5

x13 = 0@2

Conflict clause: (x17,¬x19,x10,¬x8)

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x16 = 1 x18 = 0

x8 = 1

x4 = 1

x12 = 0 x10 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 71 / 192

Conflict Analysis & Backtracking

Observations

Conflict analysis according to the 1UIP scheme (First Unique
Implication Point) terminates as soon as the computed resolvent
contains exactly one literal at the current decision level (the
so-called UIP), whereas all other literals were assigned at lower
decision levels

Conflict clauses represent combinations of variables that will
inevitably lead to a conflict

Resolution Lemma allows to insert a conflict clause into the CNF
formula, and consequently to “prune” the whole search tree by
preventing the solver from running into the same conflict again

Compared to others, the 1UIP scheme turned out to be the most
powerful one (shorter conflict clauses, more effective pruning,
faster runtime)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 72 / 192

Conflict Analysis & Backtracking

(Non)-chronological backtracking

In today’s SAT algorithms the backtrack level is determined by
the derived conflict clause only

The backtrack level matches the maximum decision level among
all the literals in the conflict clause except the UIP, which
becomes an implication after backtracking

Idea: “What would have happened if the conflict clause had
already been contained into the original CNF formula?”

VTSA’15 Tobias Schubert – SAT-based Test & Verification 73 / 192

Conflict Analysis & Backtracking

(Non-)chronological backtracking

Procedure
1 Backtrack down to the given backtrack level
2 Assign the truth value implied by the UIP (after

backtracking, the conflict clause will be automatically a unit
clause)

3 Proceed with the search process

If a conflict appears at decision level 0, the CNF formula is
unsatisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 74 / 192

Conflict Analysis & Backtracking

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

Conflict clause: (x17,¬x19,x10,¬x8)

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

Non-Chronological Backtrackingx8 = 1

x4 = 1

x12 = 0

x4 = 1 x10 = 1

x16 = 1 x18 = 0

x8 = 1
x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

x10 = 0

x23 = 1

x13 = 0

x19 = 1

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 75 / 192

Other Features of modern SAT Solvers

Unlearning of conflict clauses
Inprocessing
Restarts
Termination guarantees
Unsatisfiability certificates
Assumptions
Incremental SAT solving
Parallel SAT algorithms
Incomplete SAT algorithms

VTSA’15 Tobias Schubert – SAT-based Test & Verification 76 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 77 / 192

Combinational Equivalence Checking

Given
Specification and implementation of a combinatorial circuit

Question
Are specification and implementation equivalent?

Approach for SAT-based equivalence checking
Generate a so-called Miter from specification and
implementation
Build a CNF formula from the Miter representation
Solve the formula with a SAT algorithm
Specification and implementation of a combinatorial circuit
are equivalent iff the CNF formula generated from the Miter
is unsatisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 78 / 192

Miter

xn

xn

x1

x1
Implementation fI

fSSpecification

⇒ Connect corresponding inputs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 79 / 192

Miter

xn

x1

Implementation fI

fSSpecification

⇒ Link corresponding outputs by EXOR gates

VTSA’15 Tobias Schubert – SAT-based Test & Verification 79 / 192

Miter

xn

x1

M

Implementation fI

fSSpecification

⇒ Miter circuit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 79 / 192

Miter

xn

x1

M

Implementation fI

fSSpecification

Miter

⇒M = 1⇔ Specification & implementation not equivalent

VTSA’15 Tobias Schubert – SAT-based Test & Verification 79 / 192

Miter

Remarks

Drafted method can be extended to combinatorial circuits having
multiple outputs

Usually, SAT-algorithms take as input only CNF formulas, that
means the Boolean function of the Miter circuit must be
translated into a CNF representation Tseitin transformation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 80 / 192

Tseitin Transformation

In order to avoid the exponential size of the CNF form obtained from
the formula created from the function F of the circuit, some alternative
techniques can be applied:

Define a satisfiability equivalent CNF F ′ equivalent to F that is
satisfiable iff F is satisfiable

For each gate output insert an additional variable⇒ in general
the CNF F ′ will have variables which do not occur in F

For each gate realize a “characteristic function” in CNF which
evaluates to 1 for every possible consistent signal configuration

Put together the individual gates using an AND connection to
obtain the final CNF formula

⇒ Tseitin transformation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 81 / 192

Tseitin Transformation

Gates Function CNF formula

x1
x2

x3 x3 ≡ x1∧x2
(¬x3∨x1)∧ (¬x3∨x2)∧
(x3∨¬x1∨¬x2)

x1
x2

x3 x3 ≡ x1∨x2
(x3∨¬x1)∧ (x3∨¬x2)∧
(¬x3∨x1∨x2)

x1
x2

x3 x3 ≡ x1⊕x2
(¬x3∨x1∨x2)∧ (¬x3∨¬x1∨¬x2)∧
(x3∨¬x1∨x2)∧ (x3∨x1∨¬x2)

x1 x2 x2 ≡ ¬x1 (x2∨x1)∧ (¬x2∨¬x1)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 82 / 192

Tseitin Transformation – Example

x1
x2

x3

x4
x6

x5

FSK = (x1∧x2)∨¬x3

FCNF
SK = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)∧

(x6∨x3)∧ (¬x6∨¬x3)∧
(x4∨¬x5)∧ (x4∨¬x6)∧ (¬x4∨x5∨x6)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 83 / 192

Tseitin Transformation – Example

x1
x2

x3

x4
x6

x5

FSK = (x1∧x2)∨¬x3

FCNF
SK = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)∧

(x6∨x3)∧ (¬x6∨¬x3)∧
(x4∨¬x5)∧ (x4∨¬x6)∧ (¬x4∨x5∨x6)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 83 / 192

Tseitin Transformation – Example

x1
x2

x3

x4
x6

x5

FSK = (x1∧x2)∨¬x3

FCNF
SK = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)∧

(x6∨x3)∧ (¬x6∨¬x3)∧
(x4∨¬x5)∧ (x4∨¬x6)∧ (¬x4∨x5∨x6)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 83 / 192

Tseitin Transformation – Example

x1
x2

x3

x4
x6

x5

FSK = (x1∧x2)∨¬x3

FCNF
SK = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)∧

(x6∨x3)∧ (¬x6∨¬x3)∧
(x4∨¬x5)∧ (x4∨¬x6)∧ (¬x4∨x5∨x6)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 83 / 192

Tseitin Transformation

Important property

As long as for the CNF representation of each single gate only a
constant number of clauses is required, the number of clauses in
the final CNF will be linear in the number of gates in the circuit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 84 / 192

Combinational Equivalence Checking – Example

Let the specification and the implementation of a combinatorial circuit
be defined as follows:

x1
x2

x3

x7 x8x1
x2

x3
x9

Implementation

x′4

x5

x6

Specification

x4

Question: Are the specification and the implementation equivalent?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 85 / 192

Combinational Equivalence Checking – Example

x7 x8

M

x5

x6

x1
x2

x3

x4

x9 x′4

Specification

Implementation

FM = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)∧ (x6∨x3)∧ (¬x6∨¬x3)∧
(x4∨¬x5)∧ (x4∨¬x6)∧ (¬x4∨x5∨x6)∧ (¬x7∨x1)∧ (¬x7∨x2)∧
(x7∨¬x1∨¬x2)∧ (x7∨x8)∧ (¬x7∨¬x8)∧ (¬x9∨x3)∧ (¬x9∨x8)∧
(x9∨¬x3∨¬x8)∧ (x9∨x′4)∧ (¬x9∨¬x′4)∧ (¬M ∨¬x4∨¬x′4)∧
(¬M ∨x4∨x′4)∧ (M ∨¬x4∨x′4)∧ (M ∨x4∨¬x′4)∧ (M)

FM is unsatisfiable⇒ Implementation and specification are equivalent!
VTSA’15 Tobias Schubert – SAT-based Test & Verification 86 / 192

Combinational Equivalence Checking – Example

x7 x8

M

x5

x6

x1
x2

x3

x4

x9 x′4

Specification

Implementation

FM = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)∧ (x6∨x3)∧ (¬x6∨¬x3)∧
(x4∨¬x5)∧ (x4∨¬x6)∧ (¬x4∨x5∨x6)∧ (¬x7∨x1)∧ (¬x7∨x2)∧
(x7∨¬x1∨¬x2)∧ (x7∨x8)∧ (¬x7∨¬x8)∧ (¬x9∨x3)∧ (¬x9∨x8)∧
(x9∨¬x3∨¬x8)∧ (x9∨x′4)∧ (¬x9∨¬x′4)∧ (¬M ∨¬x4∨¬x′4)∧
(¬M ∨x4∨x′4)∧ (M ∨¬x4∨x′4)∧ (M ∨x4∨¬x′4)∧ (M)

FM is unsatisfiable⇒ Implementation and specification are equivalent!
VTSA’15 Tobias Schubert – SAT-based Test & Verification 86 / 192

Structural Methods

Nowadays SAT solvers can handle problems with millions of clauses.
But how to compare (large) combinatorial circuits for which SAT
methods still fail?⇒ Structural methods

Solve several “small” problems instead of one “large” problem

Various options
Compute equivalent gates inside the miter circuit
And-Inverter-Graphs (AIGs)
. . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 87 / 192

Structural Methods

Observation from real-world instances

In most cases circuits which have to be compared show
structural similarities

Example: Only small changes in later design phases
In many cases logic optimizations respect hierarchy
boundaries
Thus, changes are not fundamental in most cases

How can we exploit structural similarities?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 88 / 192

Structural Methods

Observation from real-world instances

In most cases circuits which have to be compared show
structural similarities

Example: Only small changes in later design phases
In many cases logic optimizations respect hierarchy
boundaries
Thus, changes are not fundamental in most cases

How can we exploit structural similarities?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 88 / 192

Structural Methods

Approach

1 Traverse the circuits which have to be compared from inputs to
outputs

Identify equivalences at the internal signals of the miter
If there are any equivalences, replace equivalent nodes by
one (shared) representative

2 Check satisfiability of the simplified miter circuit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 89 / 192

Structural Methods – Simple Example

a

b
c

d

f

e g

i
j

z

h

Implementierung

Spezifikation

Starting point

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

a

b
c

d

f

e g

i
j

z

h

Implementierung

Spezifikation

?

Are the internal signals d and e equivalent?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

b
c

d

e

?

Parts of the miter which are relevant for the proof of d ≡ e

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

b
c

d

e

=

Local analysis is sufficient to show that d ≡ e

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

a

b
c

d

f

g

i
j

z

h

Simplified miter

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

a

b
c

d

f

g

i
j

z

h

?

Are the internal signals h and j equivalent?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

a

d

f

g

i
j

h

?

Parts of the miter which are relevant for the proof of h≡ j

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

a

d

f

g

i
j

h

=

Local analysis is sufficient to show that h≡ j

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

a

b
c

d

j

z

h

More simplified miter

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

a

b
c

d

j

z

h

Does z = 0 hold? Are specification and implementation equivalent?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

j

z

h

Parts of the miter which are relevant for the proof of z = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

j

z

h

Local analysis is sufficient to show that z = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

a

b
c

d

f

e g

i
j

z

h

Implementierung

Spezifikation

⇒ Specification and implementation are equivalent!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Detection of Equivalences

Detect potential candidates for pairs of equivalent nodes by
simulation with random patterns

By an (incomplete) simulation of a restricted number of patterns
we can only show “non-equivalence”

Use simulation to partition the nodes into equivalence classes
which consist of the nodes with identical simulation results

Use a complete method (e.g. SAT) to detect equivalent nodes
within the computed equivalence classes

VTSA’15 Tobias Schubert – SAT-based Test & Verification 91 / 192

Structural Methods – Detection of Equivalences

Using SAT to prove equivalences

In order to keep the miter circuit “small”, the inputs of the SAT
problem are not necessarily primary inputs, but rather equivalent
internal nodes which have already been detected to be
equivalent

Two nodes are equivalent, if the SAT instance representing the
corresponding miter is unsatisfiable

If two nodes are proved to be equivalent, then one of the nodes
may be replaced by its equivalent counterpart

Be careful: If the SAT instance is satisfiable, then this does not
necessarily mean that the corresponding nodes are not
equivalent!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 92 / 192

Structural Methods – Detection of Equivalences

Equivalent nodes can be used as so-called cut points after they have
been replaced by a common representative

Cut points will be new input variables during miter construction
and thus keep the miter “small”

If the resulting circuits are equivalent, then the original circuits
have already been equivalent

Problem: Using cut points may lead to so-called “false
negatives”, i.e., two equivalent nodes are not classified to be
equivalent!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 93 / 192

Structural Methods – Detection of Equivalences

Equivalent nodes can be used as so-called cut points after they have
been replaced by a common representative

Cut points will be new input variables during miter construction
and thus keep the miter “small”

If the resulting circuits are equivalent, then the original circuits
have already been equivalent

Problem: Using cut points may lead to so-called “false
negatives”, i.e., two equivalent nodes are not classified to be
equivalent!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 93 / 192

Structural Methods – Example

g

b

d

e

f

c

a

y1

g

b

d

e

f

c

a

y2

Spezifikation

Implementierung

Starting point

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Structural Methods – Example

g

b

d

e

f

c

a

y1

g

b

d

e

f

c

a

y2

Spezifikation

Implementierung

Note: Specification and implementation are equivalent

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Structural Methods – Example

g

b

d

e

f

c

a

y1

g

b

d

e

f

c

a

y2

Spezifikation

Implementierung

Try to show equivalence of y1 and y2 using cut points

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Structural Methods – Example

g

b

d

e

f

c

a

eq1

eq3

eq2

y1

g

b

d

e

f

c

a

eq1

eq3

eq2

y2

Assumption: Equivalences eq1, eq2, and eq3 already shown

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Structural Methods – Example

g

b

d

e

f

c

a

eq1

eq3

eq2

y1

g

b

d

e

f

c

a

eq1

eq3

eq2

y2

Cut the circuits at the internal equivalent signals

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Structural Methods – Example

g

b

d

e

f

c

a

eq1

eq3

eq2

y1

g

b

d

e

f

c

a

eq1

eq3

eq2

y2

Compute the miter depending on “cut variables”

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Structural Methods – Example

eq1
eq3

d
e
b

eq2

y1'

eq1
eq3

e

b
eq2

y2'

Corresponding CNF formula satisfiable
⇒ y1 and y2 not equivalent

⇒ Specification and implementation not equivalent
⇒ But it is a False Negative!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Structural Methods – Example

eq1
eq3

d
e
b

eq2

y1'

eq1
eq3

e

b
eq2

y2'

Corresponding CNF formula satisfiable
⇒ y1 and y2 not equivalent

⇒ Specification and implementation not equivalent
⇒ But it is a False Negative!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Structural Methods – False Negatives

Problem

New variables at cut points may be assigned to arbitrary values

But. . .

The “rightmost” parts of the circuit need only to be equivalent for
values at the cut points which can be produced by the “leftmost”
parts

VTSA’15 Tobias Schubert – SAT-based Test & Verification 95 / 192

Structural Methods – Avoiding False Negatives

Do not use cut points
Makes proofs of equivalence for two nodes much more
difficult in many cases, since the corresponding SAT
problems become significantly “larger”

SAT sweeping
In a first step stop at cut points when constructing the miter
If necessary (satisfiable CNF) include more parts of the
circuit into the SAT problem to check for false negative
results

VTSA’15 Tobias Schubert – SAT-based Test & Verification 96 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 97 / 192

Automatic Test Pattern Generation

Motivation

Post-production test is a crucial step
Have there been problems during production?
Does the circuit contain faults?

In particular when used in safety-critical applications, every
produced chip has to be tested

Testing comprises more than 40% of costs in semiconductor
industry

VTSA’15 Tobias Schubert – SAT-based Test & Verification 98 / 192

Automatic Test Pattern Generation

Testing: Experiment on real manufactored chips
Goal is to check whether the chip behaves correctly
1. step: Apply an appropriate test pattern
2. step: Analyse the response of the circuit under test

VTSA’15 Tobias Schubert – SAT-based Test & Verification 99 / 192

Automatic Test Pattern Generation

Physical defects are modeled on the Boolean level according to
a fault model

Fault models are an abstract representation of real defects
Single stuck-at
Bridging faults
Interconnect opens
Path delay faults
. . .

Automatic Test Pattern Generation (ATPG)
Given: Circuit CUT and fault model FM
Goal: Determine test patterns for (all) faults in CUT wrt. FM

VTSA’15 Tobias Schubert – SAT-based Test & Verification 100 / 192

Automatic Test Pattern Generation

Single stuck-at fault model (s@)

s@0: One line is always at logic 0

s@1: One line is always at logic 1

In total only (2 × number_of_signals_CUT) faults to be checked

High amount of real defects detected by the s@ fault model!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 101 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

Faults:

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

Faults: Patterns:

p1

p2

p3

p4

p5

generate
random
patterns

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

Faults: Patterns:

p1

p2

p3

p4

p5

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end

 yes
f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

p6

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

mark f
as

detected;
add p to
test set

yes

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

p6

generate
random
patterns

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

mark f
as

detected;
add p to
test set

yes

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

simulate
generated
pattern(s)

(fault
dropping)

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

p6

generate
random
patterns

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

mark f
as

detected;
add p to
test set

yes

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

simulate
generated
pattern(s)

(fault
dropping)

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

p6

generate
random
patterns

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

mark f
as

detected;
add p to
test set

yes

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

simulate
generated
pattern(s)

(fault
dropping)

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

p6

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

mark f
as

detected;
add p to
test set

yes

mark f
as

aborted

 timeout

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

p6

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

mark f
as

detected;
add p to
test set

yes

mark f
as

aborted

 timeout

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

Test set

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation

Redundant faults: s@0 at x3 is redundant

Justifying the error requires x1 = 1 and x2 = 1

But propagating the error to output x4 requires x1 = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 103 / 192

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

Justify the fault and find a propagation path

VTSA’15 Tobias Schubert – SAT-based Test & Verification 104 / 192

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

Justify the fault and find a propagation path

VTSA’15 Tobias Schubert – SAT-based Test & Verification 104 / 192

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

Justify the fault and find a propagation path

VTSA’15 Tobias Schubert – SAT-based Test & Verification 104 / 192

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

Justify the fault and find a propagation path

VTSA’15 Tobias Schubert – SAT-based Test & Verification 104 / 192

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

Justify the fault and find a propagation path

VTSA’15 Tobias Schubert – SAT-based Test & Verification 104 / 192

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

Justify the fault and find a propagation path

VTSA’15 Tobias Schubert – SAT-based Test & Verification 104 / 192

Automatic Test Pattern Generation

Several ATPG-Approaches

Structural methods
D-algorithm
PODEM
FAN

SAT-based methods

VTSA’15 Tobias Schubert – SAT-based Test & Verification 105 / 192

SAT-based ATPG

Main flow
Construct the miter containing the correct and the faulty circuit
Encode the miter as CNF & solve the SAT problem
If the SAT formula is satisfiable we have found a test pattern for
the particular fault under consideration
Otherwise, the fault is redundant

VTSA’15 Tobias Schubert – SAT-based Test & Verification 106 / 192

SAT-based ATPG – Example
Conversion to CNF

x6

x5

x4

x3

x1

x2

(a) Correct circuit

x5

x6

x ′5
0

1

x1

x2

x3
x ′4

(b) Faulty circuit, s@1-error at x5

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Example
Conversion to CNF

x5

0

x6

x1

x2

x3

1

x4

M

x6
x ′

4

x ′
5

x5

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Example
Conversion to CNF

x5

0

x6

x1

x2

x3

1

x4

M

x6
x ′

4

x ′
5

x5

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Example
Conversion to CNF

x5

0

x6

x1

x2

x3

1

x4

M

x6
x ′

4

x ′
5

x5

(¬x5)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Example
Conversion to CNF

x5

x6

x4

M

x3

x2

x1

x6 x ′
4

1
x ′

5

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Example
Conversion to CNF

x5

x6

x4

M

x3

x2

x1

x6 x ′
4

1
x ′

5

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Example
Conversion to CNF

x5

x6

x4

M

x3

x2

x1

x ′
4

1
x ′

5

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Example
Conversion to CNF

x5

x6

x4

M

x3

x2

x1

1
x ′

5

x ′
4

FM = (¬x5 ∨ x1) ∧ (¬x5 ∨ x2) ∧ (x5 ∨ ¬x1 ∨ ¬x2) ∧ (x6 ∨ x3)∧
(¬x6 ∨ ¬x3) ∧ (x4 ∨ ¬x5) ∧ (x4 ∨ ¬x6) ∧ (¬x4 ∨ x5 ∨ x6)∧
(x ′4 ∨ ¬x ′5) ∧ (x ′4 ∨ ¬x6) ∧ (¬x ′4 ∨ x ′5 ∨ x6) ∧ (¬M ∨ x4 ∨ x ′4)∧
(¬M ∨ ¬x4 ∨ ¬x ′4) ∧ (M ∨ ¬x4 ∨ x ′4) ∧ (M ∨ x4 ∨ ¬x ′4)∧
(M) ∧ (¬x5) ∧ (x ′5)

F ′M = (¬x1 ∨ ¬x2) ∧ (x3) ∧ (¬x6) ∧ (x ′4) ∧ (¬x4) ∧ (M) ∧ (¬x5) ∧ (x ′5)

Test set: (x1, x2, x3) = {(0,0,1), (1,0,1), (0,1,1)}

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Example
Conversion to CNF

x5

x6

x4

M

x3

x2

x1

1
x ′

5

x ′
4

FM = (¬x5 ∨ x1) ∧ (¬x5 ∨ x2) ∧ (x5 ∨ ¬x1 ∨ ¬x2) ∧ (x6 ∨ x3)∧
(¬x6 ∨ ¬x3) ∧ (x4 ∨ ¬x5) ∧ (x4 ∨ ¬x6) ∧ (¬x4 ∨ x5 ∨ x6)∧
(x ′4 ∨ ¬x ′5) ∧ (x ′4 ∨ ¬x6) ∧ (¬x ′4 ∨ x ′5 ∨ x6) ∧ (¬M ∨ x4 ∨ x ′4)∧
(¬M ∨ ¬x4 ∨ ¬x ′4) ∧ (M ∨ ¬x4 ∨ x ′4) ∧ (M ∨ x4 ∨ ¬x ′4)∧
(M) ∧ (¬x5) ∧ (x ′5)

F ′M = (¬x1 ∨ ¬x2) ∧ (x3) ∧ (¬x6) ∧ (x ′4) ∧ (¬x4) ∧ (M) ∧ (¬x5) ∧ (x ′5)

Test set: (x1, x2, x3) = {(0,0,1), (1,0,1), (0,1,1)}

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Example
Conversion to CNF

x5

x6

x4

M

x3

x2

x1

1
x ′

5

x ′
4

FM = (¬x5 ∨ x1) ∧ (¬x5 ∨ x2) ∧ (x5 ∨ ¬x1 ∨ ¬x2) ∧ (x6 ∨ x3)∧
(¬x6 ∨ ¬x3) ∧ (x4 ∨ ¬x5) ∧ (x4 ∨ ¬x6) ∧ (¬x4 ∨ x5 ∨ x6)∧
(x ′4 ∨ ¬x ′5) ∧ (x ′4 ∨ ¬x6) ∧ (¬x ′4 ∨ x ′5 ∨ x6) ∧ (¬M ∨ x4 ∨ x ′4)∧
(¬M ∨ ¬x4 ∨ ¬x ′4) ∧ (M ∨ ¬x4 ∨ x ′4) ∧ (M ∨ x4 ∨ ¬x ′4)∧
(M) ∧ (¬x5) ∧ (x ′5)

F ′M = (¬x1 ∨ ¬x2) ∧ (x3) ∧ (¬x6) ∧ (x ′4) ∧ (¬x4) ∧ (M) ∧ (¬x5) ∧ (x ′5)

Test set: (x1, x2, x3) = {(0,0,1), (1,0,1), (0,1,1)}

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Adding Structural Information
Adding structural information to the CNF

Additional
Logic

x3
x6

x1

x2

x5

x8

x9

x10

x7

x4 x11

VTSA’15 Tobias Schubert – SAT-based Test & Verification 108 / 192

SAT-based ATPG – Adding Structural Information
Adding structural information to the CNF

Additional
Logic

x3
x6

x1

x2

x5

x8

x9

x10

x7

x4 x11

s@1-error

VTSA’15 Tobias Schubert – SAT-based Test & Verification 108 / 192

SAT-based ATPG – Adding Structural Information
Adding structural information to the CNF

Additional
Logic

x3

x1

x2

x5

x8

x9

x10

x7

x4 x11
0/1

0/1

0/11 x6 0

0

0
s@1-error

VTSA’15 Tobias Schubert – SAT-based Test & Verification 108 / 192

SAT-based ATPG – Adding Structural Information
Adding structural information to the CNF

Additional
Logic

x1

x2

0

0

x3

x5

x8

x9

x10

x7

x4 x11

0

0

0/1

0

0

0

0/1

0/1

0
1 x6 0

s@1-error

VTSA’15 Tobias Schubert – SAT-based Test & Verification 108 / 192

SAT-based ATPG – Adding Structural Information
Adding structural information to the CNF

Additional
Logic

x1

x2

0

0

x3

x5

x8

x9

x10

x7

x4 x11

0

0

0/1

0

0

0

0/1

0/1

0
1 x6 0

s@1-error

Add (x7, x8) to the CNF

VTSA’15 Tobias Schubert – SAT-based Test & Verification 108 / 192

SAT-based ATPG – Adding Structural Information
Adding structural information to the CNF

Additional
Logic

x1

x2

0

0

x3

x5

x8

x9

x10

x4 x11

0

0/1

0

1

0/1

0/1

0
1 x6 0

x7
1

0/1
s@1-error

Add (x7, x8) to the CNF

VTSA’15 Tobias Schubert – SAT-based Test & Verification 108 / 192

SAT-based ATPG – Cone-of-Influence Reduction

s@−error

Circuit under Test

Which inputs may be relevant for justifying the fault?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 109 / 192

SAT-based ATPG – Cone-of-Influence Reduction

s@−error

Circuit under Test

Which inputs might be relevant for justifying the fault?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 109 / 192

SAT-based ATPG – Cone-of-Influence Reduction

s@−error

Circuit under Test

Which outputs might be on the propagation path?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 109 / 192

SAT-based ATPG – Cone-of-Influence Reduction

s@−error

Circuit under Test

What about side-effects?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 109 / 192

SAT-based ATPG – Cone-of-Influence Reduction

s@−error

Circuit under Test

⇒ Only the “brown” parts have to be transformed into CNF!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 109 / 192

SAT-based ATPG – Testing of Sequential Circuits

VTSA’15 Tobias Schubert – SAT-based Test & Verification 110 / 192

	About Me
	Motivation
	SAT
	Preliminaries
	DLL Algorithm
	From DLL to modern SAT Algorithms
	Modern SAT Algorithms
	Preprocessing
	Decision Stack
	Decision Heuristics
	Boolean Constraint Propagation
	Conflict Analysis & Backtracking
	Other Features

	Combinational Equivalence Checking
	Miter
	Tseitin Transformation
	Structural Methods

	Automatic Test Pattern Generation
	SAT-based ATPG

	Bounded Model / Property Checking
	Satisfiability Modulo Theory
	Hybrid System Verification

	MaxSAT & Path Compaction
	QBF & Test Pattern Relaxation
	DQBF & Black Box Verification
	#SAT & Security Issues
	Some Papers…

