
SAT-based Approaches for Test & Verification
of Integrated Circuits (Part II)

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert
Chair of Computer Architecture
Institute of Computer Science
Faculty of Engineering
schubert@informatik.uni-freiburg.de

Summer School on Verification Technology, Systems & Applications 2015

SAT-based ATPG – Testing of Sequential Circuits

Problems specific wrt. test of sequential circuits

Initialization
Circuit’s state at the beginning of test application might be
unknown

Counters
Setting a counter to a specific value might take a lot of clock
cycles

Complexity of test generation
Finding a sequence to distinguish between a faulty and a
fault-free chip might require a large number of state
transitions

⇒ Practical methods reduce sequential to combinatorial ATPG
⇒ Solution: “Design for Testability”-techniques within the chips
⇒ Example: Scan-based designs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 111 / 192

SAT-based ATPG – Testing of Sequential Circuits

Problems specific wrt. test of sequential circuits

Initialization
Circuit’s state at the beginning of test application might be
unknown

Counters
Setting a counter to a specific value might take a lot of clock
cycles

Complexity of test generation
Finding a sequence to distinguish between a faulty and a
fault-free chip might require a large number of state
transitions

⇒ Practical methods reduce sequential to combinatorial ATPG
⇒ Solution: “Design for Testability”-techniques within the chips
⇒ Example: Scan-based designs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 111 / 192

SAT-based ATPG – Scan-based Designs

Scan: ScanEnable = 1

Capture: ScanEnable = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 112 / 192

SAT-based ATPG – Scan-based Designs

Test flow

1 Scan in data into SFFs

2 Apply test vector to PIs

3 Perform the test

4 Check POs

5 Scan out & check the
data available at SFFs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 112 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 113 / 192

Sequential Equivalence Checking

Combinational Part

FFk

FF1

FF0

...

Outputs
(Mealy Machine)

Cu
rr
en
tS

ta
te

N
ex
tS

ta
te

Implementation

Combinational Part

FFk

FF1

FF0

...

Outputs
(Mealy Machine)

Cu
rr
en
tS

ta
te

N
ex
tS

ta
te

Specification

Inputs

Inputs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 114 / 192

Sequential Equivalence Checking

1

Combinational Part

FFk

FF1

FF0

...

Outputs
(Mealy Machine)

Cu
rr
en
tS

ta
te

N
ex
tS

ta
te

Implementation

Combinational Part

FFk

FF1

FF0

...

Outputs
(Mealy Machine)

Cu
rr
en
tS

ta
te

N
ex
tS

ta
te

Specification

Inputs

Inputs
54

6 7

0/0

1/1

0/1

0/0

0/0

1/0

1/1

1/1

23

0/0

0/0

0/01/1 1/1

1/0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 114 / 192

Sequential Equivalence Checking

1

1,4

Combinational Part

FFk

FF1

FF0

...

Outputs
(Mealy Machine)

Cu
rr
en
tS

ta
te

N
ex
tS

ta
te

Implementation

Combinational Part

FFk

FF1

FF0

...

Outputs
(Mealy Machine)

Cu
rr
en
tS

ta
te

N
ex
tS

ta
te

Specification

Inputs

Inputs
54

6 7

0/0

1/1

0/1

0/0

0/0

1/0

1/1

1/1

23

0/0

0/0

0/01/1 1/1

1/0 1,5

2,73,6

0/1

0/1

0/1

0/0

1/1
1/1

1/1

1/1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 114 / 192

Sequential Equivalence Checking

What can we do with equivalence checking of sequential circuits?

Functional equivalence of two sequential circuits (in general)
provable

We cannot prove with equivalence checking whether a circuit
satisfies a more abstract specification, which is not given as a
sequential circuit or a deterministic finite automaton!

Examples for such abstract specifications are
Safety properties
Liveness properties

⇒ New specification language(s) for timed properties and
in connection with that new proof methods are necessary!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 115 / 192

Preliminaries – Kripke Structure

To model computational runs of a sequential circuit, Kripke structures (also referred to
as temporal structures) can be used:

Definition (Kripke structure, temporal structure)

A Kripke structure M is a 4-tuple M := (S, I,R,L) consisting of
a finite set S of states
a set /0 6= I ⊆ S of initial states
a transition relation R ⊆ S×S
with ∀s ∈ S ∃t ∈ S : (s, t) ∈ R, and
a labeling function L : S→ 2V ,
where V is a set of propositional variables (atomic formulas, atomic propositions).

Atomic propositions are observable elementary properties of states, like “a
timeout has occured”, “a request has been made”
Using such a temporal structure, we can derive all possible computational runs.
They are obtained by “unrolling” the Kipke structure according to its transition
relation R

VTSA’15 Tobias Schubert – SAT-based Test & Verification 116 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)
Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)
Xϕ: Formula ϕ holds in the second state on
the path (“next”)
ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)
Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)
Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)
Xϕ: Formula ϕ holds in the second state on
the path (“next”)
ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)
Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)

Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)
Xϕ: Formula ϕ holds in the second state on
the path (“next”)
ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)
Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)
Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)

Xϕ: Formula ϕ holds in the second state on
the path (“next”)
ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)
Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)
Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)
Xϕ: Formula ϕ holds in the second state on
the path (“next”)

ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)
Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)
Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)
Xϕ: Formula ϕ holds in the second state on
the path (“next”)
ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)

Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)
Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)
Xϕ: Formula ϕ holds in the second state on
the path (“next”)
ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)

Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)
Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)
Xϕ: Formula ϕ holds in the second state on
the path (“next”)
ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)
Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Property/Model Checking in a Nutshell

(Temporal Logic)
Property ϕ

M |= ϕ!

Counterexample

Model Checker

(Kripke Structure)
Model M

VTSA’15 Tobias Schubert – SAT-based Test & Verification 118 / 192

Property/Model Checking in a Nutshell

s1

s0 s3

s2
p

p

q

Model M

M, s0 |= E(pUq)!

Model Checker

ϕ = E(pUq)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 118 / 192

SAT-based Bounded Model Checking

Idea
Formulate the existence of paths with certain properties as
satisfiability problem

Only properties which require the existence of paths
Certificate or counterexample depending on context
E.g.: Counterexamples for safety and liveness

In general, arbitrarily long paths necessary, but this is not
possible in SAT!

Restriction to finite path lengths⇒ bounded model checking

VTSA’15 Tobias Schubert – SAT-based Test & Verification 119 / 192

Model Checking vs. Bounded Model Checking

Given

Kripke structure M

Temporal formula ϕ “suited for BMC”

Maximum unrolling depth k

Model Checking

M |= ϕ?

Bounded Model Checking

M |=k ϕ?

|=k means in this context that from the initial states in M, the
outgoing paths are considered only up to a maximum length k

VTSA’15 Tobias Schubert – SAT-based Test & Verification 120 / 192

Illustration 2-Bit Counter: Time Frame Expansion

00 11

1001

s0

FF FF rst
clk

b a

rst
clk

VTSA’15 Tobias Schubert – SAT-based Test & Verification 121 / 192

Illustration 2-Bit Counter: Time Frame Expansion

00 11

1001

s0

b0 a0

a1b1

Let ϕ be a temporal formula and k = 1. M |=1 ϕ?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 121 / 192

Illustration 2-Bit Counter: Time Frame Expansion

00 11

1001

s0

b0 a0

b1 a1

a2b2

Let ϕ be a temporal Formula and k = 2. M |=2 ϕ?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 121 / 192

Illustration 2-Bit Counter: Time Frame Expansion

00 11

1001

s0

b0 a0

b2 a2

a3b3

b1 a1

Let ϕ be a temporal Formula and k = 3. M |=3 ϕ?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 121 / 192

SAT-based Bounded Model Checking

General flow

1 Generate a propositional logic formula from the given Kripke
structure M, property ϕ, and unrolling depth k, which is
satisfiable iff M |=k ϕ

2 Translate the formula generated above into CNF

3 Solve it with a SAT solver
CNF satisfiable⇒M |=k ϕ ⇒ certificate/counterexample
CNF unsatisfiable⇒M 6|=k ϕ ⇒ no statement can be made
regarding M |= ϕ

Repeat the steps from 1 to 3 with increasing values for k until either a
counterexample is found, or a fixed stopping criterion is met

VTSA’15 Tobias Schubert – SAT-based Test & Verification 122 / 192

Construction of the propositional logic formula

Definition
Let M = (S, I,R,L) be a Kripke structure, ϕ a property, and k an
unfolding depth. Then the characteristic function JM,ϕKk
corresponding to M, ϕ, and k is defined as

I(s0)∧
[k−1∧

i=0
R(si ,si+1)

]
∧
[∧

sj∈S
(sj → L(sj))

]
∧Pk(ϕ)

with

I(s0): characteristic fct. of the initial states,

R(si ,si+1): characteristic fct. of the transition relation,

L(sj): characteristic fct. of the label function L,

Pk(ϕ): characteristic fct. of ϕ at depth k.

VTSA’15 Tobias Schubert – SAT-based Test & Verification 123 / 192

Types of Properties – Safety

Safety

Specify invariants of the system:

AGsafe

BMC-formulation for refuting safety (= proving EF¬safe):

I(s0)∧
k−1∧
i=0

T(si ,si+1)∧¬safe(sk)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 124 / 192

Types of Properties – Liveness

Liveness

Specified in temporal logic:

AFgood

Refutation of liveness (= proving EG¬good) requires infinitely
long paths!

If AFgood is violated, there is a “lasso” on which all states
satisfy ¬good
BMC-formulation:

I(s0)∧
k∧

i=0
T(si ,si+1)∧

k∧
i=0
¬good(si)∧

k∨
l=0

(sl = sk+1)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 125 / 192

BMC Example Safety – 2-Bit Counter

00 11

1001

ab

Requirement: State (1,1) may not reached, or later an
overflow will occur, i.e. the following must hold:

AG(¬(b∧a))⇔¬EF(b∧a)

Possible query: Can one reach (1,1) from the initial
state (0,0) in ≤ 2 steps?

⇒ M |=2 ϕ with ϕ = EF(b∧a)?

⇒ I(s0) = ¬b0 ∧¬a0

⇒ R(s0,s1) = (b1↔ (b0⊕a0))∧ (a1↔¬a0)

⇒ R(s1,s2) = (b2↔ (b1⊕a1))∧ (a2↔¬a1)

⇒ P2(ϕ) = (b0 ∧a0)∨ (b1 ∧a1)∨ (b2 ∧a2)

⇒ JM,ϕK2 = I(s0)∧R(s0,s1)∧R(s1,s2)∧P2(ϕ)

⇒ JM,ϕK2 = 0

⇒ Starting from (0,0), (1,1) cannot reached in max.
2 steps⇒M 6|=2 ϕ!

But: M 6|= AG(¬(b∧a))⇔M 6|= ¬EF(b∧a)!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 126 / 192

BMC Example Safety – 2-Bit Counter

00 11

1001

ab

Requirement: State (1,1) may not reached, or later an
overflow will occur, i.e. the following must hold:

AG(¬(b∧a))⇔¬EF(b∧a)

Possible query: Can one reach (1,1) from the initial
state (0,0) in ≤ 2 steps?

⇒ M |=2 ϕ with ϕ = EF(b∧a)?

⇒ I(s0) = ¬b0 ∧¬a0

⇒ R(s0,s1) = (b1↔ (b0⊕a0))∧ (a1↔¬a0)

⇒ R(s1,s2) = (b2↔ (b1⊕a1))∧ (a2↔¬a1)

⇒ P2(ϕ) = (b0 ∧a0)∨ (b1 ∧a1)∨ (b2 ∧a2)

⇒ JM,ϕK2 = I(s0)∧R(s0,s1)∧R(s1,s2)∧P2(ϕ)

⇒ JM,ϕK2 = 0

⇒ Starting from (0,0), (1,1) cannot reached in max.
2 steps⇒M 6|=2 ϕ!

But: M 6|= AG(¬(b∧a))⇔M 6|= ¬EF(b∧a)!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 126 / 192

BMC Example Safety – 2-Bit Counter

00 11

1001

ab

Requirement: State (1,1) may not reached, or later an
overflow will occur, i.e. the following must hold:

AG(¬(b∧a))⇔¬EF(b∧a)

Possible query: Can one reach (1,1) from the initial
state (0,0) in ≤ 2 steps?

⇒ M |=2 ϕ with ϕ = EF(b∧a)?

⇒ I(s0) = ¬b0 ∧¬a0

⇒ R(s0,s1) = (b1↔ (b0⊕a0))∧ (a1↔¬a0)

⇒ R(s1,s2) = (b2↔ (b1⊕a1))∧ (a2↔¬a1)

⇒ P2(ϕ) = (b0 ∧a0)∨ (b1 ∧a1)∨ (b2 ∧a2)

⇒ JM,ϕK2 = I(s0)∧R(s0,s1)∧R(s1,s2)∧P2(ϕ)

⇒ JM,ϕK2 = 0

⇒ Starting from (0,0), (1,1) cannot reached in max.
2 steps⇒M 6|=2 ϕ!

But: M 6|= AG(¬(b∧a))⇔M 6|= ¬EF(b∧a)!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 126 / 192

BMC Example Safety – 2-Bit Counter

00 11

1001

ab

Requirement: State (1,1) may not reached, or later an
overflow will occur, i.e. the following must hold:

AG(¬(b∧a))⇔¬EF(b∧a)

Possible query: Can one reach (1,1) from the initial
state (0,0) in ≤ 2 steps?

⇒ M |=2 ϕ with ϕ = EF(b∧a)?

⇒ I(s0) = ¬b0 ∧¬a0

⇒ R(s0,s1) = (b1↔ (b0⊕a0))∧ (a1↔¬a0)

⇒ R(s1,s2) = (b2↔ (b1⊕a1))∧ (a2↔¬a1)

⇒ P2(ϕ) = (b0 ∧a0)∨ (b1 ∧a1)∨ (b2 ∧a2)

⇒ JM,ϕK2 = I(s0)∧R(s0,s1)∧R(s1,s2)∧P2(ϕ)

⇒ JM,ϕK2 = 0

⇒ Starting from (0,0), (1,1) cannot reached in max.
2 steps⇒M 6|=2 ϕ!

But: M 6|= AG(¬(b∧a))⇔M 6|= ¬EF(b∧a)!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 126 / 192

BMC Example Liveness – Modified 2-Bit counter

00 11

1001

ab

Requirement: State (1,1) must be reachable from every state, i.e.
the following must hold:

AF(b∧a)⇔¬EG(¬(b∧a))

Counterexample exists iff from the initial state (0,0) there exists a
path of length k that belongs to a cycle, and in no state of this path
(b∧a) holds. Given k = 2 and ϕ = EG(¬(b∧a)):

⇒ I(s0) = ¬b0 ∧¬a0
⇒ R(si ,si+1) = ((bi+1↔ (bi ⊕ai))∧ (ai+1↔¬ai))∨

(bi+1 ∧¬ai+1 ∧bi ∧¬ai) with i = 0,1,2

⇒ P2(ϕ) = (¬b0 ∨¬a0)∧ (¬b1 ∨¬a1)∧ (¬b2 ∨¬a2)

⇒ [s3 ≡ si] = (b3↔ bi)∧ (a3↔ ai) with i = 0,1,2

⇒ JM,ϕK2 = I(s0)∧
[2∧

i=0
R(si ,si+1)

]
∧
[2∨

i=0
[s3 ≡ si]

]
∧P2(ϕ)

⇒ JM,ϕK2 = ¬b0 ∧¬a0 ∧¬b1 ∧a1 ∧b2 ∧¬a2 ∧b3 ∧¬a3
⇒ Counterexample found!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 127 / 192

BMC Example Liveness – Modified 2-Bit counter

00 11

1001

ab

Requirement: State (1,1) must be reachable from every state, i.e.
the following must hold:

AF(b∧a)⇔¬EG(¬(b∧a))

Counterexample exists iff from the initial state (0,0) there exists a
path of length k that belongs to a cycle, and in no state of this path
(b∧a) holds. Given k = 2 and ϕ = EG(¬(b∧a)):

⇒ I(s0) = ¬b0 ∧¬a0
⇒ R(si ,si+1) = ((bi+1↔ (bi ⊕ai))∧ (ai+1↔¬ai))∨

(bi+1 ∧¬ai+1 ∧bi ∧¬ai) with i = 0,1,2

⇒ P2(ϕ) = (¬b0 ∨¬a0)∧ (¬b1 ∨¬a1)∧ (¬b2 ∨¬a2)

⇒ [s3 ≡ si] = (b3↔ bi)∧ (a3↔ ai) with i = 0,1,2

⇒ JM,ϕK2 = I(s0)∧
[2∧

i=0
R(si ,si+1)

]
∧
[2∨

i=0
[s3 ≡ si]

]
∧P2(ϕ)

⇒ JM,ϕK2 = ¬b0 ∧¬a0 ∧¬b1 ∧a1 ∧b2 ∧¬a2 ∧b3 ∧¬a3
⇒ Counterexample found!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 127 / 192

BMC Example Liveness – Modified 2-Bit counter

00 11

1001

ab

Requirement: State (1,1) must be reachable from every state, i.e.
the following must hold:

AF(b∧a)⇔¬EG(¬(b∧a))

Counterexample exists iff from the initial state (0,0) there exists a
path of length k that belongs to a cycle, and in no state of this path
(b∧a) holds. Given k = 2 and ϕ = EG(¬(b∧a)):

⇒ I(s0) = ¬b0 ∧¬a0
⇒ R(si ,si+1) = ((bi+1↔ (bi ⊕ai))∧ (ai+1↔¬ai))∨

(bi+1 ∧¬ai+1 ∧bi ∧¬ai) with i = 0,1,2

⇒ P2(ϕ) = (¬b0 ∨¬a0)∧ (¬b1 ∨¬a1)∧ (¬b2 ∨¬a2)

⇒ [s3 ≡ si] = (b3↔ bi)∧ (a3↔ ai) with i = 0,1,2

⇒ JM,ϕK2 = I(s0)∧
[2∧

i=0
R(si ,si+1)

]
∧
[2∨

i=0
[s3 ≡ si]

]
∧P2(ϕ)

⇒ JM,ϕK2 = ¬b0 ∧¬a0 ∧¬b1 ∧a1 ∧b2 ∧¬a2 ∧b3 ∧¬a3
⇒ Counterexample found!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 127 / 192

SAT-based Bounded Model Checking

BMC can be used to disprove invariants AGϕ

... by proving EF¬ϕ considering paths of length k
If paths longer than k are needed for the proof, then BMC
fails

BMC can be used to disprove liveness properties like AFϕ

... by proving EG¬ϕ considering “lassos” of length k
If lassos longer than k are needed for the proof, then BMC
fails

In the following we restrict ourselves to invariants / safety
properties

VTSA’15 Tobias Schubert – SAT-based Test & Verification 128 / 192

Usage of BMC to falsify Safety Properties

Idea: Restrict system behavior to runs of some given bounded length,
i.e. runs with a bounded number of transition steps

reachable
state set

length

reachable state set
for runs of bounded

VTSA’15 Tobias Schubert – SAT-based Test & Verification 129 / 192

Usage of BMC to falsify Safety Properties

Idea: If the restricted system is unsafe (i.e. violates some safety
property, state invariant) then the original system is unsafe, too

reachable
state set

length

reachable state set
for runs of bounded

unsafe
state set

VTSA’15 Tobias Schubert – SAT-based Test & Verification 130 / 192

Usage of BMC in the Verification Domain

· · ·

· · ·

......

x0
0 ... x0

n

y0
0 ... y0

m

· · ·

· · ·

...

x1
0 ... x1

n

s10

s1r

y1
0 ... y1

m

· · ·

· · ·

...

xk−1
0 ... xk−1

n

sk−1
0

sk−1
r

s20

s2r

...· · ·
sk0

skr

s00

s0r

T 1,2T 0,1 T k−1,kI0 ¬P k

yk−1
0 ... yk−1

m

∧ ∧ ∧ . . . ∧ ∧

Initial state I, transition relation T , property P

Iterative unrolling of the system for k = 0,1, ...,K up to a given maximal unrolling
depth K

BMCk = I0 ∧
k−1∧
i=0

T i,i+1 ∧¬Pk

Convert BMCk into CNF by Tseitin transformation and solve it using a SAT solver

CNF satisfiable⇒ Invariant condition P violated after k steps
CNF unsatisfiable⇒ no conclusion, next iteration step

VTSA’15 Tobias Schubert – SAT-based Test & Verification 131 / 192

Some Remarks

Typically, BMC is used as an efficient means to find errors in a
system M, i.e. is there a k > 0 such that we can reach a state
violating ϕ for a given invariant AGϕ?

BMC is really efficient if there is a short error path

Without extensions it is not possible to prove that ϕ holds for all
reachable states

Bounded Model Checking→ Model Checking
Computing the “radius” of the Kripke structure
k-induction
Craig interpolation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 132 / 192

Observation

· · ·

· · ·

......

x0
0 ... x0

n

y0
0 ... y0

m

· · ·

· · ·

...

x1
0 ... x1

n

s10

s1r

y1
0 ... y1

m

· · ·

· · ·

...

xk−1
0 ... xk−1

n

sk−1
0

sk−1
r

s20

s2r

...· · ·
sk0

skr

s00

s0r

T 1,2T 0,1 T k−1,kI0 ¬P k

yk−1
0 ... yk−1

m

∧ ∧ ∧ . . . ∧ ∧

k = i : I0 ∧T0,1 ∧T1,2 ∧ ...∧T i−1,i ∧¬Pi

k = i +1 : I0 ∧T0,1 ∧T1,2 ∧ ...∧T i−1,i ∧T i,i+1 ∧¬Pi+1

The main part of the formula remains unchanged

¬Pi has to be removed

T i,i+1 ∧¬Pi+1 has to be added

How to profit from the similarity between those problems?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 133 / 192

Incremental SAT Solving

In many practical applications – not only in the area of BMC –
often several SAT instances are generated to solve a real-world
problem

Generated SAT instances are often very similar and contain
identical subformulas

Idea: Instead of constructing and solving each instance
separately, the SAT formula is processed incrementally

Knowledge learnt so far (conflict clauses, variable activity, . . .)
can be re-used in later instances

Standard feature of all modern SAT solvers

VTSA’15 Tobias Schubert – SAT-based Test & Verification 134 / 192

Incremental SAT Solving

Main idea

Make use of the knowledge learnt in the previous instance by
re-using the learnt conflict clauses

Question

Is this always allowed?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 135 / 192

Incremental SAT Solving

Idea: Make use of the knowledge learnt in the previous instance
by re-using the learnt conflict clauses.

Question: Is this always allowed?

Observation
If c is a conflict clause for SAT instance A with CNF CNFA,
then CNFA⇒ c
If instance B results from A just by adding clauses (i.e.
CNFB ⊇ CNFA), then CNFB⇒ c holds as well
Conflict clauses be may re-used then

But what if CNFB ⊇ CNFA does not hold?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 136 / 192

Incremental SAT Solving

General case: CNFA contains clauses that do not occur in CNFB
anymore

Now we need for each conflict clause c the information about the
set of original clauses it was derived from

Remember: Conflict clauses result from original and/or conflict
clauses by resolution (implication graph)

⇒ Conflict clauses which are derived from original clauses in
CNFA \CNFB are not allowed to be added to CNFB!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 137 / 192

Illustration: Re-using Clauses

VTSA’15 Tobias Schubert – SAT-based Test & Verification 138 / 192

Illustration: Re-using Clauses

VTSA’15 Tobias Schubert – SAT-based Test & Verification 139 / 192

Illustration: Re-using Clauses

VTSA’15 Tobias Schubert – SAT-based Test & Verification 140 / 192

Incremental SAT Solving with Assumptions

In general, storing which conflict clause depends on which original clauses is too
expensive! Here is the most common approach to solve the problem:

Activation variables and assumptions
Use “special” new de-activation variables di
For clauses c which should be removable from the clause set, a positive
de-activation literal is added: c := c∪di
There are only positive occurrences of de-activation variables!

Turning c on and off:
Turning on by di = 0
Turning off by di = 1

Example
ϕ = (a∨b)∧ (¬c∨d) Initial formula

ϕ0/¬d0 = (a∨b)∧ (¬c∨d)∧ (b∨d0) incr. step 0

ϕ1/d0,¬d1 = (a∨b)∧ (¬c∨d)∧ (b∨d0)∧ (d ∨d1) incr. step 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 141 / 192

Incremental SAT Solving with Assumptions

In general, storing which conflict clause depends on which original clauses is too
expensive! Here is the most common approach to solve the problem:

Activation variables and assumptions
Use “special” new de-activation variables di
For clauses c which should be removable from the clause set, a positive
de-activation literal is added: c := c∪di
There are only positive occurrences of de-activation variables!

Turning c on and off:
Turning on by di = 0
Turning off by di = 1

Example
ϕ = (a∨b)∧ (¬c∨d) Initial formula

ϕ0/¬d0 = (a∨b)∧ (¬c∨d)∧ (b∨d0) incr. step 0

ϕ1/d0,¬d1 = (a∨b)∧ (¬c∨d)∧ (b∨d0)∧ (d ∨d1) incr. step 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 141 / 192

Incremental SAT Solving with Assumptions

Activation variables and assumptions
...

De-activation variables are assigned by assumptions before SAT
solving (activating / de-activating clauses)

Assumptions can not be changed during SAT solving (Note: Unit
clauses and assumptions are not the same!)

Important observation: All conflict clauses resulting from c∪di
by resolution contain literal di

⇒ If c∪di is turned off in the next run, i.e., di is set to 1 by
assumption, then all conflict clauses depending on c∪di are
turned off as well!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 142 / 192

Incremental SAT Solving and BMC

· · ·

· · ·

......

x0
0 ... x0

n

y0
0 ... y0

m

· · ·

· · ·

...

x1
0 ... x1

n

s10

s1r

y1
0 ... y1

m

· · ·

· · ·

...

xk−1
0 ... xk−1

n

sk−1
0

sk−1
r

s20

s2r

...· · ·
sk0

skr

s00

s0r

T 1,2T 0,1 T k−1,kI0 ¬P k

yk−1
0 ... yk−1

m

∧ ∧ ∧ . . . ∧ ∧

k = i : I0 ∧T0,1 ∧T1,2 ∧ ...∧T i−1,i ∧¬Pi

k = i +1 : I0 ∧T0,1 ∧T1,2 ∧ ...∧T i−1,i ∧T i,i+1 ∧¬Pi+1

Add de-activation literal di for each clause representing ¬Pi

For k = i activate ¬Pi by assumption di = 0
For k > i de-activate ¬Pi by assumption di = 1
All knowledge / conflict clauses learnt for k = i can be re-used (except the
knowledge depending on ¬Pi)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 143 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 144 / 192

Satisfiability Modulo Theory

Hybrid Systems

Typically, embedded systems are characterized by the
combination of discrete and continuous variables

iSAT

Satisfiability and BMC checker for quantifier-free Boolean
combinations of arithmetic constraints over the reals and
integers

SAT

iSAT UNSAT

unknown

∧ (b → sin(x) ·y < 7.2)

∧ (i2 = 3j−5)

∧ (
√

2x−y = 8 ∨ c)

(¬b ∨ ¬c)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 145 / 192

Satisfiability Modulo Theory – iSAT

iSAT

Not a “pure” SAT-Modulo-Theory solver

yes / no
consistent:

arithmetic
constraint system

explanation

SAT
reasoner

Arithmetic

Can be seen as a generalization of a SAT solver
Branch-and-deduce framework inherited from SAT
Deduction rule for clauses

Unit propagation
Deduction rules for arithmetic operators

Interval constraint propagation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 146 / 192

Satisfiability Modulo Theory – ICP

Interval Constraint Propagation (ICP)

h1 = z2, z ∈ [3,7], h1 ∈ [−2,25]

z ∈ [3,7]⇒ h1 ≥ 9⇒ h1 ∈ [9,25] h1 ∈ [9,25]⇒ z ≤ 5⇒ z ∈ [3,5]

VTSA’15 Tobias Schubert – SAT-based Test & Verification 147 / 192

Satisfiability Modulo Theory – BMC Mode of iSAT

iSAT

There’s no sequence of
input values such that
3.14≤ x ≤ 3.15

Safety property:

DECL
boole b;
float [0.0, 1000.0] x;

INIT
– Initial state.
x = 2.0;

TRANS
– Transition relation.
b -> x’ = xˆ2 + 1;
!b -> x’ = nrt(x, 3);

TARGET
– State(s) to be reached.
x >= 3.14 and x <= 3.15;

CANDIDATE SOLUTION:
b (boole):
@0: [1, 1]
@1: [0, 0]
@2: [0, 0]
@3: [0, 0]
@4: [1, 1]
@5: [1, 1]
@6: [1, 1]
@7: [0, 0]
@8: [0, 0]
@9: [1, 1]
@10: [0, 0]
@11: [1, 1]

x (float):
@0: [2, 2]
@1: [5, 5]
@2: [1.7099, 1,7100]
@3: [1.1874, 1,1959]
@4: [1.0589, 1.0615]
@5: [2.1214, 2.1267]
@6: [5.5013, 5.5114]
@7: [31.329, 31.3391]
@8: [3.1499, 1.1576]
@9: [1.4597, 1.4671]
@10: [3.1307, 3.1402]
@11: [1.4629,1.4663]
@12: [3.1400, 3.1500]

b/

¬b/

x := 2

C
O

U
N

TER
EXA

M
PLE

x := 3√x

x := x2+1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 148 / 192

Satisfiability Modulo Theory – iSAT

iSAT

All acceleration techniques known from modern SAT solvers
also apply to arithmetic constraints

Conflict-driven learning
Non-chronological backtracking
2-watched-literal scheme
Restarts
Conflict clause deletion
Efficient decision heuristics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 149 / 192

Satisfiability Modulo Theory – iSAT

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

input formula into a conjunction of constraints

• Auxiliary variables h1,h2,h3 are used for decomposition
of complex constraint x2−2y ≥ 6.2.

• Use Tseitin-style transformation to rewrite

. n-ary disjunctions of bounds (’clauses’)

. Arithmetic constraints having at most one

Allows identification of literals with bounds on Booleans
• Boolean variables are regarded as 0-1 integer variables.

operation symbol

b≤ 0
b≥ 1

≡
≡b

¬b

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

a≥ 1

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 : DL 1:

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

c2
c3

c1a≥ 1

b≥ 1

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

c ≥ 1 d ≥ 1

d ≤ 0

DL 1:

DL 2:

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

c3

c2

c1

b≥ 1

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

∧ (¬a ∨ ¬c)c9 :

d ≥ 1

d ≤ 0

c ≥ 1

a≥ 1DL 1:

DL 2:

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

c9 c2 c4
a≥ 1 c ≤ 0 b≤ 0 x ≥−2

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

∧ (¬a ∨ ¬c)c9 :

DL 1:

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

c9 c2 c4

c7

a≥ 1 c ≤ 0 b≤ 0

y ≥ 4

x ≥−2

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

∧ (¬a ∨ ¬c)c9 :

DL 1:

DL 2: h2 ≤−8

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

c9 c2 c4

c7

c8
c6

c5

a≥ 1 c ≤ 0 b≤ 0

y ≥ 4

x ≤ 3 h3 ≥ 6.2

h1 ≤ 9

h2 ≥−2.8

x ≥−2

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

∧ (¬a ∨ ¬c)c9 :

DL 1:

DL 2: h2 ≤−8

DL 3:

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

c9 c2 c4

c7

c8
c6

c5

a≥ 1 c ≤ 0 b≤ 0

y ≥ 4

x ≤ 3 h3 ≥ 6.2

h1 ≤ 9

h2 ≥−2.8

x ≥−2

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

← Conflict clause = symbolic description

of a rectangular region of the search space

which is excluded from future search

∧ (¬a ∨ ¬c)c9 :

DL 1:

DL 2: h2 ≤−8

DL 3:

∧ (x <−2 ∨ y < 4 ∨ x > 3)c10 :

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

c9 c2 c4

c7

c6c10

a≥ 1 c ≤ 0 b≤ 0

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

y ≥ 4

x ≥−2

x > 3

h2 ≤−8

h1 > 9

∧ (¬a ∨ ¬c)c9 :

DL 1:

DL 2:

∧ (x <−2 ∨ y < 4 ∨ x > 3)c10 :

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

c9 c2 c4

c7

c6c10

a≥ 1 c ≤ 0 b≤ 0

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

y ≥ 4

x ≥−2

x > 3

h2 ≤−8

h1 > 9

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

h3 = h1 +h2c8 : ∧

∧ (¬a ∨ ¬c)c9 :

DL 1:

DL 2:

• Continue do split and deduce until either

• Avoid infinite splitting and deduction

. formula turns out to be UNSAT (unresolvable conflict),

. Minimal splitting width

. Discard a deduced bound if it yields small progress only

search space for which it cannot derive any contradiction.

. formula turns out to be SAT (point interval),

. solver is left with ‘sufficiently small’ portion of the∧ (x <−2 ∨ y < 4 ∨ x > 3)c10 :

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

Remarks

All variables have to be bounded initially

Reliable results due to outward rounding

Further features
Clever normalization rules
Continue search after “unknown”
Proof of unsatisfiability
Unbounded model checking using interpolants
Handling of stochastic constraint systems
Parallelization based on message passing

VTSA’15 Tobias Schubert – SAT-based Test & Verification 151 / 192

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

Part of the forthcoming European Train Control
Standard

Minimal distance between two trains equals
braking distance plus safety margin

First train reports position of its end to the
second train every 8 seconds

Controller of the second train automatically
initiates braking to maintain safety margin

Top-level view of the Matlab/Simulink model for two trains

VTSA’15 Tobias Schubert – SAT-based Test & Verification 152 / 192

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

Model of controller and train dynamics

Safety property to be checked:
Does the controller guarantee that collisions aren’t possible?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 153 / 192

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

VTSA’15 Tobias Schubert – SAT-based Test & Verification 154 / 192

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

VTSA’15 Tobias Schubert – SAT-based Test & Verification 155 / 192

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

VTSA’15 Tobias Schubert – SAT-based Test & Verification 156 / 192

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

Simulation Error trace found by iSAT

From top to bottom positions, accelerations, speeds, and distances of the two trains are shown

VTSA’15 Tobias Schubert – SAT-based Test & Verification 157 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security Issues
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

Path Compaction

VTSA’15 Tobias Schubert – SAT-based Test & Verification 158 / 192

MaxSAT in a Nutshell

Max-SAT

Given a CNF ϕ, find a truth assignment for all variables that
satisfies the maximum number of clauses within ϕ

Variants of Max-SAT

Partial Max-SAT
ϕ consists of hard and soft clauses
All hard clauses must be satisfied
Maximize number of satisfied soft clauses

Weighted Max-SAT

Weighted Partial Max-SAT

VTSA’15 Tobias Schubert – SAT-based Test & Verification 159 / 192

MaxSAT in a Nutshell

Solving (Partial) Max-SAT using SAT Algorithms

Each soft clause gets extended by a fresh “trigger” variable:
(x1∨x2) ; (t1∨x1∨x2)

By construction, after adding trigger variables all soft clauses
can be satisfied simultaneously

Now, Max-SAT corresponds to minimizing k in ∑
m
c=1 tc ≤ k with m

representing the number of soft clauses

Encode ∑
m
c=1 tc ≤ k with a bitonic sorting network (unary

representation), convert it to CNF, and add it to the formula

Solve the Max-SAT problem by using incremental SAT solving,
iterating over k

VTSA’15 Tobias Schubert – SAT-based Test & Verification 160 / 192

Bitonic Sorting Network

Each arrow in the example above represents a comparator (half adder):
comp(x1,x2,y1,y2) ↔ ((y1↔ x1∨x2) ∧ (y2↔ x1∧x2))

Using Tseitin encoding each comparator can be modeled with
2 auxiliary variables & 6 clauses

VTSA’15 Tobias Schubert – SAT-based Test & Verification 161 / 192

Path Compaction

Production of circuits is erroneous
Various types and sources of faults
Covered here: Small-delay faults

General workflow
Predefined paths obtained from path analysis tool
Sensitize all target paths using as less patterns as possible
to reduce overall test overhead
Test pattern relaxation

Approach
SAT-based maximization of sensitized target paths

Results
Applicable to large industrial circuits
Significantly reduced number of test patterns compared to
other state-of-the-art approaches

VTSA’15 Tobias Schubert – SAT-based Test & Verification 162 / 192

Path Compaction

Sensitizable Paths and Small Delay Faults

Sensitizable path: Transition from input to output
Length of a path according to sum of gate delays
The longer the path the higher the detection quality
Two-pattern delay test

VTSA’15 Tobias Schubert – SAT-based Test & Verification 163 / 192

Path Compaction

Sensitizable Paths and Small Delay Faults

Small delay faults: Assume additional delay for one gate
Output transition too late for clock
The longer the path the higher the detection quality
Two-pattern delay test

VTSA’15 Tobias Schubert – SAT-based Test & Verification 164 / 192

Path Compaction

Production of circuits is erroneous
Various types and sources of faults
Covered here: Small-delay faults

General workflow
Predefined paths obtained from path analysis tool
Sensitize all target paths using as less patterns as possible
to reduce overall test overhead
Test pattern relaxation

Approach
SAT-based maximization of sensitized target paths

Results
Applicable to large industrial circuits
Significantly reduced number of test patterns compared to
other state-of-the-art approaches

VTSA’15 Tobias Schubert – SAT-based Test & Verification 165 / 192

Path Compaction

Maximization of Sensitized Target Paths using Partial Max-SAT

sPi indicates whether a path p is sensitized or not
< sPi , . . . ,sPn > gets sorted by 1’s and 0’s
< SO1, . . . ,SOn >=< 1, . . . ,1,0, . . . ,0>

Setting SOi to 1 forces the solver to sensitize at least i paths

VTSA’15 Tobias Schubert – SAT-based Test & Verification 166 / 192

Path Compaction

Production of circuits is erroneous
Various types and sources of faults
Covered here: Small-delay faults

General workflow
Predefined paths obtained from path analysis tool
Sensitize all target paths using as less patterns as possible
to reduce overall test overhead
Test pattern relaxation

Approach
SAT-based maximization of sensitized target paths

Results
Applicable to large industrial circuits
Significantly reduced number of test patterns compared to
other state-of-the-art approaches

VTSA’15 Tobias Schubert – SAT-based Test & Verification 167 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 168 / 192

QBF in a Nutshell

Quantified Boolean Formula (QBF)

Extension of SAT where the variables are either universal or
existential quantified

Example
Ψ = ∃x1∀x2,x3∃x4, . . . ,xn︸ ︷︷ ︸

prefix

ϕ(x1, . . . ,xn)︸ ︷︷ ︸
matrix(CNF)

Semantics (for this particular example)
Ψ is satisfied iff there exists one assignment for x1 such that
for every assignment of x2 and x3, there exists one
assignment for x4, . . . ,xn, such that ϕ is satisfied

VTSA’15 Tobias Schubert – SAT-based Test & Verification 169 / 192

Test Pattern Relaxation using QBF

Motivation

Parts of the pattern get unspecified (don’t care) ; test cube

Test properties still hold

Reduced overall test overhead

Focus of this work: Test cube generation with maximum number
of don’t cares ; optimal test cube

Fault model considered here

Again, small-delay Faults

VTSA’15 Tobias Schubert – SAT-based Test & Verification 170 / 192

Modeling Don’t Cares with QBF

A = 1

B

C = 1
D

E

F

G

= 0
= 1

= 1
= 0

= 0
= 1

= 1
= 1

= 1
= 1

D= 0
= 1

Simulation for B= 0
= 1

⇒ F can be set to 1, even if B is unspecified!
⇒ Don’t cares can be represented by ∀ variables
⇒ ∃{A,C}∀{B}∃{D,E,F ,G}︸ ︷︷ ︸

Prefix

. ϕ(A, . . . ,G)︸ ︷︷ ︸
Tseitin encoding

∧ (F)︸︷︷︸
property

VTSA’15 Tobias Schubert – SAT-based Test & Verification 171 / 192

Test Pattern Relaxation using QBF

Identifying small-delay faults requires two timeframes
Test cube with maximum number of unspecified inputs using QBF
Quantify unspecified inputs universally, specified ones existentially
If a path for small-delay fault is sensitizable:
Universally quantified inputs: Excluded from test cube
Existential quantified inputs: Test cube
But: The quantifier of a variable cannot be changed in QBF

⇒ Unspecified inputs are not known a-priori
⇒ Which inputs have to be quantified universally?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 172 / 192

Test Pattern Relaxation using QBF

Ψ = ∃SO1, . . . ,SOn,S1, . . . ,Sn,E1, . . . ,En∀A1, . . . ,An∃ . . .ϕcirc.∧ϕprop.∧ϕmux ∧ϕbsn∧SOk

Dynamic choice of (un-)specified inputs using multiplexers
Select input Si switches between specified (Si = 0 ∃Ei) and unspecified
(Si = 1 ∀Ai) for any primary input Ii
Find the maximum number of multiplexer select inputs that can be set to 1
Search for k, such that: Path is sensitizable with k unspecified inputs (SOk = 1),
but not with k +1 (SOk+1 = 0)

⇒ Optimal test cube, i.e., maximum number of don’t cares

VTSA’15 Tobias Schubert – SAT-based Test & Verification 173 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 174 / 192

Motivation – Equivalence Checking

≡

X1 X2

Y1 Y2

I

Specification

Implementation

≡ 1?
Miter

Are implementation and
specification equivalent?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 175 / 192

Motivation – Partial Equivalence Checking

≡

BB1 BB2

X1 X2

Y1 Y2

Specification

Implementation

≡ 1?
Miter

Realizability, i.e. are there
implementations of the black
boxes (BBs) such that
implementation and
specification are equivalent?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 176 / 192

QBF vs. Dependency-QBF (DQBF)

≡

BB1 BB2

X1 X2

Y1 Y2

Specification

Implementation

≡ 1?
Miter

...

Expressible with QBF

⇒ Approximation

BBs read all inputs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 177 / 192

QBF vs. Dependency-QBF (DQBF)

≡

BB1 BB2

X1 X2

Y1 Y2

Specification

Implementation

≡ 1?
Miter

...

Expressible with QBF

⇒ Approximation

BBs read all inputs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 177 / 192

QBF vs. Dependency-QBF (DQBF)

≡

BB1 BB2

X1 X2

Y1 Y2

Specification

Implementation

≡ 1?
Miter

...

Expressible with QBF

⇒ Approximation

BBs read all inputs

≡

BB1 BB2

X1 X2

Y1 Y2

Specification

Implementation

≡ 1?
Miter

...

Expressible with DQBF

⇒ More precise

BBs read actual inputs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 177 / 192

QBF vs. DQBF

QBF

Linear quantifier-order

Existentially quantified
variables depend on all
universally quantified
variables left of it

...

ψQBF =

Q︷ ︸︸ ︷
∀x1∀x2∃y1∃y2 : ϕ

DQBF

Non-linear quantifier-order

Dependencies between
variables are explicitly
expressible

...

ψDQBF =

Q︷ ︸︸ ︷
∀x1∀x2∃y1{x1}︸︷︷︸∃y2{x2}︸︷︷︸ : ϕ

dependencies

VTSA’15 Tobias Schubert – SAT-based Test & Verification 178 / 192

Semantics of DQBF

ψDQBF = ∀x1∀x2∃y1{x1}∃y2{x2} : ϕ

Additional constraints compared to QBF

1) For the same assignment of all ∀ variables u ∈ dep(e) the
assignment of the ∃ variable e has to be the same

2) For different assignments of at least one ∀ variable u ∈ dep(e)
the assignment of the ∃ variable e is allowed to change

VTSA’15 Tobias Schubert – SAT-based Test & Verification 179 / 192

QBF and DQBF for Partial Equivalence Checking

QBF

Does not take dependencies
between BBs into account

BBs read all circuit inputs

...

UNSAT⇒ unrealizability

SAT ; realizability

DQBF

...

BBs read only affecting
signals

...

UNSAT⇒ unrealizability

SAT⇒ realizability

For one black box QBF is as accurate as DQBF!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 180 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

Henkin Quantified Solver (HQS)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 182 / 192

Main Idea behind HQS – Acyclic Dependency Graph

VTSA’15 Tobias Schubert – SAT-based Test & Verification 183 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 184 / 192

#SAT in a Nutshell

#SAT

Given a CNF ϕ, count how many disjoint truth assignments
satisfy ϕ

#SAT solver have to continue search after one solution has been
found

With n variables, ϕ can have up to 2n satisfying assignments

#SAT corresponds to model counting, not enumerating all
satisfying assignments

Accelerating techniques differ from classical SAT solving
Caching of already analyzed sub-formulae: [ϕ ′,Mϕ ′]

Component analysis: ϕ = ϕ ′∧ϕ ′′ ⇒ Mϕ = Mϕ ′ ·Mϕ ′′

Different approaches: Exact vs. approximate model counting

VTSA’15 Tobias Schubert – SAT-based Test & Verification 185 / 192

#SAT – Example

ϕ = (v1∨¬v2)∧ (v1∨v2∨v3)∧ (¬v4∨v5)∧ (¬v3∨v5)

v3 ϕ

v1(v1∨¬v2)∧ (v1∨v2)∧ (¬v4∨v5)

fals
e

unsat(¬v2)∧ (v2)∧(¬v4∨v5)

fal
se

0
v4 (¬v4∨v5)

true

sat

fa
lse

v2 and v5 free
4

true

(v5)

2

6

6

. . .

true

6

12

mc(ϕ) = 12

VTSA’15 Tobias Schubert – SAT-based Test & Verification 186 / 192

#SAT – Example

ϕ = (v1∨¬v2)∧ (v1∨v2∨v3)∧ (¬v4∨v5)∧ (¬v3∨v5)

v3 ϕ

v1(v1∨¬v2)∧ (v1∨v2)∧ (¬v4∨v5)

fals
e

unsat(¬v2)∧ (v2)∧(¬v4∨v5)

fal
se

0

v4 (¬v4∨v5)
true

sat

fa
lse

v2 and v5 free
4

true

(v5)

2

6

6

. . .

true

6

12

mc(ϕ) = 12

VTSA’15 Tobias Schubert – SAT-based Test & Verification 186 / 192

#SAT – Example

ϕ = (v1∨¬v2)∧ (v1∨v2∨v3)∧ (¬v4∨v5)∧ (¬v3∨v5)

v3 ϕ

v1(v1∨¬v2)∧ (v1∨v2)∧ (¬v4∨v5)

fals
e

unsat(¬v2)∧ (v2)∧(¬v4∨v5)

fal
se

0
v4 (¬v4∨v5)

true

sat

fa
lse

v2 and v5 free
4

true

(v5)

2

6

6

. . .

true

6

12

mc(ϕ) = 12

VTSA’15 Tobias Schubert – SAT-based Test & Verification 186 / 192

#SAT – Example

ϕ = (v1∨¬v2)∧ (v1∨v2∨v3)∧ (¬v4∨v5)∧ (¬v3∨v5)

v3 ϕ

v1(v1∨¬v2)∧ (v1∨v2)∧ (¬v4∨v5)

fals
e

unsat(¬v2)∧ (v2)∧(¬v4∨v5)

fal
se

0
v4 (¬v4∨v5)

true

sat

fa
lse

v2 and v5 free
4

true

(v5)

2

6

6

. . .

true

6

12

mc(ϕ) = 12

VTSA’15 Tobias Schubert – SAT-based Test & Verification 186 / 192

#SAT – Example

ϕ = (v1∨¬v2)∧ (v1∨v2∨v3)∧ (¬v4∨v5)∧ (¬v3∨v5)

v3 ϕ

v1(v1∨¬v2)∧ (v1∨v2)∧ (¬v4∨v5)

fals
e

unsat(¬v2)∧ (v2)∧(¬v4∨v5)

fal
se

0
v4 (¬v4∨v5)

true

sat

fa
lse

v2 and v5 free

4

true

(v5)

2

6

6

. . .

true

6

12

mc(ϕ) = 12

VTSA’15 Tobias Schubert – SAT-based Test & Verification 186 / 192

#SAT – Example

ϕ = (v1∨¬v2)∧ (v1∨v2∨v3)∧ (¬v4∨v5)∧ (¬v3∨v5)

v3 ϕ

v1(v1∨¬v2)∧ (v1∨v2)∧ (¬v4∨v5)

fals
e

unsat(¬v2)∧ (v2)∧(¬v4∨v5)

fal
se

0
v4 (¬v4∨v5)

true

sat

fa
lse

v2 and v5 free

4

true

(v5)

2

6

6

. . .

true

6

12

mc(ϕ) = 12

VTSA’15 Tobias Schubert – SAT-based Test & Verification 186 / 192

#SAT – Example

ϕ = (v1∨¬v2)∧ (v1∨v2∨v3)∧ (¬v4∨v5)∧ (¬v3∨v5)

v3 ϕ

v1(v1∨¬v2)∧ (v1∨v2)∧ (¬v4∨v5)

fals
e

unsat(¬v2)∧ (v2)∧(¬v4∨v5)

fal
se

0
v4 (¬v4∨v5)

true

sat

fa
lse

v2 and v5 free

4

true

(v5)

2

6

6

. . .

true

6

12

mc(ϕ) = 12
VTSA’15 Tobias Schubert – SAT-based Test & Verification 186 / 192

#SAT – Caching

Store model counts of sub-formulas in a cache

Do not compute the result for the same sub-formula twice

ϕ = (v1∨v2∨v3)∧ (¬v1∨v2∨v3)

v1 ϕ

6

v2 (v2∨v3)

3

(v3)

1

(v2∨v3)

3

sat
2

fals
e

true

fal
se true

cache hit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 187 / 192

#SAT – Caching

Store model counts of sub-formulas in a cache

Do not compute the result for the same sub-formula twice

ϕ = (v1∨v2∨v3)∧ (¬v1∨v2∨v3)

v1 ϕ

6

v2 (v2∨v3)

3

(v3)

1

(v2∨v3)

3

sat
2

fals
e

true

fal
se true

cache hit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 187 / 192

#SAT – Caching

Store model counts of sub-formulas in a cache

Do not compute the result for the same sub-formula twice

ϕ = (v1∨v2∨v3)∧ (¬v1∨v2∨v3)

v1 ϕ

6

v2 (v2∨v3)

3

(v3)

1

(v2∨v3)

3

sat
2

fals
e true

fal
se true

cache hit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 187 / 192

#SAT – Caching

Store model counts of sub-formulas in a cache

Do not compute the result for the same sub-formula twice

ϕ = (v1∨v2∨v3)∧ (¬v1∨v2∨v3)

v1 ϕ

6

v2 (v2∨v3)

3

(v3)

1

(v2∨v3)

3

sat
2

fals
e true

fal
se true

cache hit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 187 / 192

#SAT – Caching

Store model counts of sub-formulas in a cache

Do not compute the result for the same sub-formula twice

ϕ = (v1∨v2∨v3)∧ (¬v1∨v2∨v3)

v1 ϕ

6

v2 (v2∨v3)

3

(v3)

1

(v2∨v3)

3

sat
2

fals
e true

fal
se true

cache hit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 187 / 192

#SAT – Caching

Store model counts of sub-formulas in a cache

Do not compute the result for the same sub-formula twice

ϕ = (v1∨v2∨v3)∧ (¬v1∨v2∨v3)

v1 ϕ

6

v2 (v2∨v3)

3

(v3)

1

(v2∨v3)

3

sat
2

fals
e true

fal
se true

cache hit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 187 / 192

#SAT – Component Analysis

The formula might split into disjoint sub-formulas

ϕ = (¬p2∨a2)∧ (a1∨a2∨a3)∧ (b1)∧ (¬b3∨b4)∧ (p2∨¬b2)

Assignment: p2 = false
Sub-formulas:
ϕ1 = (a1∨a2∨a3)
ϕ2 = (b1)∧ (¬b3∨b4)∧ (¬b2)

Model count is computed by multiplying results for
sub-formulas:
mc(ϕ|p2=false) = mc(ϕ1) ·mc(ϕ2) = 7 ·3 = 21

VTSA’15 Tobias Schubert – SAT-based Test & Verification 188 / 192

#SAT – Component Analysis

The formula might split into disjoint sub-formulas
ϕ = (¬p2∨a2)∧ (a1∨a2∨a3)∧ (b1)∧ (¬b3∨b4)∧ (p2∨¬b2)

Assignment: p2 = false
Sub-formulas:
ϕ1 = (a1∨a2∨a3)
ϕ2 = (b1)∧ (¬b3∨b4)∧ (¬b2)

Model count is computed by multiplying results for
sub-formulas:
mc(ϕ|p2=false) = mc(ϕ1) ·mc(ϕ2) = 7 ·3 = 21

VTSA’15 Tobias Schubert – SAT-based Test & Verification 188 / 192

#SAT – Component Analysis

The formula might split into disjoint sub-formulas
ϕ = (¬p2∨a2)∧ (a1∨a2∨a3)∧ (b1)∧ (¬b3∨b4)∧ (p2∨¬b2)

Assignment: p2 = false

Sub-formulas:
ϕ1 = (a1∨a2∨a3)
ϕ2 = (b1)∧ (¬b3∨b4)∧ (¬b2)

Model count is computed by multiplying results for
sub-formulas:
mc(ϕ|p2=false) = mc(ϕ1) ·mc(ϕ2) = 7 ·3 = 21

VTSA’15 Tobias Schubert – SAT-based Test & Verification 188 / 192

#SAT – Component Analysis

The formula might split into disjoint sub-formulas
ϕ = (¬p2∨a2)∧ (a1∨a2∨a3)∧ (b1)∧ (¬b3∨b4)∧ (p2∨¬b2)

Assignment: p2 = false
Sub-formulas:
ϕ1 = (a1∨a2∨a3)
ϕ2 = (b1)∧ (¬b3∨b4)∧ (¬b2)

Model count is computed by multiplying results for
sub-formulas:
mc(ϕ|p2=false) = mc(ϕ1) ·mc(ϕ2) = 7 ·3 = 21

VTSA’15 Tobias Schubert – SAT-based Test & Verification 188 / 192

#SAT – Component Analysis

The formula might split into disjoint sub-formulas
ϕ = (¬p2∨a2)∧ (a1∨a2∨a3)∧ (b1)∧ (¬b3∨b4)∧ (p2∨¬b2)

Assignment: p2 = false
Sub-formulas:
ϕ1 = (a1∨a2∨a3)
ϕ2 = (b1)∧ (¬b3∨b4)∧ (¬b2)

Model count is computed by multiplying results for
sub-formulas:
mc(ϕ|p2=false) = mc(ϕ1) ·mc(ϕ2) = 7 ·3 = 21

VTSA’15 Tobias Schubert – SAT-based Test & Verification 188 / 192

Security Issues – Fault Injection

Extract secret information from a security circuit (AES, . . .)
Inject fault by increasing the clock frequency
Incorrect output allows for calculation of secret

Security circuit

Combinational circuit Flip-Flops

Clock

Input Output

Attacker

Flip-flops store value on rising clock edge
Successful injection: flip-flops store an incorrect value
How likely is a successful injection for unknown input?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 189 / 192

Security Issues – Fault Injection

Extract secret information from a security circuit (AES, . . .)
Inject fault by increasing the clock frequency
Incorrect output allows for calculation of secret

Security circuit

Combinational circuit Flip-Flops

Clock

Input Output

Attacker

Flip-flops store value on rising clock edge
Successful injection: flip-flops store an incorrect value
How likely is a successful injection for unknown input?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 189 / 192

Security Issues – Fault Injection

Extract secret information from a security circuit (AES, . . .)
Inject fault by increasing the clock frequency
Incorrect output allows for calculation of secret

Security circuit

Combinational circuit Flip-Flops

Clock

Input Output

Attacker

Flip-flops store value on rising clock edge
Successful injection: flip-flops store an incorrect value
How likely is a successful injection for unknown input?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 189 / 192

Security Issues – Fault Injection

Extract secret information from a security circuit (AES, . . .)
Inject fault by increasing the clock frequency
Incorrect output allows for calculation of secret

Security circuit

Combinational circuit Flip-Flops

Clock

Input Output

Attacker

Flip-flops store value on rising clock edge

Successful injection: flip-flops store an incorrect value
How likely is a successful injection for unknown input?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 189 / 192

Security Issues – Fault Injection

Extract secret information from a security circuit (AES, . . .)
Inject fault by increasing the clock frequency
Incorrect output allows for calculation of secret

Security circuit

Combinational circuit Flip-Flops

Clock

Input Output

Attacker

Flip-flops store value on rising clock edge
Successful injection: flip-flops store an incorrect value
How likely is a successful injection for unknown input?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 189 / 192

Security Issues – Fault Injection

1 Encode combinational circuit and its timing as CNF
formula ϕ with the tool WaveSAT1

2 Make ϕ satisfiable iff at least one fault is injected

3 Add conditions for outputs that must be correct

4 Calculate number of satisfying assignments mc(ϕ)

5 P(Successful Injection) =
mc(ϕ)

2#circuit inputs

1M. Sauer et al. "Small-Delay-Fault ATPG with Waveform Accuracy". In: ICCAD 2012.

VTSA’15 Tobias Schubert – SAT-based Test & Verification 190 / 192

Security Issues – Fault Injection

1 Encode combinational circuit and its timing as CNF
formula ϕ with the tool WaveSAT1

2 Make ϕ satisfiable iff at least one fault is injected

3 Add conditions for outputs that must be correct

4 Calculate number of satisfying assignments mc(ϕ)

5 P(Successful Injection) =
mc(ϕ)

2#circuit inputs

1M. Sauer et al. "Small-Delay-Fault ATPG with Waveform Accuracy". In: ICCAD 2012.

VTSA’15 Tobias Schubert – SAT-based Test & Verification 190 / 192

Conclusion

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 191 / 192

Some Papers. . .

[Abraham, Schubert, Becker, Fränzle, Herde. Parallel SAT Solving in BMC. Logic & Computation, 2011]

[Burchard, Schubert, Becker. Laissez-Faire Caching for Parallel #SAT Solving. SAT, 2015]

[Feiten, Sauer, Schubert, Czutro, Boehl, Polian, Becker. #SAT-Based Vulnerability Analysis of Security Components
– A Case Study. IEEE DFTS, 2012]

[Fränzle, Herde, Teige, Ratschan, Schubert. Efficient Solving of Large Non-linear Arithmetic Constraint Systems with
Complex Boolean Structure. JSAT, 2007]

[Gitina, Wimmer, Reimer, Sauer, Scholl, Becker. Solving DQBF Through Quantifier Elimination. DATE, 2015]

[Kalinnik, Schubert, Abraham, Wimmer, Becker. Picoso - A Parallel Interval Constraint Solver. PDPTA, 2009]

[Lewis, Marin, Schubert, Narizzano, Becker, Giunchiglia. Parallel QBF Solving with Advanced Knowledge Sharing.
Fundamenta Informaticae, 2011]

[Lewis, Schubert, Becker. Multithreaded SAT Solving. ASP-DAC, 2007]

[Reimer, Sauer, Schubert, Becker. Incremental Encoding and Solving of Cardinality Constraints. ATVA, 2014]

[Reimer, Sauer, Schubert, Becker. Using MaxBMC for Pareto-Optimal Circuit Initialization. DATE, 2014]

[Sauer, Czutro, Schubert, Hillebrecht, Polian, Becker. SAT-based Analysis of Sensitisable Paths. IEEE Design & Test
of Computers, 2013]

[Sauer, Reimer, Schubert, Polian, Becker. Efficient SAT-Based Dynamic Compaction and Relaxation for Longest
Sensitizable Paths. DATE, 2103]

[Sauer, Reimer, Polian, Schubert, Becker. Provably Optimal Test Cube Generation Using Quantified Boolean
Formula Solving. ASP-DAC, 2013]

[Schubert, Lewis, Becker. Parallel SAT Solving with Threads and Message Passing. JSAT, 2009]

VTSA’15 Tobias Schubert – SAT-based Test & Verification 192 / 192

	About Me
	Motivation
	SAT
	Preliminaries
	DLL Algorithm
	From DLL to modern SAT Algorithms
	Modern SAT Algorithms
	Preprocessing
	Decision Stack
	Decision Heuristics
	Boolean Constraint Propagation
	Conflict Analysis & Backtracking
	Other Features

	Combinational Equivalence Checking
	Miter
	Tseitin Transformation
	Structural Methods

	Automatic Test Pattern Generation
	SAT-based ATPG

	Bounded Model / Property Checking
	Satisfiability Modulo Theory
	Hybrid System Verification

	MaxSAT & Path Compaction
	QBF & Test Pattern Relaxation
	DQBF & Black Box Verification
	#SAT & Security Issues
	Some Papers…

