SAT-based Approaches for Test \& Verification of Integrated Circuits

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert
Chair of Computer Architecture Institute of Computer Science
Faculty of Engineering
schubert@informatik.uni-freiburg.de
Summer School on Verification Technology, Systems \& Applications 2015

About Me

Just a very short CV

- Studied computer science \& microsystems engineering at the University of Freiburg
- Made my PhD working on efficient parallel SAT solving at the University of Freiburg
- Member of the Transregional Collaborative Research Center 14 AVACS - Automatic Verification and Analysis of Complex Systems
- Principal investigator within the cluster of excellence BrainLinks-BrainTools
- Member of the part-time distance learning program Intelligent Embedded Microsystems

About Me

My research interests include

- Efficient (parallel) algorithms for SAT and related domains

■ Real-world applications using

- SAT,
- \#SAT,
- MaxSAT,
- QBF, and
- SMT solvers
as the underlying backend
- Embedded \& cyber-physical systems
- Industrial internet \& internet of things
- E-learning, blended learning, distance teaching

Collaborators

University of Freiburg

- Bernd Becker
- Jan Burchard
- Alejandro Czutro
- Linus Feiten
- Karina Gitina
- Paolo Marin
- Sven Reimer
- Matthias Sauer
- Karsten Scheibler
- Christoph Scholl
- Ralf Wimmer

University of Bremen

- Rolf Drechsler

University of Oldenburg

- Martin Fränzle

University of Passau

- Ilia Polian

University of Potsdam

- Torsten Schaub

MPI Saarbrücken

- Christoph Weidenbach

Motivation: Embedded Systems

Embedded Systems

- Information processing systems embedded into a "larger" product

Without Embedded Systems

- No cars would drive today
- No planes would fly today
- No factory would work today
- No mobile communication would be possible

Motivation: Embedded Systems

Embedded Systems

- Information processing systems embedded into a "larger" product

Without Embedded Systems

- No cars would drive today
- No planes would fly today
- No factory would work today
- No mobile communication would be possible

Verifying designs and testing produced chips are mandatory tasks, in particular for safety-critical applications!

Motivation: Automotive Area

- Many functions controlled by embedded systems
- Multiple networks / system busses
- Up to 70 different processors within one car

Motivation: Automotive Area

Consequences

- Increasing system complexity
- Increasing number of dependencies between different subsystems
- Up to 40% of the total costs are caused by electronics \& software
- Up to 90% of the innovations are driven by electronics \& software
- 40-50\% of all car breakdowns are caused by electronics \& software
- Errors related to electronics or software are responsible for more than 40% of all call-backs
- Reliable function is of outmost importance, because otherwise human lives can be endangered!
\Rightarrow Safety-critical application of embedded systems!

Verifying Integrated Circuit Designs

Focus is on detecting design errors

- Errors which occur during the translation of a specification into the final integrated circuit (\rightsquigarrow implementation)
- Errors in the design make all produced chips erroneous
\Rightarrow Formal methods to avoid design errors before producing any chip

Testing Integrated Circuits

Focus is on production errors

- Defects which are caused during the production of single chips and which change their functionality
- Causes are contaminations, shifted exposure masks, wrong doping, ...
\Rightarrow Formal methods to ensure that all production errors can be found

But why using SAT Solvers?

- Tremendous performance improvements within the last 15 years
- Nowadays SAT solvers (and their extensions) are able to ...
- solve problems coming from real-world applications (e.g., large industrial circuits)
- handle optimization \& enumeration problems, multi-valued domains, hybrid systems

Typical SAT-based Flow

Outline

Outline

Boolean Satisfiability Problem (SAT)

- Given
- A Boolean formula φ in Conjunctive Normal Form (CNF)
\square A CNF is a conjunction of clauses: $C_{1} \wedge \ldots \wedge C_{m}$
- A clause is a disjunction of literals: $\left(I_{1} \vee \ldots \vee I_{k}\right)$
\square A literal $/$ is a Boolean variable or its negation: / or \neg /
- Question

Is there a valuation of the variables that satisfies φ ?

- Example
$x_{1}=x_{2}=0 x_{3}=1$ satisfies
$\varphi=\left(\nabla \wedge \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)$
- Techniques for solving instances of the SAT problem are called SAT algorithms or SAT solvers
■ Complexity of the "general" SAT problem: NP-complete (S.A. Cook, 1971)

Overview of SAT Algorithms

Focus here is on complete methods

- Due to a systematic procedure complete solvers are able to prove the unsatisfiability of a CNF formula
- DP algorithm
- M. Davis, H. Putnam, 1960
- Based on resolution
- DLL algorithm
- M. Davis, G. Logemann, D. Loveland, 1962
- Based on depth-first search
- Modern SAT algorithms
- Based on the DLL algorithm, but enriched with efficient data structures and several acceleration \& optimization techniques
- zChaff, MiniSat, MiraXT, lingeling, antom, Glucose

Preliminaries

Definition (Empty Clause)

The empty clause, denoted with \square, describes the empty set of literals, and it is unsatisfiable by definition.

Definition (Empty Formula)

The empty formula describes an empty set of clauses and it is satisfiable by definition.

Preliminaries

Definition (Pure Literal)

Let F be a CNF formula and L be a literal contained in F. L is called a pure literal iff L occurs in F only positive or only negative.

Steps in order to simplify a CNF formula F

- Delete from F all clauses in which a pure literal L occurs, because these ones will be satisfied by an appropriate assignment to L

Remark

$$
F=(x, p, b)
$$

- As it is rather time consuming, pure literal detection is applied by modern SAT solvers during pre--inprocessing only

$c_{2}=(a v b v c)$

Definition (Subsumption)

Let C_{1} and C_{2} be two clauses. C_{1} subsumes C_{2} iff all literals occurring in C_{1} also occur in $C_{2}: C_{1} \subseteq C_{2}$.

Steps in order to simplify a CNF formula F

- Delete all clauses from F that are subsumed by at least one other clause of F

Remark

- Typically, modern SAT solvers apply subsumption checks during pre-/inprocessing only

$C_{1}=(a \vee b)$

Definition (Resolution)

Let C_{1} and C_{2} be two clauses and L be a literal with the following property: $L \in C_{1}$ and $\neg L \in C_{2}$. Then one can compute the clause $R C$

$$
R=\left(C_{1}-\{L\}\right) \cup\left(C_{2}-\{\neg L\}\right)
$$

that is denoted as the resolvent of the clauses C_{1} and C_{2} Gver L. Typically, the notation $R=C_{1} \otimes_{L} C_{2}$ is used.

Lemma (Resolution Lemma)

Let F be a CNF formula and R be the resolvent of two clauses C_{1} and C_{2} from F. Then F and $F \cup\{R\}$ are equivalent: $F \equiv F \cup\{R\}$.

Preliminaries

Definition

Let F be a CNF formula. Then $\operatorname{Res}(F)$ is defined as
$\operatorname{Res}(F)=F \cup\{R \mid R$ is the resolvent of two clauses in $F\} .\langle l$
Moreover, let us define:

$$
\begin{aligned}
& \operatorname{Res}^{0}(F)=F \\
& \operatorname{Res}^{t+1}(F)=\operatorname{Res}\left(\operatorname{Res}^{t}(F)\right) \text { for } t \geq 0 \\
& \operatorname{Res}^{*}(F)=\lim _{t \geq 0} \operatorname{Res}^{t}(F)
\end{aligned}
$$

Theorem (Resolution Theorem)
A CNF formula F is unsatisfiable iff $\square \in \operatorname{Res}^{*}(F)$.

Preliminaries

Definition

Let F beaCNF formula and x_{i} a variable occurring in F with $L=x_{i}$ and $\neg L=\neg x_{i}$. Dhe we define P, N and W as follows:
P is the set of clauses in F which contain L :

$$
P=\{C \in F \mid L \in C\}
$$

N is the set of clauses in F which contain $\neg L$:

$$
N=\{C \in F \mid \neg L \in C\}
$$

W is the set of clauses in F which contain neither L nor $\neg L$:

$$
W=\{C \in F \mid L \notin C \wedge \neg L \notin C\}
$$

Obviously, we have $F=P \cup N \cup W$.

Preliminaries

Definition (Pairwise Resolution)

Using this partitioning of the clauses we define $P \otimes_{x_{i}} N$ as the set of clauses, which can be constructed byrosolution of all pairs $(p, n) \in P \times N$:

$$
P \otimes_{x_{i}} N \Rightarrow\left\{R \mid\left(R=C_{1} \otimes_{x_{i}} C_{2}\right) \wedge\left(C_{1} \in P\right) \wedge\left(C_{2} \in N\right)\right\} .
$$

Theorern (Variable Elimination)

Let F be a formula in CNF and x_{i} a variable which appears both positive and negative in F. Further let the sets P, N, and W be the partition of F as defined before.
Then $F=P \cup N \cup W$ and $F^{\prime}=\left(P \otimes_{x_{i}} N\right) \wedge W$ are satisfiability equivalent.

DLL Algorithm

- Main idea: If a CNF formula F iscatisfiablen for an arbitrary variable x_{i} occuring in F either $x_{i}=1$ r $x_{i}=0$ must hold \Rightarrow Try both cases one after the otner
\Rightarrow Depth-first search
- Applying unit clause \& pure literal rule to accelerate the search
- Recursive algorithm, in particular the given formula gets modified when going from recursion level r to $r+1$
- In the literature both "DLL" and "DPLL" can be found

DLL Algorithm

```
bool DLL(CNF F)
if (F=\emptyset) {return SATISFIABLE;
    if (\square\inF) { return UNSATISFIABLE; }
    if (F contains a unit clause (L))
        {
            // Unit Subsumption.
            F}=F-{C|(L\inC)\wedge(C\inF)\wedge(C\not=(L))}
            // Unit Resolution.
            P={(L)};
            N={C|(\negL\inC)^(C\in\mp@subsup{F}{}{\prime})};
            W=F'
            return DLL([P © & N]^W);
        }
    if (F contains a pure literal L)
        {
            // Delete from }F\mathrm{ every clause containing }L\mathrm{ .
            F}=F-{C|(L\inC)^(C\inF)}
            return DLL(F
        }
    L = SelectLiteral(F);
    if (DLL(F\cup{(L)})==SATISFIABLE)
        {return SATISFIABLE;}
    else
        {return DLL(F\cup{{(\negL)});}
}
```

// Empty set of clauses // Empty Clause // Unit Clause
// Pure Literal // Case distinction

DLL Algorithm

$$
\left(\neg x_{1}, \neg x_{2}, \neg x_{3}\right) \wedge\left(\neg x_{1}, \neg x_{2}, x_{3}\right) \wedge\left(\neg x_{1}, x_{2}, \neg x_{3}\right) \wedge\left(\neg x_{1}, x_{2}, x_{3}\right) \wedge\left(x_{1}, \neg x_{2}, \neg x_{3}\right)
$$

DLL Algorithm

$\left(\neg x_{1}, \neg x_{2}, \neg x_{3}\right) \wedge\left(\neg x_{1}, \neg x_{2}, x_{3}\right) \wedge\left(\neg x_{1}, x_{2}, \neg x_{3}\right) \wedge\left(\neg x_{1}, x_{2}, x_{3}\right) \wedge\left(x_{1}, \neg x_{2}, \neg x_{3}\right)$
Case distinction $x_{1}=1$

DLL Algorithm

$\left(\quad, \neg x_{2}, \neg x_{3}\right) \wedge\left(\quad, \neg x_{2}, x_{3}\right) \wedge\left(\quad, x_{2}, \neg x_{3}\right) \wedge\left(\quad, x_{2}, x_{3}\right) \wedge$
Case distinction $x_{1}=1$

DLL Algorithm

$\left(\quad, \neg x_{2}, \neg x_{3}\right) \wedge\left(\quad, \neg x_{2}, x_{3}\right) \wedge\left(\quad, x_{2}, \neg x_{3}\right) \wedge\left(\quad, x_{2}, x_{3}\right) \wedge$
Case distinction $x_{2}=1$

DLL Algorithm

$\left(\quad, \quad \neg x_{3}\right) \wedge\left(\quad, \quad x_{3}\right) \wedge \wedge$
Case distinction $x_{2}=1$

DLL Algorithm

$\left(\quad, \quad, \neg x_{3}\right) \wedge\left(\quad, \quad, x_{3}\right) \wedge \wedge$
Unit clauses $x_{3}=0$ and $x_{3}=1$

DLL Algorithm

$\left(\quad, \quad, \neg x_{3}\right) \wedge\left(\quad, \quad x_{3}\right) \wedge$
Contradiction/conflict

DLL Algorithm

$$
\begin{array}{r}
\left(\quad, \neg x_{2}, \neg x_{3}\right) \wedge\left(\quad, \neg x_{2}, x_{3}\right) \wedge\left(\quad, x_{2}, \neg x_{3}\right) \wedge\left(\quad, x_{2}, x_{3}\right) \wedge \\
\text { Case distinction } x_{2}=0
\end{array}
$$

DLL Algorithm

$$
\wedge\left(\quad, \quad, \neg x_{3}\right) \wedge\left(\quad, \quad, x_{3}\right) \wedge
$$

Case distinction $x_{2}=0$

DLL Algorithm

\wedge

$$
\wedge\left(\quad, \quad, \neg x_{3}\right) \wedge\left(\quad, \quad, x_{3}\right) \wedge
$$

Unit clauses $x_{3}=0$ and $x_{3}=1$

DLL Algorithm

$$
\wedge\left(\quad, \quad, \neg x_{3}\right) \wedge\left(\quad, \quad, x_{3}\right) \wedge
$$

Contradiction/conflict

DLL Algorithm

$$
\left(\neg x_{1}, \neg x_{2}, \neg x_{3}\right) \wedge\left(\neg x_{1}, \neg x_{2}, x_{3}\right) \wedge\left(\neg x_{1}, x_{2}, \neg x_{3}\right) \wedge\left(\neg x_{1}, x_{2}, x_{3}\right) \wedge\left(x_{1}, \neg x_{2}, \neg x_{3}\right)
$$

Case distinction $x_{1}=0$

DLL Algorithm

Case distinction $x_{1}=0$

DLL Algorithm

$$
\text { Pure literal } x_{2}=0
$$

DLL Algorithm

Pure literal $x_{2}=0$

DLL Algorithm

Formula satisfiable

From DLL to modern SAT Algorithms

Overall

- DLL algorithm
- Recursive procedure
- For the transition from recursion level r to level $r+1$ the given formula gets modified
- For backtracking from level $r+1$ to r the original (sub)formula at level r has to be restored
- Modern SAT algorithms
- Non-recursive implementation
- Apart from special cases (preprocessing), the CNF remains unmodified
- Typically, the pure literal rule is not applied

From DLL to modern SAT Algorithms

Unit clause

- DLL algorithm

- A clause consisting exactly one literal
- Modern SAT algorithms
- In addition to the rule above, clauses where all literals but one are assigned with negated polarity are also referred to as unit clauses
- Example: Assignment $x_{1}=0, x_{2}=1$ turns $\left(x_{1}, \neg x_{2}, x_{3}\right)$ into a unit clause
- In the example, the evaluation $x_{1}=0, x_{2}=1$ forces the assignment $x_{3}=1$ in order to satisfy the clause $\left(x_{1}, \neg x_{2}, x_{3}\right)$ \Rightarrow implication

From DLL to modern SAT Algorithms

Unit propagation to determine all implications forced by a variable assignment

- DLL algorithm
- Repeated application of the unit clause rule on successsive recursion levels unili the rule cannot be appliea anymore
- Modern SAT algorithms
- Done non-recursively, also called Bgosean Constraint $\times 3=1$
- Example: For the CNF $F=\left(x_{1}, \neg x_{2}\right) \wedge\left(x_{1}, x_{2}, x_{3}\right) \wedge\left(\neg x_{3}, x_{4}\right)$, $x_{1}=0$ leads to the implications $x_{2}=0, x_{3}=1, x_{4}=10$

From DLL to modern SAT Algorithms

Contradiction/conflict

- DLL algorithm

Empty clause

- Modern SAT algorithms
- Unsatisfied clause
- Example: Valuation $x_{1}=0, x_{2}=1, x_{3}=0$ makes $\left(x_{1}, \neg x_{2}, x_{3}\right)$ unsatisfied, and so the whole CNF formula containing it cannot be satisfied anymore

From DLL to modern SAT Algorithms

Conflict analysis \& backtracking

- DLL algorithm
- The combination of the decisions done before will always be considered as the origin of a conflict
- Backtracking to the recursion level of the last "branching" in whictrone case tor a variable assignment has not beet explored yet
- If such a recursion level does not exist, the given CNF formula is unsatisfiable

From DLL to modern SAT Algorithms

Conflict analysis \& backtracking

- Modern SAT algorithms
- Complex analysis of the conflict setting, because not all "branchings" done before have to be involved in the current conflict
- Learning of a conflict clause via resolution to avoid running into the same conflict again
- (Non-)chronological backtracking according to the derived conflict clause
7
- If a conflict occurs on decision level 0, the given CNF formula is unsatisfiable

Modern SAT Algorithms

Main techniques of today's SAT solvers

- Preprocessing
- In turn...
- Choose the next decision variable
- Boolean constraint propagation / unit propagation
- If necessary, conflict analysis \& backtracking
- At some fixed points during the search process
- Unlearning (of some conflict clauses)
- Restarts
- Inprocessing
- In case of a satisfiable CNF formula
- Output the satisfying variable assignment \Rightarrow model

Modern SAT Algorithms

```
```

bool SequentialSatEngine(CNF F)

```
```

bool SequentialSatEngine(CNF F)
{
{
if (PreprocessCNF(F) == CONFLICT)
if (PreprocessCNF(F) == CONFLICT)
{ return UNSATISFIABLE; }
{ return UNSATISFIABLE; }
while (true)
while (true)
{
{
if (DecideNextBranch())
if (DecideNextBranch())
while (BCP() == CONFLICT)
while (BCP() == CONFLICT)
{
{
BLevel = AnalyzeConflict();
BLevel = AnalyzeConflict();
if (BLevel > 0)
if (BLevel > 0)
{ Backtrack(BLevel); }
{ Backtrack(BLevel); }
else
else
{ return UNSATISFIABLE; }
{ return UNSATISFIABLE; }
}
}
else
else
{ return SATISFIABLE; } // All variables assigned, problem satisfiable
{ return SATISFIABLE; } // All variables assigned, problem satisfiable
}
}
}

```
}
```

// Choice of the next unassigned variable
// Boolean Constraint Propagation
// Conflict analysis
// Cancel the „incorrect" assignment
// Problem unsatisfiable
// Preprocessing the CNF formula // Problem unsatisfiable
// Cancel the incorrect assignment
// All variables assigned, problem satisfiable

```
                }
```

```
                }
```

Not explicitly stated: Inprocessing, unlearning, restarts, model output

Modern SAT Algorithms

```
bool SequentialSatEngine(CNF F)
{
    if (PreprocessCNF(F) == CONFLICT)
        { return UNSATISFIABLE; }
    while (true)
        {
            if (DecideNextBranch()) // Choice of the next unassigned variable
                while (BCP() == CONFLICT)
            {
                        BLevel = AnalyzeConflict();
                        if (BLevel > 0)
                    { Backtrack(BLevel); }
                        else
                            { return UNSATISFIABLE; } // Problem unsatisfiable
                    }
            }
            else
                { return SATISFIABLE; } // All variables assigned, problem satisfiable
        }
}
```

Not explicitly stated: Inprocessing, unlearning, restarts, model output

Preprocessing

- Goal
- Reduce the formula's size in terms of clauses and literals to speed up the search process
\square Observation from the experience
- As a rule of thumb, the size of a formula is related to the time necessary for the SAT algorithm to solve it
- Identification \& preprocessing of unit clauses within the original set of clauses belong to the common operations done in modern SAT algorithms
- It is very important to find a good compromise between the additional effort required by preprocessing and the expected saving during the search process

Preprocessing

Unit Propagation Lookahead (UPLA)

- Fix a variable x_{i} to 0 , check implications; then change its value to $x_{i}=1$, check implications. Simplify the formula exploiting the following consequences:
- $\left(x_{i}=0 \rightarrow\right.$ conflict $) \wedge\left(x_{i}=1 \rightarrow\right.$ conflict $) \Rightarrow$ UNSAT
- $\left(x_{i}=0 \rightarrow\right.$ conflict $) \Rightarrow x_{i}=1$
- $\left(x_{i}=1 \rightarrow\right.$ conflict $) \Rightarrow x_{i}=0$
$\square\left(x_{i}=0 \rightarrow x_{j}=1\right) \wedge\left(x_{i}=1 \rightarrow x_{j}=1\right) \Rightarrow x_{j}=1$
$\square\left(x_{i}=0 \rightarrow x_{j}=0\right) \wedge\left(x_{i}=1 \rightarrow x_{j}=0\right) \Rightarrow x_{j}=0$
$\square\left(x_{i}=0 \rightarrow x_{j}=0\right) \wedge\left(x_{i}=1 \rightarrow x_{j}=1\right) \Rightarrow x_{i} \equiv x_{j}$

Preprocessing

Unit Propagation Lookahead (UPLA)

- Advantage

- Built on top of the components already available in the solver
- Disadvantages
- Requires binary clauses in the original formula
- Necessary to extend the model when e. g. $x_{i} \equiv x_{j}$ is detected and all the occurrences of x_{i} are substituted with x_{j}
- In general quite time consuming, in particular if all the variables are tested

Preprocessing

Application of resolution

- Advantages
- No particular kind of clauses necessary in the original formula
- Usually, simplifies effectively within a manageable time
- Disadvantages
- In case of a satisfiable CNF formula, model extension required
- Techniques (SatELite)
- Self-subsuming resolution
- Elimination by clause distribution
- Variable elimination by substitution
- Forward subsumption
- Backward subsumption

Preprocessing

Self-subsuming resolution

- Original formula
$\square F=\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge \ldots$
- Resolution applied to the first two clauses
- $\left(x_{1} \vee \neg x_{3}\right) \otimes_{x_{3}}\left(x_{1} \vee x_{2} \vee x_{3}\right)=\left(x_{1} \vee x_{2}\right)$
$\Rightarrow\left(x_{1} \vee x_{2}\right)$ subsumes $\left(x_{1} \vee x_{2} \vee x_{3}\right)$
\Rightarrow Replace $\left(x_{1} \vee x_{2} \vee x_{3}\right)$ with $\left(x_{1} \vee x_{2}\right)$
- Simplified formula

■ $F^{\prime}=\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge \ldots$

- Saving
- 1 literal

Preprocessing

Elimination by clause distributich

- Sometimes also called variable elimination
- Original formypa
$\square F=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$
- Variable elimination applied to k leadsto
- $F^{\prime}=\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee \neg x_{2}\right)$
- Saving
- 1 variable, 2 clauses, 4 literals
\square Applied only if it leads to a reduction of the formula's size

Preprocessing

Variable elimination by substitution

- Original formula

$$
\begin{aligned}
F= & \left(\neg x_{5} \vee x_{1}\right) \wedge\left(\neg x_{5} \vee x_{2}\right) \wedge\left(x_{5} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge \\
& \left(x_{4} \vee \neg x_{5}\right) \wedge\left(\neg x_{4} \vee x_{5} \vee x_{6}\right)
\end{aligned}
$$

- The first three clauses represent an AND gate (\rightsquigarrow Tseitin transformation)

$$
\left[\left(\neg x_{5} \vee x_{1}\right) \wedge\left(\neg x_{5} \vee x_{2}\right) \wedge\left(x_{5} \vee \neg x_{1} \vee \neg x_{2}\right)\right] \leftrightarrow\left[x_{5} \equiv x_{1} \wedge x_{2}\right]
$$

\square Removing the first three clauses, and replacing the occurrences of x_{5} by $x_{1} \wedge x_{2}$ in the other clauses leads to
$\square F^{\prime}=\left(x_{4} \vee \neg\left(x_{1} \wedge x_{2}\right)\right) \wedge\left(\neg x_{4} \vee\left(x_{1} \wedge x_{2}\right) \vee x_{6}\right)$

- Transformation into CNF

$$
\square F^{\prime \prime}=\left(x_{4} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{4} \vee x_{1} \vee x_{6}\right) \wedge\left(\neg x_{4} \vee x_{2} \vee x_{6}\right)
$$

■ Saving: 1 variable, 2 clauses, 3 literals

- Applied only if it leads to a reduction of the formula's size
- Procedure for SR, NAND, other "basic gates" quite similar

Preprocessing

Forward subsumption

- Test if a clause generated during one of the preprocessing techniques described before is already subsumed by one clause of the current CNF formula

Backward subsumption

- Test if a clause generated during one of the preprocessing techniques described before subsumes one (or more) clauses of the current CNF formula
\Rightarrow Remove all the clauses subsumed

Modern SAT Algorithms

```
bool SequentialSatEngine(CNF F)
{f (PreprocessCNF(F) == CONFLICT)
        { return UNSATISFIABLE; }
    while (true)
        {
            if (DECIDENEXTBRANCH()) // Choice of the next unassigned variable
                while (BCP () == CONFLICT)
                    {
                        BLevel = ANALYzECONFLIct();
                        if (BLevel > 0)
                        { BACKTRACK(BLevel); } // Cancel the „incorrect" assignment
                else
                            { return UNSATISFIABLE; } // Problem unsatisfiable
                    }
            }
            else
                { return SATISFIABLE; }
        }
}
```

Not explicitly stated: Inprocessing, unlearning, restarts, model output

Decision Stack

- Central data structure of modern SAT algorithms
- Decision stack stores the order of the executed assignments
- If a model for a CNF formula could be found, the decision stack stores the satisfying assignment

Decision Stack

Decision Stack - First Example

Level 5
Level 4
Level 3
Level 2
Level 1
Level 0
$\left(\neg x_{1}, \neg x_{2}, \neg x_{3}\right) \wedge\left(\neg x_{1}, \neg x_{2}, x_{3}\right) \wedge\left(\neg x_{1}, x_{2}, \neg x_{3}\right) \wedge\left(\neg x_{1}, x_{2}, x_{3}\right) \wedge\left(x_{1}, \neg x_{2}, \neg x_{3}\right)$

Decision Stack - First Example

$\left(\neg x_{1}, \neg x_{2}, \neg x_{3}\right) \wedge\left(\neg x_{1}, \neg x_{2}, x_{3}\right) \wedge\left(\neg x_{1}, x_{2}, \neg x_{3}\right) \wedge\left(\neg x_{1}, x_{2}, x_{3}\right) \wedge\left(x_{1}, \neg x_{2}, \neg x_{3}\right)$

Decision Stack - First Example

$\left(\neg x_{1}, \neg x_{2}, \neg x_{3}\right) \wedge\left(\neg x_{1}, \neg x_{2}, x_{3}\right) \wedge\left(\neg x_{1}, x_{2}, \neg x_{3}\right) \wedge\left(\neg x_{1}, x_{2}, x_{3}\right) \wedge\left(x_{1}, \neg x_{2}, \neg x_{3}\right)$

Decision Stack - First Example

$$
\left(\neg X_{1}, \neg X_{2}, \neg X_{3}\right) \wedge\left(\neg X_{1}, \neg X_{2}, X_{3}\right) \wedge\left(\neg X_{1}, X_{2}, \neg X_{3}\right) \wedge\left(\neg X_{1}, X_{2}, X_{3}\right) \wedge\left(X_{1}, \neg X_{2}, \neg X_{3}\right)
$$

Decision Stack - First Example

$\left(\neg X_{1}, \neg X_{2}, \neg X_{3}\right) \wedge\left(\neg X_{1}, \neg X_{2}, X_{3}\right) \wedge\left(\neg X_{1}, X_{2}, \neg X_{3}\right) \wedge\left(\neg X_{1}, X_{2}, X_{3}\right) \wedge\left(X_{1}, \neg X_{2}, \neg X_{3}\right)$

Decision Stack - First Example

$\left(\neg X_{1}, \neg X_{2}, \neg X_{3}\right) \wedge\left(\neg X_{1}, \neg X_{2}, X_{3}\right) \wedge\left(\neg X_{1}, X_{2}, \neg X_{3}\right) \wedge\left(\neg X_{1}, X_{2}, X_{3}\right) \wedge\left(X_{1}, \neg X_{2}, \neg X_{3}\right)$

Decision Stack - First Example

$\left(\neg x_{1}, \neg x_{2}, \neg x_{3}\right) \wedge\left(\neg x_{1}, \neg x_{2}, x_{3}\right) \wedge\left(\neg x_{1}, x_{2}, \neg x_{3}\right) \wedge\left(\neg x_{1}, x_{2}, x_{3}\right) \wedge\left(x_{1}, \neg x_{2}, \neg x_{3}\right)$

Decision Stack - First Example

$\left(\neg X_{1}, \neg X_{2}, \neg X_{3}\right) \wedge\left(\neg X_{1}, \neg X_{2}, X_{3}\right) \wedge\left(\neg X_{1}, X_{2}, \neg X_{3}\right) \wedge\left(\neg X_{1}, X_{2}, X_{3}\right) \wedge\left(X_{1}, \neg X_{2}, \neg X_{3}\right)$

Decision Stack - First Example

$\left(\neg X_{1}, \neg X_{2}, \neg X_{3}\right) \wedge\left(\neg X_{1}, \neg X_{2}, X_{3}\right) \wedge\left(\neg X_{1}, X_{2}, \neg X_{3}\right) \wedge\left(\neg X_{1}, X_{2}, X_{3}\right) \wedge\left(X_{1}, \neg X_{2}, \neg X_{3}\right)$

Decision Stack - First Example

	-
Level 5	
Level 4	
Level 3	
Level 2	$x_{3}=1$
Level 1	$x_{2}=0$
Level 0	$x_{1}=0$

\Rightarrow Formula satisfiable with, e. g., $x_{1}=0, x_{2}=0, x_{3}=1$

Decision Stack - Second Example

Level $5 \mid$

$$
\left(x_{1}, x_{2}\right) \wedge\left(x_{1}, \neg x_{3}\right) \wedge\left(\neg x_{1}, x_{3}\right) \wedge\left(\neg x_{1}, \neg x_{2}\right) \wedge\left(x_{3}, \neg x_{2}\right) \wedge\left(\neg x_{3}, x_{2}\right) \wedge\left(x_{7}\right)
$$

Decision Stack - Second Example

$$
\left(x_{1}, x_{2}\right) \wedge\left(x_{1}, \neg x_{3}\right) \wedge\left(\neg x_{1}, x_{3}\right) \wedge\left(\neg x_{1}, \neg x_{2}\right) \wedge\left(x_{3}, \neg x_{2}\right) \wedge\left(\neg x_{3}, x_{2}\right) \wedge\left(x_{7}\right)
$$

Decision Stack - Second Example

Level 5	
Level 4	
Level 3	
Level 2	
Level 1	$x_{1}=0$
Level 0	$x_{7}=1$

$$
\left(x_{1}, x_{2}\right) \wedge\left(x_{1}, \neg x_{3}\right) \wedge\left(\neg x_{1}, x_{3}\right) \wedge\left(\neg x_{1}, \neg x_{2}\right) \wedge\left(x_{3}, \neg x_{2}\right) \wedge\left(\neg x_{3}, x_{2}\right) \wedge\left(x_{7}\right)
$$

Decision Stack - Second Example

$$
\left(X_{1}, X_{2}\right) \wedge\left(X_{1}, \neg X_{3}\right) \wedge\left(\neg X_{1}, X_{3}\right) \wedge\left(\neg X_{1}, \neg X_{2}\right) \wedge\left(X_{3}, \neg X_{2}\right) \wedge\left(\neg X_{3}, X_{2}\right) \wedge\left(X_{7}\right)
$$

Decision Stack - Second Example

$$
\left(X_{1}, X_{2}\right) \wedge\left(X_{1}, \neg X_{3}\right) \wedge\left(\neg X_{1}, X_{3}\right) \wedge\left(\neg X_{1}, \neg X_{2}\right) \wedge\left(X_{3}, \neg X_{2}\right) \wedge\left(\neg X_{3}, X_{2}\right) \wedge\left(X_{7}\right)
$$

Decision Stack - Second Example

$$
\left(X_{1}, X_{2}\right) \wedge\left(X_{1}, \neg X_{3}\right) \wedge\left(\neg X_{1}, X_{3}\right) \wedge\left(\neg X_{1}, \neg X_{2}\right) \wedge\left(X_{3}, \neg X_{2}\right) \wedge\left(\neg X_{3}, X_{2}\right) \wedge\left(X_{7}\right)
$$

Decision Stack - Second Example

$$
\left(X_{1}, X_{2}\right) \wedge\left(X_{1}, \neg X_{3}\right) \wedge\left(\neg X_{1}, X_{3}\right) \wedge\left(\neg X_{1}, \neg X_{2}\right) \wedge\left(X_{3}, \neg X_{2}\right) \wedge\left(\neg X_{3}, X_{2}\right) \wedge\left(X_{7}\right)
$$

Decision Stack - Second Example

$$
\left(X_{1}, X_{2}\right) \wedge\left(X_{1}, \neg X_{3}\right) \wedge\left(\neg X_{1}, X_{3}\right) \wedge\left(\neg X_{1}, \neg X_{2}\right) \wedge\left(X_{3}, \neg X_{2}\right) \wedge\left(\neg X_{3}, X_{2}\right) \wedge\left(X_{7}\right)
$$

Decision Stack - Second Example

\Rightarrow Formula unsatisfiable due to a conflict on decision level 0

Modern SAT Algorithms

```
bool SequentialSatEngine(CNF F)
{
    if (PreprocessCNF(F) == CONFLICT)
        { return UNSATISFIABLE; }
    while (true)
        {
            if (DecideNextBranch())
                {
                    while (BCP() == CONFLICT)
                    {
                        BLevel = ANALYZECONFLICT();
                        if (BLevel > 0)
                    { Backtrack(BLevel); }
                        else
                            { return UNSATISFIABLE; } // Problem unsatisfiable
                    }
            }
            else
                { return SATISFIABLE; } // All variables assigned, problem satisfiable
        }
}
```

// Preprocessing the CNF formula // Problem unsatisfiable
// Choice of the next unassigned variable
// Boolean Constraint Propagation
// Conflict analysis
// Cancel the „incorrect" assignment
// Problem unsatisfiable
// All variables assigned, problem satisfiable

Not explicitly stated: Inprocessing, unlearning, restarts, model output

Decision Heuristics

- Have the role of choosing the next decision variable
- Comparable with "case distinction" in the DLL algorithm
- Affects the search process significantly
- Modern SAT algorithms do not test whether the CNF formula is already satisfied during the search, rather it is indirectly guaranteed from assigning all variables without running into a conflict
- Example: $F=\left(x_{1}, x_{2}, x_{3}\right) \wedge\left(\neg x_{1}, x_{4}\right)$
\Rightarrow A satisfying assignment is for example $x_{1}=1, x_{4}=1$
\Rightarrow Today's solvers do no test whether $x_{1}=x_{4}=1$ already satisfies all the clauses, but assign the remaining variables without generating a conflict (e.g., $x_{2}=x_{3}=0$) before they conclude that the CNF is satisfiable

Decision Heuristics

Classical decision heuristics

- Several flavors
- Dynamic Largest Individual/Combined Sum
- Maximum Occurrences on Clauses of Minimal Size
- Choice criteria
- "How often does a still unassigned variable occur in currently unresolved clauses?"
- Among the unassigned variables, choose the one that occurs most frequently in unresolved clauses
- In most cases also weighted with the length of those clauses
- These heuristics are quite time consuming, because both the status of each clause and the distribution of the variables within the set of clauses have to be computed and kept up to date
\Rightarrow Computation complexity defined over \#clauses

Decision Heuristics

Variable State Independent Decaying Sum (VSIDS)

- Today's standard method used by almost every SAT solver
- Computation complexity defined over \#variables
- No update is mandatory during the backtrack phase
- Each variable x_{i} has two activity counters $P_{x_{i}}$ and $N_{x_{i}}$
- For each literal L in a learned clause C the activity is incremented as follows:

$$
\begin{aligned}
& P_{x_{i}}=P_{x_{i}}+1, \text { if } L=x_{i} \\
& N_{x_{i}}=N_{x_{i}}+1, \text { if } L=\neg x_{i}
\end{aligned}
$$

- The unassigned variable x_{i} with the highest activity $\left(P_{x_{i}}\right.$ or $\left.N_{x_{i}}\right)$ is chosen as the next decision variable

■ Polarity depends on whether $P_{x_{i}}>N_{x_{i}}$ holds or not

Decision Heuristics

Variable State Independent Decaying Sum (VSIDS)

- Periodically, the activities are "normalized", i.e., divided by a constant factor
\Rightarrow After the normalization, the recently learned clauses have a higher weight in comparison to the clauses learned before the last normalization process
\Rightarrow Takes into account the "history" of the search process
- Several optimizations possible
- By which amount should the activities be incremented?
- How often should the normalization take place?
- By which factor should the activity scores be divided?

Modern SAT Algorithms

```
bool SequentialSatEngine(CNF F)
{
    if (PreprocessCNF(F) == CONFLICT)
        { return UNSATISFIABLE; }
    while (true)
        {
            if (DecideNextBranch()) // Choice of the next unassigned variable
                {
                    while (BCP() == CONFLICT)
                            {
                        BLevel = ANALYZECONFLICT();
                                if (BLevel > 0)
                    { BACKTRACK(BLevel); }
                        else
                            { return UNSATISFIABLE; } // Problem unsatisfiable
                    }
            }
            else
                { return SATISFIABLE; } // All variables assigned, problem satisfiable
        }
}
```

// Preprocessing the CNF formula // Problem unsatisfiable
// Choice of the next unassigned variable
// Boolean Constraint Propagation
// Conflict analysis
// Cancel the „incorrect" assignment
// Problem unsatisfiable
// All variables assigned, problem satisfiable

Not explicitly stated: Inprocessing, unlearning, restarts, model output

Boolean Constraint Propagation

■ Tasks

- Detect all implications forced by a variable assignment
- Detect conflicts
- Comparable to the repeated application of the unit clause rule of the DLL algorithm
- Efficient implementation mandatory, because roughly 80% of the runtime of a SAT algorithm is spent by the BCP routine

Boolean Constraint Propagation

General flow

- After every variable assignment, identify the implications that have arisen, and push them into the implication queue
- As long as there are items in the implication queue...

1 Remove the first element from the queue
2 Assign to each implied variable its forced truth value
3 Check which consecutive implications arise, and push them into the implication queue
4 Check for conflicts

Boolean Constraint Propagation - Example

	4	
Level 5	$x_{11}=1$	
Level 4	$x_{54}=0$	
Level 3	$x_{19}=1$	$x_{4}=1$
Level 2	$x_{13}=0$	$x_{8}=1$
Level 1	$x_{6}=0$	$x_{17}=0$
Level 0	$x_{23}=1$	$x_{7}=1$

$$
\begin{aligned}
F= & \underbrace{\left(x_{23}\right)}_{1} \wedge \underbrace{\left(x_{7}, \neg x_{23}\right)}_{2} \wedge \underbrace{\left(x_{6}, \neg x_{17}\right)}_{3} \wedge \underbrace{\left(x_{6}, \neg x_{11}, \neg x_{12}\right)}_{4} \wedge \underbrace{\left(x_{13}, x_{8}\right)}_{5} \wedge \underbrace{\left(\neg x_{11}, x_{13}, x_{16}\right)}_{6} \wedge \underbrace{\left(x_{12}, \neg x_{16}, \neg x_{2}\right)}_{6} \wedge \underbrace{\left(x_{2}, \neg x_{4}, \neg x_{10}\right)}_{7} \wedge \\
& \underbrace{\left(\neg x_{19}, x_{4}\right)}_{9} \wedge \underbrace{\left(x_{10}, \neg x_{5}\right)}_{10} \wedge \underbrace{\left(x_{10}, x_{3}\right)}_{11} \wedge \underbrace{\left(x_{10}, \neg x_{8}, x_{1}\right)}_{12} \wedge \underbrace{\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)}_{12} \wedge \underbrace{\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right)}_{13} \wedge \ldots
\end{aligned}
$$

Boolean Constraint Propagation - Example

$$
\begin{aligned}
F= & \underbrace{\left(x_{23}\right)}_{1} \wedge \underbrace{\left(x_{7}, \neg x_{23}\right)}_{2} \wedge \underbrace{\left(x_{6}, \neg x_{17}\right)}_{3} \wedge \underbrace{\left(x_{6}, \neg x_{11}, \neg x_{12}\right)}_{4} \wedge \underbrace{\left(x_{13}, x_{8}\right)}_{5} \wedge \underbrace{\left(\neg x_{11}, x_{13}, x_{16}\right)}_{6} \wedge \underbrace{\left(x_{12}, \neg x_{16}, \neg x_{2}\right)}_{6} \wedge \underbrace{\left(x_{2}, \neg \neg x_{4}, \neg x_{10}\right)}_{7} \wedge \\
& \underbrace{\left(\neg x_{19}, x_{4}\right)}_{8} \wedge \underbrace{\left(x_{10}, \neg x_{5}\right)}_{10} \wedge \underbrace{\left(x_{10}, x_{3}\right)}_{11} \wedge \underbrace{\left(x_{10}, \neg x_{8}, x_{1}\right)}_{12} \wedge \underbrace{\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)}_{12} \wedge \underbrace{\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right)}_{13} \wedge \ldots
\end{aligned}
$$

Boolean Constraint Propagation - Example

$$
\begin{aligned}
F= & \underbrace{\left(x_{23}\right)}_{1} \wedge \underbrace{\left(x_{7}, \neg x_{23}\right)}_{2} \wedge \underbrace{\left(x_{6}, \neg x_{17}\right)}_{3} \wedge \underbrace{\left(x_{6}, \neg x_{11}, \neg x_{12}\right)}_{4} \wedge \underbrace{\left(x_{13}, x_{8}\right)}_{5} \wedge \underbrace{\left(\neg x_{11}, x_{13}, x_{16}\right)}_{6} \wedge \underbrace{\left(x_{12}, \neg x_{16}, \neg x_{2}\right)}_{12} \wedge \underbrace{\left(x_{2}, \neg \neg x_{4}, \neg x_{10}\right)}_{7} \wedge \\
& \underbrace{\left(\neg x_{19}, x_{4}\right)}_{8} \wedge \underbrace{\left(x_{10}, \neg x_{5}\right)}_{8} \wedge \underbrace{\left(x_{10}, x_{3}\right)}_{11} \wedge \underbrace{\left(x_{10}, \neg x_{8}, x_{1}\right)}_{12} \wedge \underbrace{\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)}_{12} \wedge \underbrace{\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right)}_{13} \wedge \ldots
\end{aligned}
$$

Boolean Constraint Propagation - Example

$$
\begin{aligned}
F= & \underbrace{\left(x_{23}\right)}_{1} \wedge \underbrace{\left(x_{7}, \neg x_{23}\right)}_{2} \wedge \underbrace{\left(x_{6}, \neg x_{17}\right)}_{3} \wedge \underbrace{\left(x_{6}, \neg x_{11}, \neg x_{12}\right)}_{4} \wedge \underbrace{\left(x_{13}, x_{8}\right)}_{5} \wedge \underbrace{\left(\neg x_{11}, x_{13}, x_{16}\right)}_{6} \wedge \underbrace{\left(x_{12}, \neg x_{16}, \neg x_{2}\right)}_{6} \wedge \underbrace{\left(x_{2}, \neg \neg x_{4}, \neg x_{10}\right)}_{7} \wedge \\
& \underbrace{\left(\neg x_{19}, x_{4}\right)}_{8} \wedge \underbrace{\left(x_{10}, \neg x_{5}\right)}_{10} \wedge \underbrace{\left(x_{10}, x_{3}\right)}_{11} \wedge \underbrace{\left(x_{10}, \neg x_{8}, x_{1}\right)}_{12} \wedge \underbrace{\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)}_{12} \wedge \underbrace{\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right)}_{13} \wedge \ldots
\end{aligned}
$$

Boolean Constraint Propagation - Example

$$
\begin{aligned}
F= & \underbrace{\left(x_{23}\right)}_{1} \wedge \underbrace{\left(x_{7}, \neg x_{23}\right)}_{2} \wedge \underbrace{\left(x_{6}, \neg x_{17}\right)}_{3} \wedge \underbrace{\left(x_{6}, \neg x_{11}, \neg x_{12}\right)}_{4} \wedge \underbrace{\left(x_{13}, x_{8}\right)}_{5} \wedge \underbrace{\left(\neg x_{11}, x_{13}, x_{16}\right)}_{6} \wedge \underbrace{\left(x_{12}, \neg x_{16}, \neg x_{2}\right)}_{12} \wedge \underbrace{\left(x_{2}, \neg x_{4}, \neg x_{10}\right)}_{7} \wedge \\
& \underbrace{\left(\neg x_{19}, x_{4}\right)}_{9} \wedge \underbrace{\left(x_{10}, \neg x_{5}\right)}_{8} \wedge \underbrace{\left(x_{10}, x_{3}\right)}_{11} \wedge \underbrace{\left(x_{10}, \neg x_{8}, x_{1}\right)}_{12} \wedge \underbrace{\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)}_{12} \wedge \underbrace{\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right)}_{13} \wedge \ldots
\end{aligned}
$$

Boolean Constraint Propagation - Example

Implication Queue

$$
\begin{aligned}
F= & \underbrace{\left(x_{23}\right)}_{1} \wedge \underbrace{\left(x_{7}, \neg x_{23}\right)}_{2} \wedge \underbrace{\left(x_{6}, \neg x_{17}\right)}_{3} \wedge \underbrace{\left(x_{6}, \neg x_{11}, \neg x_{12}\right)}_{4} \wedge \underbrace{\left(x_{13}, x_{8}\right)}_{5} \wedge \underbrace{\left(\neg x_{11}, x_{13}, x_{16}\right)}_{6} \wedge \underbrace{\left(x_{12}, \neg x_{16}, \neg x_{2}\right)}_{6} \wedge \underbrace{\left(x_{2}, \neg x_{4}, \neg x_{10}\right)}_{7} \wedge \\
& \underbrace{\left(\neg x_{19}, x_{4}\right)}_{9} \wedge \underbrace{\left(x_{10}, \neg x_{5}\right)}_{10} \wedge \underbrace{\left(x_{10}, x_{3}\right)}_{11} \wedge \underbrace{\left(x_{10}, \neg x_{8}, x_{1}\right)}_{12} \wedge \underbrace{\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)}_{12} \wedge \underbrace{\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right)}_{13} \wedge \ldots
\end{aligned}
$$

Boolean Constraint Propagation - Example

Implication Queue
$x_{12} \leq 0 \mid x_{16} \leq 1 \quad x_{2} \leq 0 \quad x_{10} \leq 0 x_{5} \leq 0 \quad x_{3}=1 \quad x_{1}=1$

$x_{13}=0$	$x_{8}=1$
$x_{6}=0$	$x_{17}=0$
$x_{23}=1$	$x_{7}=1$

$$
\begin{aligned}
F= & \underbrace{\left(x_{23}\right)}_{1} \wedge \underbrace{\left(x_{7}, \neg x_{23}\right)}_{2} \wedge \underbrace{\left(x_{6}, \neg x_{17}\right)}_{3} \wedge \underbrace{\left(x_{6}, \neg x_{11}, \neg x_{12}\right)}_{4} \wedge \underbrace{\left(x_{13}, x_{8}\right)}_{5} \wedge \underbrace{\left(\neg x_{11}, x_{13}, x_{16}\right)}_{6} \wedge \underbrace{\left(x_{12}, \neg x_{16}, \neg x_{2}\right)}_{12} \wedge \underbrace{\left(x_{2}, \neg x_{4}, \neg x_{10}\right)}_{7} \wedge \\
& \underbrace{\left(\neg x_{19}, x_{4}\right)}_{9} \wedge \underbrace{\left(x_{10}, \neg x_{5}\right)}_{12} \wedge \underbrace{\left(x_{10}, x_{3}\right)}_{11} \wedge \underbrace{\left(x_{10}, \neg x_{8}, x_{1}\right)}_{12} \wedge \underbrace{\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)}_{12} \wedge \underbrace{\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right)}_{13} \wedge \ldots
\end{aligned}
$$

Boolean Constraint Propagation - Example

Implication Queue

$$
\begin{aligned}
F= & \underbrace{\left(x_{23}\right)}_{1} \wedge \underbrace{\left(x_{7}, \neg x_{23}\right)}_{2} \wedge \underbrace{\left(x_{6}, \neg x_{17}\right)}_{3} \wedge \underbrace{\left(x_{6}, \neg x_{11}, \neg x_{12}\right)}_{4} \wedge \underbrace{\left(x_{13}, x_{8}\right)}_{5} \wedge \underbrace{\left(\neg x_{11}, x_{13}, x_{16}\right)}_{6} \wedge \underbrace{\left(x_{12}, \neg x_{16}, \neg x_{2}\right)}_{12} \wedge \underbrace{\left(x_{2}, \neg x_{4}, \neg x_{10}\right)}_{7} \wedge \\
& \underbrace{\left(\neg x_{19}, x_{4}\right)}_{9} \wedge \underbrace{\left(x_{10}, \neg x_{5}\right)}_{10} \wedge \underbrace{\left(x_{10}, x_{3}\right)}_{11} \wedge \underbrace{\left(x_{10}, \neg x_{8}, x_{1}\right)}_{12} \wedge \underbrace{\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)}_{12} \wedge \underbrace{\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right)}_{13} \wedge \ldots
\end{aligned}
$$

Boolean Constraint Propagation - Example

Implication Queue

$$
\begin{aligned}
F= & \underbrace{\left(x_{23}\right)}_{1} \wedge \underbrace{\left(x_{7}, \neg x_{23}\right)}_{2} \wedge \underbrace{\left(x_{6}, \neg x_{17}\right)}_{3} \wedge \underbrace{\left(x_{6}, \neg x_{11}, \neg x_{12}\right)}_{4} \wedge \underbrace{\left(x_{13}, x_{8}\right)}_{5} \wedge \underbrace{\left(\neg x_{11}, x_{13}, x_{16}\right)}_{6} \wedge \underbrace{\left(x_{12}, \neg x_{16}, \neg x_{2}\right)}_{12} \wedge \underbrace{\left(x_{2}, \neg x_{4}, \neg x_{10}\right)}_{7} \wedge \\
& \underbrace{\left(\neg x_{19}, x_{4}\right)}_{9} \wedge \underbrace{\left(x_{10}, \neg x_{5}\right)}_{10} \wedge \underbrace{\left(x_{10}, x_{3}\right)}_{11} \wedge \underbrace{\left(x_{10}, \neg x_{8}, x_{1}\right)}_{12} \wedge \underbrace{\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)}_{12} \wedge \underbrace{\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right)}_{13} \wedge \ldots
\end{aligned}
$$

Boolean Constraint Propagation - Example

Implication Queue

$$
\begin{aligned}
F= & \underbrace{\left(x_{23}\right)}_{1} \wedge \underbrace{\left(x_{7}, \neg x_{23}\right)}_{2} \wedge \underbrace{\left(x_{6}, \neg x_{17}\right)}_{3} \wedge \underbrace{\left(x_{6}, \neg x_{11}, \neg x_{12}\right)}_{4} \wedge \underbrace{\left(x_{13}, x_{8}\right)}_{5} \wedge \underbrace{\left(\neg x_{11}, x_{13}, x_{16}\right)}_{6} \wedge \underbrace{\left(x_{12}, \neg x_{16}, \neg x_{2}\right)}_{1} \wedge \underbrace{\left(x_{2}, \neg x_{4}, \neg x_{10}\right)}_{7} \wedge \\
& \underbrace{\left(\neg x_{19}, x_{4}\right)}_{9} \wedge \underbrace{\left(x_{10}, \neg x_{5}\right)}_{10} \wedge \underbrace{\left(x_{10}, x_{3}\right)}_{11} \wedge \underbrace{\left(x_{10}, \neg x_{8}, x_{1}\right)}_{12} \wedge \underbrace{\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)}_{12} \wedge \underbrace{\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right)}_{13} \wedge \ldots
\end{aligned}
$$

Boolean Constraint Propagation

Approaches for the implementation of a BCP routine

- Counter-Based Schemes
- Watched Literals / 2-Literal Watching Scheme

Boolean Constraint Propagation

Counter-Based Schemes

- 2-Counter Scheme
- Two counters for each clause
- One counter for the literals which satisfy the clause
- One counter for the unassigned literals
- 1-Counter Scheme
- One counter for each clause to count the number of not falsifying literals
- Disadvantages

■ "Unnecessary" counter updates

- Adjustment of the counter values during backtrack
- Requires a list for each variable and polarity to store all the clauses where the "related literal" (variable having that polarity) occurs

Boolean Constraint Propagation

Watched Literals

- For each clause mark two different literals
- Invariant
- Watched literals of a clause are either unassigned or satisfy the clause
- Advantages in comparison to counter-based schemes
- Update operations only when necessary, i. e., when an assignment "breaks" the invariant
- One list for each variable and polarity (like before), but containing only the clauses currently watched by that literal
- Disadvantage
- Literals of a clause are checked several times

Watched Literals

(a) Initial state

(c) $x_{5}=0$

(e) $x_{1}=1 \Rightarrow x_{18}=1$

(b) $x_{17}=0$

(d) $x_{3}=1$

(f) $x_{18}=0 \Rightarrow$ Conflict!

Watched Literals

Possible optimizations

- Always store the watched literals in the first two positions of a clause
- Allows for a fast access to the "second" watched literal of a clause
- If the second watched literal satisfies the clause, it is not necessary to find a replacement for the first one (in case the status of the first one switches from unresolved to false)

Nowadays, the BCP procedures of almost all modern SAT solvers are based on watched literals!

Modern SAT Algorithms

```
bool SequentialSatEngine(CNF F)
{
    if (PreprocessCNF(F) == CONFLICT)
        { return UNSATISFIABLE; }
    while (true)
        {
            if (DecideNextBranch()) // Choice of the next unassigned variable
                while (BCP () == CONFLICT)
            {
                        BLevel = ANALYZECONFLICT();
                        if (BLevel > 0)
                        { BACKTRACK(BLevel); } // Cancel the „incorrect" assignment
                        else
                            { return UNSATISFIABLE; } // Problem unsatisfiable
                    }
            }
            else
                { return SATISFIABLE; } // All variables assigned, problem satisfiable
        }
}
```

// Preprocessing the CNF formula // Problem unsatisfiable
// Choice of the next unassigned variable // Boolean Constraint Propagation
// Conflict analysis
// Cancel the "incorrect" assignment
// Problem unsatisfiable

```
// All variables assigned, problem satisfiable \}
\}
```

Not explicitly stated: Inprocessing, unlearning, restarts, model output

Conflict Analysis \& Backtracking

DLL algorithm

- The combination of the decisions done before will always be considered as the origin of a conflict
- Backtracking to the recursion level of the last "branching" in which one case for a variable assignment has not been explored yet (chronological backtracking)
- If such a recursion level does not exist, the given CNF formula is unsatisfiable

Conflict Analysis \& Backtyacking

$$
\begin{aligned}
F= & \underbrace{\left(x_{23}\right)}_{1} \wedge \underbrace{\left(x_{7}, \neg x_{23}\right)}_{2} \wedge \underbrace{\left(x_{6}, \neg x_{17}\right)}_{3} \wedge \underbrace{\left(x_{6}, \neg x_{11}, \neg x_{12}\right)}_{4} \wedge \underbrace{\left(x_{13}, x_{8}\right)}_{5} \wedge \underbrace{\left(\neg x_{11}, x_{13}, x_{16}\right)}_{6} \wedge \underbrace{\left(x_{12}, \neg x_{16}, \neg x_{2}\right)}_{6} \wedge \underbrace{\left(x_{2}, \neg x_{4}, \neg x_{10}\right)}_{7} \wedge \\
& \underbrace{\left(\neg x_{19}, x_{4}\right)}_{9} \wedge \underbrace{\left(x_{10}, \neg x_{5}\right)}_{10} \wedge \underbrace{\left(x_{10}, x_{3}\right)}_{11} \wedge \underbrace{\left(x_{10}, \neg x_{8}, x_{1}\right)}_{12} \wedge \underbrace{\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)}_{13} \wedge \underbrace{\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right)}_{13} \wedge \ldots
\end{aligned}
$$

Conflict Analysis \& Backtracking

Modern SAT algorithms

- Complex analysis of the conflict setting, because not all "branchings" done before have to be involved in the current conflict
- Learning of a conflict clause via resolution to avoid running into the same conflict again
- (Non-)chronological backtracking according to the derived conflict clause
- If a conflict occurs on decision level 0, the given CNF formula is unsatisfiable

Conflict Analysis \& Backtracking

Implication graph

- Data structure for performing the conflict analysis in today's SAT solvers
- Directed, acyclic graph
- Nodes represent assignments to variables

■ Edges represent which set of assignments have caused an implication

- Implication graph gets updated after every variable assignment and after every backtrack operation

Conflict Analysis \& Backtracking

$F=\underbrace{\left(x_{23}\right)}_{1} \wedge \underbrace{\left(x_{7}, \neg x_{23}\right)}_{2} \wedge \underbrace{\left(x_{6}, \neg x_{17}\right)}_{3} \wedge \underbrace{\left(x_{6}, \neg x_{11}, \neg x_{12}\right)}_{4} \wedge \underbrace{\left(x_{13}, x_{8}\right)}_{5} \wedge \underbrace{\left(\neg x_{11}, x_{13}, x_{16}\right)}_{6} \wedge \underbrace{\left(x_{12}, \neg x_{16}, \neg x_{2}\right)}_{7} \wedge \underbrace{\left(x_{2}, \neg x_{4}, \neg x_{10}\right)}_{8} \wedge$
$\underbrace{\left(\neg x_{19}, x_{4}\right)}_{9} \wedge \underbrace{\left(x_{10}, \neg x_{5}\right)}_{10} \wedge \underbrace{\left(x_{10}, x_{3}\right)}_{11} \wedge \underbrace{\left(x_{10}, \neg x_{8}, x_{1}\right)}_{12} \wedge \underbrace{\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)}_{13} \wedge \underbrace{\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right)}_{14} \wedge \ldots$

Conflict Analysis \& Backtracking

- During the conflict analysis the implication graph gets traversed backwards (in reverse order of the assignments stored by the decision stack) starting from the conflicting point, to allow to compute the succession of resolution steps which finally lead to the conflict clause
- Different termination criteria for interrupting the resolution steps lead to different conflict clauses
- Implementations
- 1UIP (standard technique explained in the following)
- RelSat
- Grasp
- ...

Conflict Analysis \& Backtracking

$$
\begin{aligned}
F= & \left(x_{23}\right) \wedge\left(x_{7}, \neg x_{23}\right) \wedge\left(x_{6}, \neg x_{17}\right) \wedge\left(x_{6}, \neg x_{11}, \neg x_{12}\right) \wedge\left(x_{13}, x_{8}\right) \wedge\left(\neg x_{11}, x_{13}, x_{16}\right) \wedge\left(x_{12}, \neg x_{16}, \neg x_{2}\right) \wedge\left(x_{2}, \neg x_{4}, \neg x_{10}\right) \wedge \\
& \left(\neg x_{19}, x_{4}\right) \wedge\left(x_{10}, \neg x_{5}\right) \wedge\left(x_{10}, x_{3}\right) \wedge\left(x_{10}, \neg x_{8}, x_{1}\right) \wedge\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right) \wedge\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right) \wedge \ldots
\end{aligned}
$$

Conflict Analysis \& Backtracking

$$
\begin{aligned}
F= & \left(x_{23}\right) \wedge\left(x_{7}, \neg x_{23}\right) \wedge\left(x_{6}, \neg x_{17}\right) \wedge\left(x_{6}, \neg x_{11}, \neg x_{12}\right) \wedge\left(x_{13}, x_{8}\right) \wedge\left(\neg x_{11}, x_{13}, x_{16}\right) \wedge\left(x_{12}, \neg x_{16}, \neg x_{2}\right) \wedge\left(x_{2}, \neg x_{4}, \neg x_{10}\right) \wedge \\
& \left(\neg x_{19}, x_{4}\right) \wedge\left(x_{10}, \neg x_{5}\right) \wedge\left(x_{10}, x_{3}\right) \wedge\left(x_{10}, \neg x_{8}, x_{1}\right) \wedge\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right) \wedge\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right) \wedge \ldots \\
R_{1}= & \left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right) \otimes x_{18}\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)=\left(x_{17}, \neg x_{1}, \neg x_{3}, x_{5}, \neg x_{19}\right)
\end{aligned}
$$

Conflict Analysis \& Backtracking

$$
\begin{aligned}
F= & \left(x_{23}\right) \wedge\left(x_{7}, \neg x_{23}\right) \wedge\left(x_{6}, \neg x_{17}\right) \wedge\left(x_{6}, \neg x_{11}, \neg x_{12}\right) \wedge\left(x_{13}, x_{8}\right) \wedge\left(\neg x_{11}, x_{13}, x_{16}\right) \wedge\left(x_{12}, \neg x_{16}, \neg x_{2}\right) \wedge\left(x_{2}, \neg x_{4}, \neg x_{10}\right) \wedge \\
& \left(\neg x_{19}, x_{4}\right) \wedge\left(x_{10}, \neg x_{5}\right) \wedge\left(x_{10}, x_{3}\right) \wedge\left(x_{10}, \neg x_{8}, x_{1}\right) \wedge\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right) \wedge\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right) \wedge \ldots \\
R_{1}= & \left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right) \otimes x_{18}\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)=\left(x_{17}, \neg x_{1}, \neg x_{3}, x_{5}, \neg x_{19}\right) \\
R_{2}= & \left(x_{17}, \neg x_{1}, \neg x_{3}, x_{5}, \neg x_{19}\right) \otimes x_{1}\left(x_{1}, x_{10}, \neg x_{8}\right)=\left(x_{17}, \neg x_{3}, x_{5}, \neg x_{19}, x_{10}, \neg x_{8}\right)
\end{aligned}
$$

Conflict Analysis \& Backtracking

$$
\begin{aligned}
F= & \left(x_{23}\right) \wedge\left(x_{7}, \neg x_{23}\right) \wedge\left(x_{6}, \neg x_{17}\right) \wedge\left(x_{6}, \neg x_{11}, \neg x_{12}\right) \wedge\left(x_{13}, x_{8}\right) \wedge\left(\neg x_{11}, x_{13}, x_{16}\right) \wedge\left(x_{12}, \neg x_{16}, \neg x_{2}\right) \wedge\left(x_{2}, \neg x_{4}, \neg x_{10}\right) \wedge \\
& \left(\neg x_{19}, x_{4}\right) \wedge\left(x_{10}, \neg x_{5}\right) \wedge\left(x_{10}, x_{3}\right) \wedge\left(x_{10}, \neg x_{8}, x_{1}\right) \wedge\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right) \wedge\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right) \wedge \ldots \\
R_{1}= & \left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right) \otimes x_{18}\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)=\left(x_{17}, \neg x_{1}, \neg x_{3}, x_{5}, \neg x_{19}\right) \\
R_{2}= & \left(x_{17}, \neg x_{1}, \neg x_{3}, x_{5}, \neg x_{19}\right) \otimes x_{1}\left(x_{1}, x_{10}, \neg x_{8}\right)=\left(x_{17}, \neg x_{3}, x_{5}, \neg x_{19}, x_{10}, \neg x_{8}\right) \\
R_{3}= & \left(x_{17}, \neg x_{3}, x_{5}, \neg x_{19}, x_{10}, \neg x_{8}\right) \otimes x_{3}\left(x_{10}, x_{3}\right)=\left(x_{17}, x_{5}, \neg x_{19}, x_{10}, \neg x_{8}\right)
\end{aligned}
$$

Conflict Analysis \& Backtracking

$$
\begin{aligned}
F= & \left(x_{23}\right) \wedge\left(x_{7}, \neg x_{23}\right) \wedge\left(x_{6}, \neg x_{17}\right) \wedge\left(x_{6}, \neg x_{11}, \neg x_{12}\right) \wedge\left(x_{13}, x_{8}\right) \wedge\left(\neg x_{11}, x_{13}, x_{16}\right) \wedge\left(x_{12}, \neg x_{16}, \neg x_{2}\right) \wedge\left(x_{2}, \neg x_{4}, \neg x_{10}\right) \wedge \\
& \left(\neg x_{19}, x_{4}\right) \wedge\left(x_{10}, \neg x_{5}\right) \wedge\left(x_{10}, x_{3}\right) \wedge\left(x_{10}, \neg x_{8}, x_{1}\right) \wedge\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right) \wedge\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right) \wedge \ldots \\
R_{1}= & \left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right) \otimes x_{18}\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)=\left(x_{17}, \neg x_{1}, \neg x_{3}, x_{5}, \neg x_{19}\right) \\
R_{2}= & \left(x_{17}, \neg x_{1}, \neg x_{3}, x_{5}, \neg x_{19}\right) \otimes x_{1}\left(x_{1}, x_{10}, \neg x_{8}\right)=\left(x_{17}, \neg x_{3}, x_{5}, \neg x_{19}, x_{10}, \neg x_{8}\right) \\
R_{3}= & \left(x_{17}, \neg x_{3}, x_{5}, \neg x_{19}, x_{10}, \neg x_{8}\right) \otimes x_{3}\left(x_{10}, x_{3}\right)=\left(x_{17}, x_{5}, \neg x_{19}, x_{10}, \neg x_{8}\right) \\
R_{4}= & \left(x_{17}, x_{5}, \neg x_{19}, x_{10}, \neg x_{8}\right) \otimes x_{5}\left(x_{10}, \neg x_{5}\right)=\left(x_{17}, \neg x_{19}, x_{10}, \neg x_{8}\right)
\end{aligned}
$$

Conflict Analysis \& Backtracking

$$
\begin{aligned}
F= & \left(x_{23}\right) \wedge\left(x_{7}, \neg x_{23}\right) \wedge\left(x_{6}, \neg x_{17}\right) \wedge\left(x_{6}, \neg x_{11}, \neg x_{12}\right) \wedge\left(x_{13}, x_{8}\right) \wedge\left(\neg x_{11}, x_{13}, x_{16}\right) \wedge\left(x_{12}, \neg x_{16}, \neg x_{2}\right) \wedge\left(x_{2}, \neg x_{4}, \neg x_{10}\right) \wedge \\
& \left(\neg x_{19}, x_{4}\right) \wedge\left(x_{10}, \neg x_{5}\right) \wedge\left(x_{10}, x_{3}\right) \wedge\left(x_{10}, \neg x_{8}, x_{1}\right) \wedge\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right) \wedge\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right) \wedge \ldots \\
R_{1}= & \left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right) \otimes x_{18}\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)=\left(x_{17}, \neg x_{1}, \neg x_{3}, x_{5}, \neg x_{19}\right) \\
R_{2}= & \left(x_{17}, \neg x_{1}, \neg x_{3}, x_{5}, \neg x_{19}\right) \otimes x_{1}\left(x_{1}, x_{10}, \neg x_{8}\right)=\left(x_{17}, \neg x_{3}, x_{5}, \neg x_{19}, x_{10}, \neg x_{8}\right) \\
R_{3}= & \left(x_{17}, \neg x_{3}, x_{5}, \neg x_{19}, x_{10}, \neg x_{8}\right) \otimes x_{3}\left(x_{10}, x_{3}\right)=\left(x_{17}, x_{5}, \neg x_{19}, x_{10}, \neg x_{8}\right) \\
R_{4}= & \left(x_{17}, x_{5}, \neg x_{19}, x_{10}, \neg x_{8}\right) \otimes x_{5}\left(x_{10}, \neg x_{5}\right)=\left(x_{17}, \neg x_{19}, x_{10}, \neg x_{8}\right) \Leftarrow \text { Final conflict clause }
\end{aligned}
$$

Conflict Analysis \& Backtracking

$$
F=\underbrace{\left(x_{23}\right)}_{1} \wedge \underbrace{\left(x_{7}, \neg x_{23}\right)}_{2} \wedge \underbrace{\left(x_{6}, \neg x_{17}\right)}_{3} \wedge \underbrace{\left(x_{6}, \neg x_{11}, \neg x_{12}\right)}_{4} \wedge \underbrace{\left(x_{13}, x_{8}\right)}_{5} \wedge \underbrace{\left(\neg x_{11}, x_{13}, x_{16}\right)}_{6} \wedge \underbrace{\left(x_{12}, \neg x_{16}, \neg x_{2}\right)}_{7} \wedge \underbrace{\left(x_{2}, \neg x_{4}, \neg x_{10}\right)}_{7} \wedge
$$

$$
\underbrace{\left(\neg x_{19}, x_{4}\right)}_{9} \wedge \underbrace{\left(x_{10}, \neg x_{5}\right)}_{10} \wedge \underbrace{\left(x_{10}, x_{3}\right)}_{11} \wedge \underbrace{\left(x_{10}, \neg x_{8}, x_{1}\right)}_{12} \wedge \underbrace{\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)}_{13} \wedge \underbrace{\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right)}_{14} \wedge \ldots
$$

Conflict Analysis \& Backtracking

Observations

- Conflict analysis according to the 1UIP scheme (First Unique Implication Point) terminates as soon as the computed resolvent contains exactly one literal at the current decision level (the so-called UIP), whereas all other literals were assigned at lower decision levels
- Conflict clauses represent combinations of variables that will inevitably lead to a conflict
- Resolution Lemma allows to insert a conflict clause into the CNF formula, and consequently to "prune" the whole search tree by preventing the solver from running into the same conflict again
- Compared to others, the 1UIP scheme turned out to be the most powerful one (shorter conflict clauses, more effective pruning, faster runtime)

Conflict Analysis \& Backtracking

(Non)-chronological backtracking

- In today's SAT algorithms the backtrack level is determined by the derived conflict clause only
- The backtrack level matches the maximum decision level among all the literals in the conflict clause except the UIP, which becomes an implication after backtracking
- Idea: "What would have happened if the conflict clause had already been contained into the original CNF formula?"

Conflict Analysis \& Backtracking

(Non-)chronological backtracking

- Procedure

1 Backtrack down to the given backtrack level
2 Assign the truth value implied by the UIP (after backtracking, the conflict clause will be automatically a unit clause)
3 Proceed with the search process

- If a conflict appears at decision level 0, the CNF formula is unsatisfiable

Conflict Analysis \& Backtracking

$$
\begin{aligned}
F= & \underbrace{\left(x_{23}\right)}_{1} \wedge \underbrace{\left(x_{7}, \neg x_{23}\right)}_{2} \wedge \underbrace{\left(x_{6}, \neg x_{17}\right)}_{3} \wedge \underbrace{\left(x_{6}, \neg x_{11}, \neg x_{12}\right)}_{4} \wedge \underbrace{\left(x_{13}, x_{8}\right)}_{5} \wedge \underbrace{\left(\neg x_{11}, x_{13}, x_{16}\right)}_{6} \wedge \underbrace{\left(x_{12}, \neg x_{16}, \neg x_{2}\right)}_{12} \wedge \underbrace{\left(x_{2}, \neg x_{4}, \neg x_{10}\right)}_{7} \wedge \\
& \underbrace{\left(\neg x_{19}, x_{4}\right)}_{9} \wedge \underbrace{\left(x_{10}, \neg x_{5}\right)}_{8} \wedge \underbrace{\left(x_{10}, x_{3}\right)}_{11} \wedge \underbrace{\left(x_{10}, \neg x_{8}, x_{1}\right)}_{12} \wedge \underbrace{\wedge\left(\neg x_{19}, \neg x_{18}, \neg x_{3}\right)}_{12} \wedge \underbrace{\left(x_{17}, \neg x_{1}, x_{18}, \neg x_{3}, x_{5}\right)}_{13} \wedge \ldots
\end{aligned}
$$

Other Features of modern SAT Solvers

- Unlearning of conflict clauses
- Inprocessing
- Restarts
- Termination guarantees
- Unsatisfiability certificates
- Assumptions
- Incremental SAT solving
- Parallel SAT algorithms
- Incomplete SAT algorithms

Outline

Combinational Equivalence Checking

- Given
- Specification and implementation of a combinatorial circuit
- Question
- Are specification and implementation equivalent?
- Approach for SAT-based equivalence checking
- Generate a so-called Miter from specification and implementation
- Build a CNF formula from the Miter representation
- Solve the formula with a SAT algorithm
- Specification and implementation of a combinatorial circuit are equivalent iff the CNF formula generated from the Miter is unsatisfiable

Miter

\Rightarrow Connect corresponding inputs

Miter

\Rightarrow Link corresponding outputs by EXOR gates

Miter

\Rightarrow Miter circuit

Miter

$\Rightarrow M=1 \Leftrightarrow$ Specification \& implementation not equivalent

Miter

Remarks

- Drafted method can be extended to combinatorial circuits having multiple outputs

- Usually, SAT-algorithms take as input only CNF formulas, that means the Boolean function of the Miter circuit must be translated into a CNF representation \rightsquigarrow Tseitin transformation

Tseitin Transformation

In order to avoid the exponential size of the CNF form obtained from the formula created from the function F of the circuit, some alternative techniques can be applied:

- Define a satisfiability equivalent CNF F^{\prime} equivalent to F that is satisfiable iff F is satisfiable
- For each gate output insert an additional variable \Rightarrow in general the CNF F^{\prime} will have variables which do not occur in F
- For each gate realize a "characteristic function" in CNF which evaluates to 1 for every possible consistent signal configuration
- Put together the individual gates using an AND connection to obtain the final CNF formula
\Rightarrow Tseitin transformation

Tseitin Transformation

Tseitin Transformation - Example

$$
\begin{aligned}
F_{S K}= & \left(x_{1} \wedge x_{2}\right) \vee \neg x_{3} \\
F_{S K}^{C N F}= & \left(\neg x_{5} \vee x_{1}\right) \wedge\left(\neg x_{5} \vee x_{2}\right) \wedge\left(x_{5} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge \\
& \left(x_{6} \vee x_{3}\right) \wedge\left(\neg x_{6} \vee \neg x_{3}\right) \wedge \\
& \left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{4} \vee \neg x_{6}\right) \wedge\left(\neg x_{4} \vee x_{5} \vee x_{6}\right)
\end{aligned}
$$

Tseitin Transformation - Example

$$
\begin{aligned}
F_{S K}= & \left(x_{1} \wedge x_{2}\right) \vee \neg x_{3} \\
F_{S K}^{C N F}= & \left(\neg x_{5} \vee x_{1}\right) \wedge\left(\neg x_{5} \vee x_{2}\right) \wedge\left(x_{5} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge \\
& \left(x_{6} \vee x_{3}\right) \wedge\left(\neg x_{6} \vee \neg x_{3}\right) \wedge \\
& \left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{4} \vee \neg x_{6}\right) \wedge\left(\neg x_{4} \vee x_{5} \vee x_{6}\right)
\end{aligned}
$$

Tseitin Transformation - Example

$$
\begin{aligned}
F_{S K}= & \left(x_{1} \wedge x_{2}\right) \vee \neg x_{3} \\
F_{S K}^{C N F}= & \left(\neg x_{5} \vee x_{1}\right) \wedge\left(\neg x_{5} \vee x_{2}\right) \wedge\left(x_{5} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge \\
& \left(x_{6} \vee x_{3}\right) \wedge\left(\neg x_{6} \vee \neg x_{3}\right) \wedge \\
& \left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{4} \vee \neg x_{6}\right) \wedge\left(\neg x_{4} \vee x_{5} \vee x_{6}\right)
\end{aligned}
$$

Tseitin Transformation - Example

$$
\begin{aligned}
F_{S K}= & \left(x_{1} \wedge x_{2}\right) \vee \neg x_{3} \\
F_{S K}^{C N F}= & \left(\neg x_{5} \vee x_{1}\right) \wedge\left(\neg x_{5} \vee x_{2}\right) \wedge\left(x_{5} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge \\
& \left(x_{6} \vee x_{3}\right) \wedge\left(\neg x_{6} \vee \neg x_{3}\right) \wedge \\
& \left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{4} \vee \neg x_{6}\right) \wedge\left(\neg x_{4} \vee x_{5} \vee x_{6}\right)
\end{aligned}
$$

Tseitin Transformation

Important property

- As long as for the CNF representation of each single gate only a constant number of clauses is required, the number of clauses in the final CNF will be linear in the number of gates in the circuit

Combinational Equivalence Checking - Example

Let the specification and the implementation of a combinatorial circuit be defined as follows:

Question: Are the specification and the implementation equivalent?

Combinational Equivalence Checking - Example

$$
\begin{aligned}
F_{M}= & \left(\neg x_{5} \vee x_{1}\right) \wedge\left(\neg x_{5} \vee x_{2}\right) \wedge\left(x_{5} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{6} \vee x_{3}\right) \wedge\left(\neg x_{6} \vee \neg x_{3}\right) \wedge \\
& \left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{4} \vee \neg x_{6}\right) \wedge\left(\neg x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(\neg x_{7} \vee x_{1}\right) \wedge\left(\neg x_{7} \vee x_{2}\right) \wedge \\
& \left(x_{7} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{7} \vee x_{8}\right) \wedge\left(\neg x_{7} \vee \neg x_{8}\right) \wedge\left(\neg x_{9} \vee x_{3}\right) \wedge\left(\neg x_{9} \vee x_{8}\right) \wedge \\
& \left.\left.\left(x_{9} \vee \neg x_{3} \vee \neg x_{8}\right) \wedge\left(x_{9} \vee x_{4}^{\prime}\right) \wedge\left(\neg x_{9} \vee \neg x_{4}^{\prime}\right) \wedge(\neg M){ }^{\prime}\right) 4 x_{4}^{\prime}\right) \wedge \\
& \left(\neg M \vee x_{4} \vee x_{4}^{\prime}\right) \wedge\left(M \vee \neg x_{4} \vee x_{4}^{\prime}\right) \wedge\left(M \vee x_{4} \vee \neg x_{4}^{\prime}(\wedge(M))\right.
\end{aligned}
$$

Combinational Equivalence Checking - Example

$$
\begin{aligned}
F_{M}= & \left(\neg x_{5} \vee x_{1}\right) \wedge\left(\neg x_{5} \vee x_{2}\right) \wedge\left(x_{5} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{6} \vee x_{3}\right) \wedge\left(\neg x_{6} \vee \neg x_{3}\right) \wedge \\
& \left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{4} \vee \neg x_{6}\right) \wedge\left(\neg x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(\neg x_{7} \vee x_{1}\right) \wedge\left(\neg x_{7} \vee x_{2}\right) \wedge \\
& \left(x_{7} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{7} \vee x_{8}\right) \wedge\left(\neg x_{7} \vee \neg x_{8}\right) \wedge\left(\neg x_{9} \vee x_{3}\right) \wedge\left(\neg x_{9} \vee x_{8}\right) \wedge \\
& \left(x_{9} \vee \neg x_{3} \vee \neg x_{8}\right) \wedge\left(x_{9} \vee x_{4}^{\prime}\right) \wedge\left(\neg x_{9} \vee \neg x_{4}^{\prime}\right) \wedge\left(\neg M \vee \neg x_{4} \vee \neg x_{4}^{\prime}\right) \wedge \\
& \left(\neg M \vee x_{4} \vee x_{4}^{\prime}\right) \wedge\left(M \vee \neg x_{4} \vee x_{4}^{\prime}\right) \wedge\left(M \vee x_{4} \vee \neg x_{4}^{\prime}\right) \wedge(M)
\end{aligned}
$$

F_{M} is unsatisfiable \Rightarrow Implementation and specification are equivalent!

Structural Methods

Nowadays SAT solvers can handle problems with millions of clauses. But how to compare (large) combinatorial circuits for which SAT methods still fail? \Rightarrow Structural methods

■ Solve several "small" problems instead of one "large" problem

- Various options
- Compute equivalent gates inside the miter circuit
- And-Inverter-Graphs (AIGs)

Structural Methods

Observation from real-world instances

- In most cases circuits which have to be compared show structural similarities
- Example: Only small changes in later design phases
- In many cases logic optimizations respect hierarchy boundaries
- Thus, changes are not fundamental in most cases

Structural Methods

Observation from real-world instances

- In most cases circuits which have to be compared show structural similarities
- Example: Only small changes in later design phases
- In many cases logic optimizations respect hierarchy boundaries
- Thus, changes are not fundamental in most cases

How can we exploit structural similarities?

Structural Methods

Approach

1 Traverse the circuits which have to be compared from inputs to outputs

- Identify equivalences at the internal signals of the miter
- If there are any equivalences, replace equivalent nodes by one (shared) representative

2 Check satisfiability of the simplified miter circuit

Structural Methods - Simple Example

Starting point

Structural Methods - Simple Example

Are the internal signals d and e equivalent?

Structural Methods - Simple Example

Parts of the miter which are relevant for the proof of $d \equiv e$

Structural Methods - Simple Example

Local analysis is sufficient to show that $d \equiv e$

Structural Methods - Simple Example

Simplified miter

Structural Methods - Simple Example

Are the internal signals h and j equivalent?

Structural Methods - Simple Example

Parts of the miter which are relevant for the proof of $h \equiv j$

Structural Methods - Simple Example

Local analysis is sufficient to show that $h \equiv j$

Structural Methods - Simple Example

More simplified miter

Structural Methods - Simple Example

Does $z=0$ hold? Are specification and implementation equivalent?

Structural Methods - Simple Example

Parts of the miter which are relevant for the proof of $z=0$

Structural Methods - Simple Example

Local analysis is sufficient to show that $z=0$

Structural Methods - Simple Example

Structural Methods - Detection of Equivalences

Detect potential candidates for pairs of equivalent nodes by simulation with random patterns

- By an (incomplete) simulation of a restricted number of patterns we can only show "non-equivalence"
- Use simulation to partition the nodes into equivalence classes which consist of the nodes with identical simulation results
\square Use a complete method (e.g. SAT) to detect equivalent nodes within the computed equivalence classes

Structural Methods - Detection of Equivalences

Using SAT to prove equivalences

- In order to keep the miter circuit "small", the inputs of the SAT problem are not necessarily primary inputs, but rather equivalent internal nodes which have already been detected to be equivalent
- Two nodes are equivalent, if the SAT instance representing the corresponding miter is unsatisfiable
- If two nodes are proved to be equivalent, then one of the nodes may be replaced by its equivalent counterpart
- Be careful: If the SAT instance is satisfiable, then this does not necessarily mean that the corresponding nodes are not equivalent!

Structural Methods - Detection of Equivalences

abstractiou

Equivalent nodes can be used as so-called cut points after they have been replaced by a common representative

- Cut points will be new input variables during niter construction and thus keep the miter "small"
- If the resulting circuits are equivalent, then he original circuits have already been equivalent

Structural Methods - Detection of Equivalences

Equivalent nodes can be used as so-called cut points after they have been replaced by a common representative

- Cut points will be new input variables during miter construction and thus keep the miter "small"
- If the resulting circuits are equivalent, then the original circuits have already been equivalent

Problem: Using cut points may lead to so-called "false negatives", i.e., two equivalent nodes are not classified to be equivalent!

Structural Methods - Example

Starting point

Structural Methods - Example

Note: Specification and implementation are equivalent

Structural Methods - Example

Try to show equivalence of y_{1} and y_{2} using cut points

Structural Methods - Example

Structural Methods - Example

Cut the circuits at the internal equivalent signals

Structural Methods - Example

Compute the miter depending on "cut variables"

Structural Methods - Example

Structural Methods - Example

Corresponding CNF formula satisfiable
$\Rightarrow y_{1}$ and y_{2} not equivalent
\Rightarrow Specification and implementation not equivalent
\Rightarrow But it is a False Negative!

Structural Methods - False Negatives

Problem

- New variables at cut points may be assigned to arbitrary values

But...

- The "rightmost" parts of the circuit need only to be equivalent for values at the cut points which can be produced by the "leftmost" parts

Structural Methods - Avoiding False Negatives

- Do not use cut points
- Makes proofs of equivalence for two nodes much more difficult in many cases, since the corresponding SAT problems become significantly "larger"
- SAT sweeping
- In a first step stop at cut points when constructing the miter
- If necessary (satisfiable CNF) include more parts of the circuit into the SAT problem to check for false negative results

Outline

Automatic Test Pattern Generation

Motivation

- Post-production test is a crucial step
- Have there been problems during production?
- Does the circuit contain faults?
- In particular when used in safety-critical applications, every produced chip has to be tested
- Testing comprises more than 40% of costs in semiconductor industry

Automatic Test Pattern Generation

Testing: Experiment on real manufactored chips

- Goal is to check whether the chip behaves correctly
- 1. step: Apply an appropriate test pattern
- 2. step: Analyse the response of the circuit under test

Automatic Test Pattern Generation

- Physical defects are modeled on the Boolean level according to a fault model
- Fault models are an abstract representation of real defects
- Single stuck-at
- Bridging faults
- Interconnect opens
- Path delay faults
- ...
- Automatic Test Pattern Generation (ATPG)
- Given: Circuit CUT and fault model FM
- Goal: Determine test patterns for (all) faults in CUT wrt. FM

Automatic Test Pattern Generation

Single stuck-at fault model (s@)

- s@0: One line is always at logic 0
- s @1: One line is always at logic 1
- In total only ($2 \times$ number_of_signals_CUT) faults to be checked
- High amount of real defects detected by the s@ fault model!

Automatic Test Pattern Generation - Typical Flow

Faults:

f_{1}
f_{2}
f_{3}
f_{4}
f_{5}
f_{6}
f_{7}
f_{8}
f_{9}
f_{10}
f_{11}
f_{12}
f_{13}

Automatic Test Pattern Generation - Typical Flow

Fauls:
f_{1} f_{2} f_{3} f_{4} f_{5} f_{6} f_{7} f_{8} f_{9} f_{10} f_{11} f_{12} f_{13}

```
generate
    random
    pattems
```

Patterns:

p_{1}
p_{2}
p_{3}
p_{4}
p_{5}

Automatic Test Pattern Generation - Typical Flow

Patterns:

p_{1}
p_{2}
p_{3}
p_{4}
p_{5}

$\frac{3}{2}$
$-=\frac{0}{2}=$
$=\frac{14}{2}$

Automatic Test Pattern Generation - Typical Flow

. 14

Automatic Test Pattern Generation - Typical Flow

Automatic Test Pattern Generation - Typical Flow

Automatic Test Pattern Generation - Typical Flow

Faults:
f_{1} f_{2} f_{3} f_{4} f_{5} f_{6} f_{7} f_{8} f_{9} f_{10} f_{11} f_{12} f_{13}

Automatic Test Pattern Generation - Typical Flow

Automatic Test Pattern Generation - Typical Flow

Automatic Test Pattern Generation - Typical Flow

Faults:
f_{1} f_{2} f_{3} f_{4} f_{5} f_{6} f_{7} f_{8} f_{9} f_{10} f_{11} f_{12} f_{13}

Automatic Test Pattern Generation - Typical Flow

Automatic Test Pattern Generation - Typical Flow

Automatic Test Pattern Generation - Typical Flow

Patterns:

p_{1}
p_{2}
p_{3}
p_{4}
p_{5}
p_{6}

Automatic Test Pattern Generation - Typical Flow

Automatic Test Pattern Generation

Redundant faults: s@0 at x_{3} is redundant

- Justifying the error requires $x_{1}=1$ and $x_{2}=1$
- But propagating the error to output x_{4} requires $x_{1}=0$

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

- Justify the fault and find a propagation path

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

- Justify the fault and find a propagation path

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

- Justify the fault and find a propagation path

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

- Justify the fault and find a propagatiop path

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

- Justify the fault and find a propagation path

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

- Justify the fault and find a propagation path

Automatic Test Pattern Generation

Several ATPG-Approaches

- Structural methods
- D-algorithm
- PODEM
- FAN
- SAT-based methods

SAT-based ATPG

Main flow

- Construct the miter containing the correct and the faulty circuit
- Encode the miter as CNF \& solve the SAT problem
- If the SAT formula is satisfiable we have found a test pattern for the particular fault under consideration
- Otherwise, the fault is redundant

SAT-based ATPG - Example

(a) Correct circuit

(b) Faulty circuit, $s @ 1$-error at x_{5}

SAT-based ATPG - Example

$$
\begin{aligned}
F_{M}= & \left(\neg x_{5} \vee x_{1}\right) \wedge\left(\neg x_{5} \vee x_{2}\right) \wedge\left(x_{5} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{6} \vee x_{3}\right) \wedge \\
& \left(\neg x_{6} \vee \neg x_{3}\right) \wedge\left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{4} \vee \neg x_{6}\right) \wedge\left(\neg x_{4} \vee x_{5} \vee x_{6}\right) \wedge \\
& \left(x_{4}^{\prime} \vee \neg x_{5}^{\prime}\right) \wedge\left(x_{4}^{\prime} \vee \neg x_{6}\right) \wedge\left(\neg x_{4}^{\prime} \vee x_{5}^{\prime} \vee x_{6}\right) \wedge\left(\neg M \vee x_{4} \vee x_{4}^{\prime}\right) \wedge \\
& \left(\neg M \vee\left(x_{4}^{\prime}\right) \wedge\left(\neg x_{5}\right) \wedge\left(x_{5}^{\prime}\right)\right. \\
& \left.(M) \vee \neg x_{4} \vee x_{4}^{\prime}\right) \wedge\left(M \vee x_{4} \vee \neg x_{4}^{\prime}\right) \wedge
\end{aligned}
$$

SAT-based ATPG - Example

$$
\begin{aligned}
F_{M}= & \left(\neg x_{5} \vee x_{1}\right) \wedge\left(\neg x_{5} \vee x_{2}\right) \wedge\left(x_{5} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{6} \vee x_{3}\right) \wedge \\
& \left(\neg x_{6} \vee \neg x_{3}\right) \wedge\left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{4} \vee \neg x_{6}\right) \wedge\left(\neg x_{4} \vee x_{5} \vee x_{6}\right) \wedge \\
& \left(x_{4}^{\prime} \vee \neg x_{5}^{\prime}\right) \wedge\left(x_{4}^{\prime} \vee \neg x_{6}\right) \wedge\left(\neg x_{4}^{\prime} \vee x_{5}^{\prime} \vee x_{6}\right) \wedge\left(\neg M \vee x_{4} \vee x_{4}^{\prime}\right) \wedge \\
& \left(\neg M \vee \neg x_{4} \vee \neg x_{4}^{\prime}\right) \wedge\left(M \vee \neg x_{4} \vee x_{4}^{\prime}\right) \wedge\left(M \vee x_{4} \vee \neg x_{4}^{\prime}\right) \wedge \\
& (M) \wedge\left(\neg x_{5}\right) \wedge\left(x_{5}^{\prime}\right)
\end{aligned}
$$

$$
F_{M}^{\prime}=\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3}\right) \wedge\left(\neg x_{6}\right) \wedge\left(x_{4}^{\prime}\right) \wedge\left(\neg x_{4}\right) \wedge(M) \wedge\left(\neg x_{5}\right) \wedge\left(x_{5}^{\prime}\right)
$$

SAT-based ATPG - Example

$$
\begin{aligned}
F_{M}= & \left(\neg x_{5} \vee x_{1}\right) \wedge\left(\neg x_{5} \vee x_{2}\right) \wedge\left(x_{5} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{6} \vee x_{3}\right) \wedge \\
& \left(\neg x_{6} \vee \neg x_{3}\right) \wedge\left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{4} \vee \neg x_{6}\right) \wedge\left(\neg x_{4} \vee x_{5} \vee x_{6}\right) \wedge \\
& \left(x_{4}^{\prime} \vee \neg x_{5}^{\prime}\right) \wedge\left(x_{4}^{\prime} \vee \neg x_{6}\right) \wedge\left(\neg x_{4}^{\prime} \vee x_{5}^{\prime} \vee x_{6}\right) \wedge\left(\neg M \vee x_{4} \vee x_{4}^{\prime}\right) \wedge \\
& \left(\neg M \vee \neg x_{4} \vee \neg x_{4}^{\prime}\right) \wedge\left(M \vee \neg x_{4} \vee x_{4}^{\prime}\right) \wedge\left(M \vee x_{4} \vee \neg x_{4}^{\prime}\right) \wedge \\
& (M) \wedge\left(\neg x_{5}\right) \wedge\left(x_{5}^{\prime}\right) \\
F_{M}^{\prime}= & \left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3}\right) \wedge\left(\neg x_{6}\right) \wedge\left(x_{4}^{\prime}\right) \wedge\left(\neg x_{4}\right) \wedge(M) \wedge\left(\neg x_{5}\right) \wedge\left(x_{5}^{\prime}\right)
\end{aligned}
$$

Test set: $\left(x_{1}, x_{2}, x_{3}\right)=\{(0,0,1),(1,0,1),(0,1,1)\}$

SAT-based ATPG - Adding Structural Information

SAT-based ATPG - Cone-of-Influence Reduction

SAT-based ATPG - Cone-of-Influence Reduction

Which inputs might be relevant for justifying the fault?

SAT-based ATPG - Cone-of-Influence Reduction

Which outputs might be on the propagation path?

SAT-based ATPG - Cone-of-Influence Reduction

What about side-effects?

SAT-based ATPG - Cone-of-Influence Reduction

\Rightarrow Only the "brown" parts have to be transformed into CNF!

SAT-based ATPG - Testing of Sequential Circuits

SAT-based ATPG - Testing of Sequential Circuits

Problems specific wrt. test of sequential circuits

- Initialization
- Circuit's state at the beginning of test application might be unknown
- Counters
- Setting a counter to a specific value might take a lot of clock cycles
- Complexity of test generation
- Finding a sequence to distinguish between a faulty and a fault-free chip might require a large number of state transitions

SAT-based ATPG - Testing of Sequential Circuits

Problems specific wrt. test of sequential circuits

- Initialization
- Circuit's state at the beginning of test application might be unknown
- Counters
- Setting a counter to a specific value might take a lot of clock cycles
- Complexity of test generation
- Finding a sequence to distinguish between a faulty and a fault-free chip might require a large number of state transitions
\Rightarrow Practical methods reduce sequential to combinatorial ATPG
\Rightarrow Solution: "Design for Testability"-techniques within the chips
\Rightarrow Example: Scan-based designs

SAT-based ATPG - Scan-based Designs

SAT-based ATPG - Scan-based Designs

Test flow
1 Scan in data into SFFs
2 Apply test vector to Pls
3 Perform the test
4 Check POs
5 Scan out \& check the data available at SFFs

Outline

Sequential Equivalence Checking

Sequential Equivalence Checking

Sequential Equivalence Checking

 Input: Ao

Sequential Equivalence Checking

What can we do with equivalence checking of sequential circuits?

- Functional equivalence of two sequential circuits (in general) provable
- We cannot prove with equivalence checking whether a circuit satisfies a more abstract specification, which is not given as a sequential circuit or a deterministic finite automaton!

Examples for such abstract specifications are

- Safety properties
- Liveness properties
\Rightarrow New specification language(s) for timed properties and in connection with that new proof methods are necessary!

Preliminaries - Kripke Structure

To model computational runs of a sequential circuit, Kripke structures (also referred to as temporal structures) can be used:

Definition (Kripke structure, temporal structure)

A Kripke structure M is a 4-tuple $M:=(S, I, R, L)$ consisting of
a finite set S of states
a set $\emptyset \neq I \subseteq S$ of initial states
a transition relation $R \subseteq S \times S$ with $\forall s \in S \exists t \in S:(s, t) \in R$, and a labeling function $L: S \rightarrow 2^{V}$, where V is a set of propositional variables (atomic formulas, atomic propositions).

- Atomic propositions are observable elementary properties of states, like "a timeout has occured", "a request has been made"
- Using such a temporal structure, we can derive all possible computational runs. They are obtained by "unrolling" the Kipke structure according to its transition relation R

Preliminaries - Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Preliminaries - Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the computation tree:

Path quantifiers
They make statements about properties of states:

Preliminaries - Temporal Propositional Logic

Temporal propositional logic $=$ Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the computation tree:

- $\mathbf{G} \varphi$: Formula φ holds in every state on the path ("globally" or "always")

Path quantifiers
They make statements about properties of states:

Preliminaries - Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the computation tree:

- $\mathbf{G} \varphi$: Formula φ holds in every state on the path ("globally" or "always")
- $\mathbf{F} \varphi$: Formula φ holds in some state on the path ("finally" or "eventually")

Path quantifiers
They make statements about properties of states:

Preliminaries - Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the computation tree:

- $\mathbf{G} \varphi$: Formula φ holds in every state on the path ("globally" or "always")
- $\mathbf{F} \varphi$: Formula φ holds in some state on the path ("finally" or "eventually")
- $\mathbf{X} \varphi$: Formula φ holds in the second state on the path ("next")

Path quantifiers
They make statements about properties of states:

Preliminaries - Temporal Propositional Logic

Temporal propositional logic $=$ Propositional logic + Temporal operators

Linear temporal operators

They make statements about a single path of the computation tree:

- $\mathbf{G} \varphi$: Formula φ holds in every state on the path ("globally" or "always")
- $\mathbf{F} \varphi$: Formula φ holds in some state on the path ("finally" or "eventually")
- $\mathbf{X} \varphi$: Formula φ holds in the second state on the path ("next")
- $\varphi \mathbf{U} \psi$: Formula φ holds in every state on the path until a state is reached where ψ holds ("until")

Path quantifiers

They make statements about properties of states:

Preliminaries - Temporal Propositional Logic

Temporal propositional logic $=$ Propositional logic + Temporal operators

Linear temporal operators

They make statements about a single path of the computation tree:

- $\mathbf{G} \varphi$: Formula φ holds in every state on the path ("globally" or "always")
- $\mathbf{F} \varphi$: Formula φ holds in some state on the path ("finally" or "eventually")
- $\mathbf{X} \varphi$: Formula φ holds in the second state on the path ("next")
- $\varphi \mathbf{U} \psi$: Formula φ holds in every state on the path until a state is reached where ψ holds ("until")

Path quantifiers

They make statements about properties of states:

- $\mathbf{A} \varphi$: Formula φ holds on all paths starting in this state ("for all paths")

Preliminaries - Temporal Propositional Logic

Temporal propositional logic $=$ Propositional logic + Temporal operators

Linear temporal operators

They make statements about a single path of the computation tree:

- $\mathbf{G} \varphi$: Formula φ holds in every state on the path ("globally" or "always")
- $\mathbf{F} \varphi$: Formula φ holds in some state on the path ("finally" or "eventually")
- $\mathbf{X} \varphi$: Formula φ holds in the second state on the path ("next")
- $\varphi \mathbf{U} \psi$: Formula φ holds in every state on the path until a state is reached where ψ holds ("until")

Path quantifiers

They make statements about properties of states:

- $\mathbf{A} \varphi$: Formula φ holds on all paths starting in this state ("for all paths")
- $\mathbf{E} \varphi$: Formula φ holds on some path starting in this state ("there exists a path")

Property/Model Checking in a Nutshell

Property/Model Checking in a Nutshell

SAT-based Bounded Model Checking

Idea

Formulate the existence of paths with certain properties as satisfiability problem

- Only properties which require the existence of paths
- Certificate or counterexample depending on context
- E.g.: Counterexamples for safety and liveness
- In general, arbitrarily long paths necessary, but this is not possible in SAT!
- Restriction to finite path lengths \Rightarrow bounded model checking

Model Checking vs. Bounded Model Checking

Given

- Kripke structure M
- Temporal formula φ "suited for BMC"

■ Maximum unrolling depth k
Model Checking

- $M \models \varphi$?

Bounded Model Checking

- $M \models_{k} \varphi$?
$\square \models_{k}$ means in this context that from the initial states in M, the outgoing paths are considered only up to a maximum length k

Illustration 2-Bit Counter: Time Frame Expansion

Illustration 2-Bit Counter: Time Frame Expansion

Let φ be a temporal formula and $k=1 . M \models_{1} \varphi$?

Illustration 2-Bit Counter: Time Frame Expansion

Let φ be a temporal Formula and $k=2 . M \models_{2} \varphi$?

Illustration 2-Bit Counter: Time Frame Expansion

Let φ be a temporal Formula and $k=3 . M \models_{3} \varphi$?

SAT-based Bounded Model Checking

General flow

1 Generate a propositional logic formula from the given Kripke structure M, property φ, and unrolling depth k, which is satisfiable iff $M \models_{k} \varphi$

2 Translate the formula generated above into CNF
3 Solve it with a SAT solver

- CNF satisfiable $\Rightarrow M=_{k} \varphi \Rightarrow$ certificate/counterexample
- CNF unsatisfiable $\Rightarrow M \not \models_{k} \varphi \Rightarrow$ no statement can be made regarding $M \models \varphi$

Repeat the steps from 1 to 3 with increasing values for k until either a counterexample is found, or a fixed stopping criterion is met

Construction of the propositional logic formula

Definition

Let $M=(S, I, R, L)$ be a Kripke structure, φ a property, and k an unfolding depth. Then the characteristic function $\llbracket M, \varphi \rrbracket_{k}$ corresponding to M, φ, and k is defined as

$$
I\left(s_{0}\right) \wedge\left[\bigwedge_{i=0}^{k-1} R\left(s_{i}, s_{i+1}\right)\right] \wedge\left[\bigwedge_{s_{j} \in S}\left(s_{j} \rightarrow L\left(s_{j}\right)\right)\right] \wedge P_{k}(\varphi)
$$

with
$I\left(s_{0}\right)$: characteristic fct. of the initial states,
$R\left(s_{i}, s_{i+1}\right)$: characteristic fct. of the transition relation,
$L\left(s_{j}\right)$: characteristic fct. of the label function L,
$P_{k}(\varphi)$: characteristic fct. of φ at depth k.

Types of Properties - Safety

Safety

- Specify invariants of the system:

AG safe

- BMC-formulation for refuting safety (= proving $\mathbf{E F} \neg$ safe):

$$
I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right) \wedge \neg \operatorname{safe}\left(s_{k}\right)
$$

Types of Properties - Liveness

Liveness

- Specified in temporal logic:

AFgood

- Refutation of liveness (= proving EG \neg good) requires infinitely long paths!
- If AF good is violated, there is a "lasso" on which all states satisfy \neg good
- BMC-formulation:

$$
I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{k} T\left(s_{i}, s_{i+1}\right) \wedge \bigwedge_{i=0}^{k} \neg \operatorname{good}\left(s_{i}\right) \wedge \bigvee_{l=0}^{k}\left(s_{l}=s_{k+1}\right)
$$

BMC Example Safety - 2-Bit Counter

Requirement: State $(1,1)$ may not reached, or later an overflow will occur, i.e. the following must hold:

$$
\mathbf{A G}(\neg(b \wedge a)) \Leftrightarrow \neg \operatorname{EF}(b \wedge a)
$$

BMC Example Safety - 2-Bit Counter

Requirement: State $(1,1)$ may not reached, or later an overflow will occur, i.e. the following must hold:

$$
\operatorname{AG}(\neg(b \wedge a)) \Leftrightarrow \neg \operatorname{EF}(b \wedge a)
$$

Possible query: Can one reach $(1,1)$ from the initial state $(0,0)$ in ≤ 2 steps?

BMC Example Safety - 2-Bit Counter

Requirement: State $(1,1)$ may not reached, or later an overflow will occur, i.e. the following must hold:

$$
\mathbf{A G}(\neg(b \wedge a)) \Leftrightarrow \neg \operatorname{EF}(b \wedge a)
$$

Possible query: Can one reach $(1,1)$ from the initial state $(0,0)$ in ≤ 2 steps?
$\Rightarrow M \models_{2} \varphi$ with $\varphi=\operatorname{EF}(b \wedge a)$?
$\Rightarrow I\left(s_{0}\right)=\neg b_{0} \wedge \neg a_{0}$
$\Rightarrow R\left(s_{0}, s_{1}\right)=\left(b_{1} \leftrightarrow\left(b_{0} \oplus a_{0}\right)\right) \wedge\left(a_{1} \leftrightarrow \neg a_{0}\right)$
$\Rightarrow R\left(s_{1}, s_{2}\right)=\left(b_{2} \leftrightarrow\left(b_{1} \oplus a_{1}\right)\right) \wedge\left(a_{2} \leftrightarrow \neg a_{1}\right)$
$\Rightarrow P_{2}(\varphi)=\left(b_{0} \wedge a_{0}\right) \vee\left(b_{1} \wedge a_{1}\right) \vee\left(b_{2} \wedge a_{2}\right)$
$\Rightarrow \llbracket M, \varphi \rrbracket_{2}=I\left(s_{0}\right) \wedge R\left(s_{0}, s_{1}\right) \wedge R\left(s_{1}, s_{2}\right) \wedge P_{2}(\varphi)$
$\Rightarrow \llbracket M, \varphi \rrbracket_{2}=0$
\Rightarrow Starting from $(0,0),(1,1)$ cannot reached in max. 2 steps $\Rightarrow M \mid \vDash_{2} \varphi$!

BMC Example Safety - 2-Bit Counter

Requirement: State $(1,1)$ may not reached, or later an overflow will occur, i.e. the following must hold:

$$
\mathbf{A G}(\neg(b \wedge a)) \Leftrightarrow \neg \operatorname{EF}(b \wedge a)
$$

Possible query: Can one reach $(1,1)$ from the initial state $(0,0)$ in ≤ 2 steps?
$\Rightarrow M \models_{2} \varphi$ with $\varphi=\operatorname{EF}(b \wedge a)$?
$\Rightarrow I\left(s_{0}\right)=\neg b_{0} \wedge \neg a_{0}$
$\Rightarrow R\left(s_{0}, s_{1}\right)=\left(b_{1} \leftrightarrow\left(b_{0} \oplus a_{0}\right)\right) \wedge\left(a_{1} \leftrightarrow \neg a_{0}\right)$
$\Rightarrow R\left(s_{1}, s_{2}\right)=\left(b_{2} \leftrightarrow\left(b_{1} \oplus a_{1}\right)\right) \wedge\left(a_{2} \leftrightarrow \neg a_{1}\right)$
$\Rightarrow P_{2}(\varphi)=\left(b_{0} \wedge a_{0}\right) \vee\left(b_{1} \wedge a_{1}\right) \vee\left(b_{2} \wedge a_{2}\right)$
$\Rightarrow \llbracket M, \varphi \rrbracket_{2}=I\left(s_{0}\right) \wedge R\left(s_{0}, s_{1}\right) \wedge R\left(s_{1}, s_{2}\right) \wedge P_{2}(\varphi)$
$\Rightarrow \llbracket M, \varphi \rrbracket_{2}=0$
\Rightarrow Starting from $(0,0),(1,1)$ cannot reached in max. 2 steps $\Rightarrow M \not \vDash_{2} \varphi$!

But: $M \not \vDash \mathbf{A G}(\neg(b \wedge a)) \Leftrightarrow M \not \vDash \neg \mathbf{E F}(b \wedge a)$!

BMC Example Liveness - Modified 2-Bit counter

Requirement: State $(1,1)$ must be reachable from every state, i.e. the following must hold:

$$
\operatorname{AF}(b \wedge a) \Leftrightarrow \neg E G(\neg(b \wedge a))
$$

BMC Example Liveness - Modified 2-Bit counter

Requirement: State $(1,1)$ must be reachable from every state, i.e. the following must hold:

$$
\operatorname{AF}(b \wedge a) \Leftrightarrow \neg E G(\neg(b \wedge a))
$$

Counterexample exists iff from the initial state $(0,0)$ there exists a path of length k that belongs to a cycle, and in no state of this path $(b \wedge a)$ holds. Given $k=2$ and $\varphi=\mathbf{E G}(\neg(b \wedge a))$:

BMC Example Liveness - Modified 2-Bit counter

Requirement: State $(1,1)$ must be reachable from every state, i.e. the following must hold:

$$
\mathbf{A F}(b \wedge a) \Leftrightarrow \neg \mathbf{E G}(\neg(b \wedge a))
$$

Counterexample exists iff from the initial state $(0,0)$ there exists a path of length k that belongs to a cycle, and in no state of this path $(b \wedge a)$ holds. Given $k=2$ and $\varphi=\mathbf{E G}(\neg(b \wedge a))$:

$$
\Rightarrow I\left(s_{0}\right)=\neg b_{0} \wedge \neg a_{0}
$$

$$
\Rightarrow R\left(s_{i}, s_{i+1}\right)=\left(\left(b_{i+1} \leftrightarrow\left(b_{i} \oplus a_{i}\right)\right) \wedge\left(a_{i+1} \leftrightarrow \neg a_{i}\right)\right) \vee
$$

$$
\left(b_{i+1} \wedge \neg a_{i+1} \wedge b_{i} \wedge \neg a_{i}\right) \text { with } i=0,1,2
$$

$\Rightarrow P_{2}(\varphi)=\left(\neg b_{0} \vee \neg a_{0}\right) \wedge\left(\neg b_{1} \vee \neg a_{1}\right) \wedge\left(\neg b_{2} \vee \neg a_{2}\right)$
$\Rightarrow\left[s_{3} \equiv s_{i}\right]=\left(b_{3} \leftrightarrow b_{i}\right) \wedge\left(a_{3} \leftrightarrow a_{i}\right)$ with $i=0,1,2$
$\Rightarrow \llbracket M, \varphi \rrbracket_{2}=I\left(s_{0}\right) \wedge\left[\bigwedge_{i=0}^{2} R\left(s_{i}, s_{i+1}\right)\right] \wedge\left[\bigvee_{i=0}^{2}\left[s_{3} \equiv s_{i}\right]\right] \wedge P_{2}(\varphi)$
$\Rightarrow \llbracket M, \varphi \rrbracket_{2}=\neg b_{0} \wedge \neg a_{0} \wedge \neg b_{1} \wedge a_{1} \wedge b_{2} \wedge \neg a_{2} \wedge b_{3} \wedge \neg a_{3}$
\Rightarrow Counterexample found!

SAT-based Bounded Model Checking

- BMC can be used to disprove invariants AG φ
\square... by proving $\mathrm{EF} \neg \varphi$ considering paths of length k
- If paths longer than k are needed for the proof, then BMC fails
- BMC can be used to disprove liveness properties like $\mathbf{A F} \varphi$
- ... by proving $\mathbf{E G} \neg \varphi$ considering "lassos" of length k
- If lassos longer than k are needed for the proof, then BMC fails
- In the following we restrict ourselves to invariants / safety properties

Usage of BMC to falsify Safety Properties

Idea: Restrict system behavior to runs of some given bounded length, i.e. runs with a bounded number of transition steps

Usage of BMC to falsify Safety Properties

Idea: If the restricted system is unsafe (i.e. violates some safety property, state invariant) then the original system is unsafe, too

Usage of BMC in the Verification Domain

- Initial state I, transition relation T, property P
- Iterative unrolling of the system for $k=0,1, \ldots, K$ up to a given maximal unrolling depth K

$$
\mathrm{BMC}_{k}=I^{0} \wedge \bigwedge_{i=0}^{k-1} T^{i, i+1} \wedge \neg P^{k}
$$

- Convert BMC_{k} into CNF by Tseitin transformation and solve it using a SAT solver
- CNF satisfiable \Rightarrow Invariant condition P violated after k steps
\square CNF unsatisfiable \Rightarrow no conclusion, next iteration step

Some Remarks

- Typically, BMC is used as an efficient means to find errors in a system M, i.e. is there a $k>0$ such that we can reach a state violating φ for a given invariant AG φ ?
- BMC is really efficient if there is a short error path
- Without extensions it is not possible to prove that φ holds for all reachable states
- Bounded Model Checking \rightarrow Model Checking
- Computing the "radius" of the Kripke structure
- k-induction
- Craig interpolation

Observation

- The main part of the formula remains unchanged
- $\neg P^{i}$ has to be removed
- $T^{i, i+1} \wedge \neg P^{i+1}$ has to be added
- How to profit from the similarity between those problems?

Incremental SAT Solving

- In many practical applications - not only in the area of BMC often several SAT instances are generated to solve a real-world problem
- Generated SAT instances are often very similar and contain identical subformulas
- Idea: Instead of constructing and solving each instance separately, the SAT formula is processed incrementally

■ Knowledge learnt so far (conflict clauses, variable activity, ...) can be re-used in later instances

- Standard feature of all modern SAT solvers

Incremental SAT Solving

Main idea

- Make use of the knowledge learnt in the previous instance by re-using the learnt conflict clauses

Question

- Is this always allowed?

Incremental SAT Solving

- Idea: Make use of the knowledge learnt in the previous instance by re-using the learnt conflict clauses.
- Question: Is this always allowed?
- Observation
- If c is a conflict clause for SAT instance A with $\mathrm{CNF}^{-1} \mathrm{CNF}_{A}$, then $C N F_{A} \Rightarrow c$
- If instance B results from A just by adding clauses (i.e. $\left.C N F_{B} \supseteq C N F_{A}\right)$, then $C N F_{B} \Rightarrow c$ holds as well
- Conflict clauses be may re-used then
- But what if $C N F_{B} \supseteq C N F_{A}$ does not hold?

Incremental SAT Solving

- General case: $C N F_{A}$ contains clauses that do not occur in $C N F_{B}$ anymore
- Now we need for each conflict clause c the information about the set of original clauses it was derived from
- Remember: Conflict clauses result from original and/or conflict clauses by resolution (\rightsquigarrow implication graph)
\Rightarrow Conflict clauses which are derived from original clauses in $C N F_{A} \backslash C N F_{B}$ are not allowed to be added to $C N F_{B}$!

Illustration: Re-using Clauses

Illustration: Re-using Clauses

Illustration: Re-using Clauses

Incremental SAT Solving with Assumptions

In general, storing which conflict clause depends on which original clauses is too expensive! Here is the most common approach to solve the problem:

Activation variables and assumptions

Use "special" new de-activation variables d_{i}
For clauses c which should be removable from the clause set, a positive de-activation literal is added: $c:=c \cup d_{i}$
There are only positive occurrences of de-activation variables!
Turning c on and off:
Turning on by $d_{i}=0$
Turning off by $d_{i}=1$

Incremental SAT Solving with Assumptions

In general, storing which conflict clause depends on which original clauses is too expensive! Here is the most common approach to solve the problem:

Activation variables and assumptions

Use "special" new de-activation variables d_{i}

- For clauses c which should be removable from the clause set, a positive de-activation literal is added: $c:=c \cup d_{i}$
- There are only positive occurrences of de-activation variables!
- Turning c on and off:

Turning on by $d_{i}=0$
Turning off by $d_{i}=1$

Example

$$
\begin{array}{lr}
\varphi=(a \vee b) \wedge(\neg c \vee d) & \text { Initial formula } \\
\varphi_{0 / \neg d_{0}}=(a \vee b) \wedge(\neg c \vee d) \wedge\left(b \vee d_{0}\right) & \text { incr. step 0 } \\
\varphi_{1 / d_{0}, \neg d_{1}}=(a \vee b) \wedge(\neg c \vee d) \wedge\left(b \vee d_{0}\right) \wedge\left(d \vee d_{1}\right) & \text { incr. step 1 }
\end{array}
$$

Incremental SAT Solving with Assumptions

Activation variables and assumptions

De-activation variables are assigned by assumptions before SAT solving (activating / de-activating clauses)

Assumptions can not be changed during SAT solving (Note: Unit clauses and assumptions are not the same!)

- Important observation: All conflict clauses resulting from $c \cup d_{i}$ by resolution contain literal d_{i}
\Rightarrow If $c \cup d_{i}$ is turned off in the next run, i.e., d_{i} is set to 1 by assumption, then all conflict clauses depending on $c \cup d_{i}$ are turned off as well!

Incremental SAT Solving and BMC

- Add de-activation literal d_{i} for each clause representing $\neg P^{i}$
- For $k=i$ activate $\neg P^{i}$ by assumption $d_{i}=0$
- For $k>i$ de-activate $\neg P^{i}$ by assumption $d_{i}=1$
- All knowledge / conflict clauses learnt for $k=i$ can be re-used (except the knowledge depending on $\neg P^{i}$)

Outline

Satisfiability Modulo Theory

Hybrid Systems

- Typically, embedded systems are characterized by the combination of discrete and continuous variables
iSAT
- Satisfiability and BMC checker for quantifier-free Boolean combinations of arithmetic constraints over the reals and integers

$$
\begin{aligned}
& (\neg b \vee \neg c) \\
\wedge & (b \rightarrow \sin (x) \cdot y<7.2) \\
\wedge & (\sqrt{2 x-y}=8 \vee c) \\
\wedge & \left(i^{2}=3 j-5\right)
\end{aligned}
$$

Satisfiability Modulo Theory - iSAT

iSAT

- Not a "pure" SAT-Modulo-Theory solver

- Can be seen as a generalization of a SAT solver
- Branch-and-deduce framework inherited from SAT
- Deduction rule for clauses

■ Unit propagation

- Deduction rules for arithmetic operators
- Interval constraint propagation

Satisfiability Modulo Theory - ICP

Interval Constraint Propagation (ICP)

$$
h_{1}=z^{2}, z \in[3,7], h_{1} \in[-2,25]
$$

Satisfiability Modulo Theory - BMC Mode of iSAT

DECL
boole b;
float $[0.0,1000.0] \mathrm{x}$;
INIT

- Initial state.
$\mathrm{x}=2.0$;
TRANS
- Transition relation.
$\mathrm{b} \rightarrow \mathrm{x}^{\prime}=\mathrm{x}^{\wedge} 2+1$;
! b $\rightarrow x^{\prime}=\operatorname{nrt}(x, 3)$;
TARGET
- State(s) to be reached.
$\mathrm{x}>=3.14$ and $\mathrm{x}<=3.15$;

Safety property:

There's no sequence of input values such that $3.14 \leq x \leq 3.15$

CANDIDATE SOLUTION:
b (boole):
@O: $[1,1]$
@1: $[0,0]$
@2: $[0,0]$
@3: $[0,0]$
@4: $[1,1]$
@5: $[1,1]$
@6: $[1,1]$
@7: $[0,0]$
@8: $[0,0]$
@9: $[1,1]$
@10: $[0,0]$
@11: $[1,1]$
x (float) :
@0: $[2,2]$
@1: $[5,5]$
@2: $[1.7099,1,7100]$
@3: $[1.1874,1,1959]$
@4: $[1.0589,1.0615]$
@5: $[2.1214,2.1267]$
@6: $[5.5013,5.5114]$
@7: $[31.329,31.3391]$
@8: [3.1499, 1.1576]
@9: $[1.4597,1.4671]$
@10: [3.1307, 3. 1402]
@11: [1.4629,1.4663]
@12: [3.1400, 3.1500]

Satisfiability Modulo Theory - iSAT

iSAT

- All acceleration techniques known from modern SAT solvers also apply to arithmetic constraints
- Conflict-driven learning
- Non-chronological backtracking
- 2-watched-literal scheme
- Restarts
- Conflict clause deletion
- Efficient decision heuristics

Satisfiability Modulo Theory - iSAT

$c_{1}:$	$(\neg a \vee \neg c \vee d)$
$c_{2}:$	$\wedge(\neg a \vee \neg b \vee c)$
$c_{3}:$	$\wedge(\neg c \vee \neg d)$
$c_{4}:$	$\wedge(b \vee x \geq-2)$
$c_{5}:$	$\wedge\left(x \geq 4 \vee y \leq 0 \vee h_{3} \geq 6.2\right)$
$c_{6}:$	$\wedge h_{1}=x^{2}$
$c_{7}:$	$\wedge h_{2}=-2 \cdot y$
$c_{8}:$	$\wedge h_{3}=h_{1}+h_{2}$

- Use Tseitin-style transformation to rewrite input formula into a conjunction of constraints
$\triangleright n$-ary disjunctions of bounds ('clauses')
\triangleright Arithmetic constraints having at most one operation symbol
- Boolean variables are regarded as 0-1 integer variables.

Allows identification of literals with bounds on Booleans

$$
\begin{aligned}
b & \equiv b \geq 1 \\
\neg b & \equiv b \leq 0
\end{aligned}
$$

- Auxiliary variables h_{1}, h_{2}, h_{3} are used for decomposition of complex constraint $x^{2}-2 y \geq 6.2$.

Satisfiability Modulo Theory - iSAT

$$
\begin{aligned}
c_{1}: & (\neg a \vee \neg c \vee d) \\
c_{2}: & \wedge(\neg a \vee \neg b \vee c) \\
c_{3}: & \wedge(\neg c \vee \neg d) \\
c_{4}: & \wedge(b \vee x \geq-2) \\
c_{5}: & \wedge\left(x \geq 4 \vee y \leq 0 \vee h_{3} \geq 6.2\right) \\
c_{6}: & \wedge h_{1}=x^{2} \\
c_{7}: & \wedge h_{2}=-2 \cdot y \\
c_{8}: & \wedge h_{3}=h_{1}+h_{2}
\end{aligned}
$$

Satisfiability Modulo Theory - iSAT
 $a=a+e$

$$
\begin{aligned}
c_{1}: & (\neg a \vee \neg c \vee d) \\
c_{2}: & \wedge(\neg a \vee \neg b \vee c) \\
c_{3}: & \wedge(\neg c \vee \neg d) \\
c_{4}: & \wedge(b \vee x \geq-2) \\
c_{5}: & \wedge\left(x \geq 4 \vee y \leq 0 \vee h_{3} \geq 6.2\right) \\
c_{6}: & \wedge h_{1}=x^{2} \\
c_{7}: & \wedge h_{2}=-2 \cdot y \\
c_{8}: & \wedge h_{3}=h_{1}+h_{2}
\end{aligned}
$$

Satisfiability Modulo Theory - iSAT

$$
\begin{aligned}
c_{1}: & (\neg a \vee \neg c \vee d) \\
c_{2}: & \wedge(\neg a \vee \neg b \vee c) \\
c_{3}: & \wedge(\neg c \vee \neg d) \\
c_{4}: & \wedge(b \vee x \geq-2) \\
c_{5}: & \wedge\left(x \geq 4 \vee y \leq 0 \vee h_{3} \geq 6.2\right) \\
c_{6}: & \wedge h_{1}=x^{2} \\
c_{7}: & \wedge h_{2}=-2 \cdot y \\
c_{8}: & \wedge h_{3}=h_{1}+h_{2} \\
c_{9}: & \wedge(\neg a \vee \neg c)
\end{aligned}
$$

Satisfiability Modulo Theory - iSAT

$$
\begin{aligned}
c_{1}: & (\neg a \vee \neg c \vee d) \\
c_{2}: & \wedge(\neg a \vee \neg b \vee c) \\
c_{3}: & \wedge(\neg c \vee \neg d) \\
c_{4}: & \wedge(b \vee x \geq-2) \\
c_{5}: & \wedge\left(x \geq 4 \vee y \leq 0 \vee h_{3} \geq 6.2\right) \\
c_{6}: & \wedge h_{1}=x^{2} \\
c_{7}: & \wedge h_{2}=-2 \cdot y \\
c_{8}: & \wedge h_{3}=h_{1}+h_{2} \\
c_{9}: & \wedge(\neg a \vee \neg c)
\end{aligned}
$$

Satisfiability Modulo Theory - iSAT

$$
\begin{aligned}
c_{1}: & (\neg a \vee \neg c \vee d) \\
c_{2}: & \wedge(\neg a \vee \neg b \vee c) \\
c_{3}: & \wedge(\neg c \vee \neg d) \\
c_{4}: & \wedge(b \vee x \geq-2) \\
c_{5}: & \wedge\left(x \geq 4 \vee y \leq 0 \vee h_{3} \geq 6.2\right) \\
c_{6}: & \wedge h_{1}=x^{2} \\
c_{7}: & \wedge h_{2}=-2 \cdot y \\
c_{8}: & \wedge h_{3}=h_{1}+h_{2} \\
c_{9}: & \wedge(\neg a \vee \neg c)
\end{aligned}
$$

Satisfiability Modulo Theory - iSAT

$$
\begin{aligned}
c_{1}: & (\neg a \vee \neg c \vee d) \\
c_{2}: & \wedge(\neg a \vee \neg b \vee c) \\
c_{3}: & \wedge(\neg c \vee \neg d) \\
c_{4}: & \wedge(b \vee x \geq-2) \\
c_{5}: & \wedge\left(x \geq 4 \vee y \leq 0 \vee h_{3} \geq 6.2\right) \\
c_{6}: & \wedge h_{1}=x^{2} \\
c_{7}: & \wedge h_{2}=-2 \cdot y \\
c_{8}: & \wedge h_{3}=h_{1}+h_{2} \\
c_{9}: & \wedge(\neg a \vee \neg c)
\end{aligned}
$$

Satisfiability Modulo Theory - iSAT

```
\mp@subsup{c}{1}{}:}\begin{array}{ll}{}&{(\nega\vee\negc\veed)}\\{\mp@subsup{c}{2}{}:}&{\wedge(\nega\vee\negb\veec)}\\{\mp@subsup{c}{3}{}:}&{\wedge(\negc\vee\negd)}\\{\mp@subsup{c}{4}{}:}&{\wedge(b\veex\geq-2)}\\{\mp@subsup{c}{5}{}:}&{\wedge(x\geq4\veey\leq0\vee\vee\mp@subsup{h}{3}{}\geq6.2)}\\{\mp@subsup{c}{6}{}:}&{\wedge\mp@subsup{h}{1}{}=\mp@subsup{x}{}{2}}\\{\mp@subsup{c}{7}{}:}&{\wedge\mp@subsup{h}{2}{}=-2\cdoty}\\{\mp@subsup{c}{8}{}:}&{\wedge\mp@subsup{h}{3}{}=\mp@subsup{h}{1}{}+\mp@subsup{h}{2}{}}\\{\mp@subsup{c}{9}{}:}&{\wedge(\nega\vee\negc)}\\{\mp@subsup{c}{9}{}:}&{\wedge(\mp@code{la}}\\{\mp@subsup{c}{10}{}:}&{\wedge(x<-2\veey<4\veex>3)}
```


\leftarrow Conflict clause $=$ symbolic description
of a rectangular region of the search space which is excluded from future search

Satisfiability Modulo Theory - iSAT

$$
\begin{aligned}
c_{1}: & (\neg a \vee \neg c \vee d) \\
c_{2}: & \wedge(\neg a \vee \neg b \vee c) \\
c_{3}: & \wedge(\neg c \vee \neg d) \\
c_{4}: & \wedge(b \vee x \geq-2) \\
c_{5}: & \wedge\left(x \geq 4 \vee y \leq 0 \vee h_{3} \geq 6.2\right) \\
c_{6}: & \wedge h_{1}=x^{2} \\
c_{7}: & \wedge h_{2}=-2 \cdot y \\
c_{8}: & \wedge h_{3}=h_{1}+h_{2} \\
c_{9}: & \wedge(\neg a \vee \neg c) \\
c_{10}: & \wedge(x<-2 \vee y<4 \vee x>3)
\end{aligned}
$$

Satisfiability Modulo Theory - iSAT

DL 1:

DL 2:

- Continue do split and deduce until either
\triangleright formula turns out to be UNSAT (unresolvable conflict),
\triangleright formula turns out to be SAT (point interval),
\triangleright solver is left with 'sufficiently small' portion of the search space for which it cannot derive any contradiction.
- Avoid infinite splitting and deduction
\triangleright Minimal splitting width
\triangleright Discard a deduced bound if it yields small progress on ${ }^{2}$ y

Satisfiability Modulo Theory - iSAT

Remarks

- All variables have to be bounded initially
- Reliable results due to outward rounding
- Further features
- Clever normalization rules
- Continue search after "unknown"
- Proof of unsatisfiability
- Unbounded model checking using interpolants
- Handling of stochastic constraint systems
- Parallelization based on message passing

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

- Part of the forthcoming European Train Control Standard
- Minimal distance between two trains equals braking distance plus safety margin

- First train reports position of its end to the second train every 8 seconds
- Controller of the second train automatically initiates braking to maintain safety margin

Top-level view of the Matlab/Simulink model for two trains

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

- Model of controller and train dynamics

- Safety property to be checked: Does the controller guarantee that collisions aren't possible?

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance


```
-- Switch block: Passes through the first input or the third input
-- based on the value of the second input.
    brake -> a = a_brake;
!brake -> a = a_free;
```


Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

-- Relay block: When the relay is on, it remains on until the input
-- drops below the value of the switch off point parameter. When the
-- relay is off, it remains off until the input exceeds the value of
-- the switch on point parameter.
(!is_on and h >= param_on) \rightarrow (is_on' and brake);
(!is_on and h < param_on) -> (!is_on' and !brake);
(is_on and h <= param_off) -> (!is_on' and !brake);
(is_on and h > param_off) -> (is_in' and brake);

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

-- Euler approximation of integrator block

$$
\mathrm{xr} r^{\prime}=\mathrm{xr}+\mathrm{dt} * \mathrm{v} ;
$$

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

Simulation

From top to bottom positions, accelerations, speeds, and distances of the two trains are shown

Outline

MaxSAT in a Nutshell

Max-SAT

- Given a CNF φ, find a truth assignment for all variables that satisfies the maximum number of clauses within φ

Variants of Max-SAT

- Partial Max-SAT
- φ consists of hard and soft clauses
- All hard clauses must be satisfied
- Maximize number of satisfied soft clauses
- Weighted Max-SAT
- Weighted Partial Max-SAT

MaxSAT in a Nutshell

Solving (Partial) Max-SAT using SAT Algorithms

- Each soft clause gets extended by a fresh "trigger" variable: $\left(x_{1} \vee x_{2}\right) \sim\left(t_{1} \vee x_{1} \vee x_{2}\right)$
- By construction, after adding trigger variables all soft clauses can be satisfied simultaneously
- Now, Max-SAT corresponds to minimizing k in $\sum_{c=1}^{m} t_{c} \leq k$ with m representing the number of soft clauses
- Encode $\sum_{c=1}^{m} t_{c} \leq k$ with a bitonic sorting network (unary representation), convert it to CNF, and add it to the formula
- Solve the Max-SAT problem by using incremental SAT solving, iterating over k

Bitonic Sorting Network

- Each arrow in the example above represents a comparator (hat adder):

$$
\operatorname{comp}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \leftrightarrow\left(\left(y_{1} \leftrightarrow x_{1} \vee x_{2}\right) \wedge\left(y_{2} \leftrightarrow x_{1} \wedge x_{2}\right)\right)
$$

- Using Tseitin encoding each comparator can be modeled with 2 auxiliary variables \& 6 clauses

Path Compaction

- Production of circuits is erroneous
- Various types and sources of faults
- Covered here: Small-delay faults

Path Compaction

Sensitizable Paths and Small Delay Faults

- Length 6
- Length 2

■ Sensitizable path: Transition from input to output

- Length of a path according to sum of gate delays

Path Compaction

Sensitizable Paths and Small Delay Faults

- Small delay faults: Assume additional delay for one gate
- Output transition too late for clock
- The longer the path the higher the detection quality
- Two-pattern delay test

Path Compaction

- Production of circuits is erroneous
- Various types and sources of faults
- Covered here: Small-delay faults
- General workflow
- Predefined paths obtained from path analysis tool
- Sensitize all target paths using as less patterns as possible to reduce overall test overhead
- Test pattern relaxation
- Approach
- SAT-based maximization of sensitized target paths

Path Compaction

Maximization of Sensitized Target Paths using Partial Max-SAT

Maximization

Two-pattern delay test
$\square s^{P_{i}}$ indicates whether a path p is sensitized or not

- $<s^{P_{i}}, \ldots, s^{P_{n}}>$ gets sorted by 1's and 0's
$\square<S O_{1}, \ldots, S O_{n}>=<1, \ldots, 1,0, \ldots, 0>$
- Setting $S O_{i}$ to 1 forces the solver to sensitize at least i paths

Path Compaction

- Production of circuits is erroneous
- Various types and sources of faults
- Covered here: Small-delay faults
- General workflow
- Predefined paths obtained from path analysis tool
- Sensitize all target paths using as less patterns as possible to reduce overall test overhead
- Test pattern relaxation
- Approach
- SAT-based maximization of sensitized target paths
- Results
- Applicable to large industrial circuits
- Significantly reduced number of test patterns compared to other state-of-the-art approaches

Outline

QBF in a Nutshell
 $(a \vee b) \wedge(c)=\varphi$

Quantified Boolean Formula (QBF)

Sar: ヨazb

- Extension of SAT where the variables are either universal or existential quantified
- Example

$$
\text { obF: } \exists a \exists b b_{c} .
$$

$\square \Psi=\underbrace{\exists x_{1} \forall x_{2}, x_{3} \exists x_{4}, \ldots, x_{n}}_{\text {prefix }} \underbrace{\varphi\left(x_{1}, \ldots, x_{n}\right)}_{\text {matrix }(C N F)} \Rightarrow$ 以usa

- Semantics (for this particular example)
- Ψ is satisfied iff there exists one assignment for x_{1} such that for every assignment of x_{2} and x_{3}, there exists one assignment for x_{4}, \ldots, x_{n}, such that φ is satisfied

Test Pattern Relaxation using QBF

Motivation

- Parts of the pattern get unspecified (don't care) \sim test cube
- Test properties still hold

■ Reduced overall test overhead

- Focus of this work: Test cube generation with maximum number of don't cares \sim optimal test cube

Fault model considered here

- Again, small-delay Faults

Modeling Don't Cares with QBF

Simulation for $B=0$

$\Rightarrow F$ can be set to 1 , even if B is unspecified!
\Rightarrow Don't cares can be represented by \forall variables

Test Pattern Relaxation using QBF

Two-pattern delay test

- Identifying small-delay faults requires two timeframes
- Test cube with maximum number of unspecified inputs using QBF
- Quantify unspecified inputs universally, specified ones existentially
- If a path for small-delay fault is sensitizable:

Universally quantified inputs: Excluded from test cube
Existential quantified inputs: Test cube

- But: The quantifier of a variable cannot be changed in QBF
\Rightarrow Unspecified inputs are not known a-priori
\Rightarrow Which inputs have to be quantified universally?

Test Pattern Relaxation using QBF

$\Psi=\exists S O_{1}, \ldots, S O_{n}, S_{1}, \ldots, S_{n}, E_{1}, \ldots, E_{n} \forall A_{1}, \ldots, A_{n} \exists \ldots \varphi_{\text {circ. }} \wedge \varphi_{\text {prop. }} \wedge \varphi_{\text {mux }} \wedge \varphi_{\text {bsn }} \wedge S O_{k}$

- Dynamic choice of (un-)specified inputs using multiplexers
- Select input S_{i} switches between specified $\left(S_{i}=0 \rightsquigarrow \exists E_{i}\right)$ and unspecified ($S_{i}=1 \rightsquigarrow \forall A_{i}$) for any primary input I_{i}
- Find the maximum number of multiplexer select inputs that can be set to 1
- Search for k, such that: Path is sensitizable with k unspecified inputs $\left(S O_{k}=1\right)$, but not with $k+1\left(S O_{k+1}=0\right)$
\Rightarrow Optimal test cube, i.e., maximum number of don't cares

Outline

Motivation - Equivalence Checking

Are implementation and specification equivalent?

Motivation - Partial Equivalence Checking

Realizability, i.e. are there implementations of the black boxes (BBs) such that implementation and specification are equivalent?

QBF vs. Dependency-QBF (DQBF)

- Expressible with QBF

QBF vs. Dependency-QBF (DQBF)

- Expressible with QBF
\Rightarrow Approximation
- BBs read all inputs

QBF vs. Dependency-QBF (DQBF)

- Expressible with QBF
\Rightarrow Approximation
- BBs read all inputs

- Expressible with DQBF
\Rightarrow More precise
- BBs read actual inputs

QBF vs. DQBF

QBF

- Linear quantifier-order
- Existentially quantified variables depend on all universally quantified variables left of it

DQBF

- Non-linear quantifier-order
- Dependencies between variables are explicitly expressible
$\psi_{Q B F}=\overbrace{\forall x_{1} \forall x_{2} \exists y_{1} \exists y_{2}}^{Q}: \varphi$

Semantics of DQBF

$$
\psi_{D Q B F}=\forall x_{1} \forall x_{2} \exists y_{1\left\{x_{1}\right\}} \exists y_{2\left\{x_{2}\right\}}: \varphi
$$

Additional constraints compared to QBF

1) For the same assignment of all \forall variables $u \in \operatorname{dep}(e)$ the assignment of the \exists variable e has to be the same
2) For different assignments of at least one \forall variable $u \in \operatorname{dop}(e)$ the assignment of the \exists variable e is allowed to change

QBF and DQBF for Partial Equivalence Checking

QBF

- Does not take dependencies between BBs into account
- BBs read all circuit inputs
- UNSAT \Rightarrow unrealizability
- SAT \nRightarrow realizability

DQBF

- BBs read only affecting signals
- UNSAT \Rightarrow unrealizability
- SAT \Rightarrow realizability

For one black box QBF is as accurate as DQBF!

DQBF-based Partial Equiv. Checking - Example

QBF Approx.

DQBF-based Partial Equiv. Checking - Example

\Rightarrow SAT! $\Rightarrow / m p l$. Lealizible

DQBF-based Partial Equiv. Checking - Example

DQBF-based Partial Equiv. Checking - Example

DQBF-based Partial Equiv. Checking - Example

DQBF-based Partial Equiv. Checking - Example

$$
\forall x_{1} \forall x_{2} \exists y_{1\left(x_{1}\right)} \exists y_{2\left(x_{2}\right)}:\left(y_{1}+y_{2}\right) \bar{\bigoplus}\left(x_{1} \bigoplus x_{2}\right) \quad \frac{y_{1}}{x_{1}=0 \rightarrow y_{1}=0} \begin{gathered}
x_{2}=0 \rightarrow y_{2}=0
\end{gathered}
$$

DQBF-based Partial Equiv. Checking - Example

Henkin Quantified Solver (HQS)

Main Idea behind HQS - Acyclic Dependency Graph

There is an edge from a to b, iff:

$$
\forall x_{1} \forall x_{2} \exists y_{1\left(x_{1}\right)} \exists y_{2\left(x_{2}\right)}
$$

a depends on variables,
 on which b does not.

$$
\begin{gathered}
\text { acyclic } \rightarrow D Q B F \triangleq Q B F \\
\forall x_{1} \forall x_{2} \exists y_{1\left(x_{1}\right)} \exists y_{2}^{\left(x_{1}, x_{2}\right)}=\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}
\end{gathered}
$$

Outline

\#SAT in a Nutshell

\#SAT

- Given a CNF φ, count how many disjoint truth assignments satisfy φ
- \#SAT solver have to continue search after one solution has been found
- With n variables, φ can have up to 2^{n} satisfying assignments
- \#SAT corresponds to model counting, not enumerating all satisfying assignments
- Accelerating techniques differ from classical SAT solving
- Caching of already analyzed sub-formulae: $\left[\varphi^{\prime}, M_{\varphi^{\prime}}\right]$

■ Component analysis: $\varphi=\varphi^{\prime} \wedge \varphi^{\prime \prime} \Rightarrow M_{\varphi}=M_{\varphi^{\prime}} \cdot M_{\varphi^{\prime \prime}}$

- Different approaches: Exact vs. approximate model counting

\#SAT - Example

$$
\varphi=\left(v_{1} \vee \neg v_{2}\right) \wedge\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(\neg v_{4} \vee v_{5}\right) \wedge\left(\neg v_{3} \vee v_{5}\right)
$$

\#SAT - Example

$$
\varphi=\left(v_{1} \vee \neg v_{2}\right) \wedge\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(\neg v_{4} \vee v_{5}\right) \wedge\left(\neg V_{3} \vee v_{5}\right)
$$

$$
v_{3} \varphi
$$

$$
\left(v_{1} \vee \neg v_{2}\right) \wedge\left(v_{1} \vee v_{2}\right) \wedge\left(\neg v_{4} \vee v_{5}\right) v_{1}
$$

$$
\left(\neg v_{2}\right) \wedge\left(v_{2}\right) \wedge\left(\neg V_{4} \vee v_{5}\right) \text { unset }
$$

\#SAT - Example

$$
\varphi=\left(v_{1} \vee \neg v_{2}\right) \wedge\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(\neg v_{4} \vee v_{5}\right) \wedge\left(\neg V_{3} \vee v_{5}\right)
$$

\#SAT - Example

$$
\varphi=\left(v_{1} \vee \neg v_{2}\right) \wedge\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(\neg v_{4} \vee v_{5}\right) \wedge\left(\neg v_{3} \vee v_{5}\right)
$$

v_{2} and v_{5} free sat

\#SAT - Example

$$
\varphi=\left(v_{1} \vee \neg v_{2}\right) \wedge\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(\neg v_{4} \vee v_{5}\right) \wedge\left(\neg v_{3} \vee v_{5}\right)
$$

\#SAT - Example

$$
\varphi=\left(v_{1} \vee \neg v_{2}\right) \wedge\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(\neg v_{4} \vee v_{5}\right) \wedge\left(\neg v_{3} \vee v_{5}\right)
$$

\#SAT - Example

$$
\varphi=\left(v_{1} \vee \neg v_{2}\right) \wedge\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(\neg v_{4} \vee v_{5}\right) \wedge\left(\neg v_{3} \vee v_{5}\right)
$$

$m c(\varphi)=12$

\#SAT - Caching

- Store model counts of sub-formulas in a cache
- Do not compute the result for the same sub-formula twice

\#SAT - Caching

- Store model counts of sub-formulas in a cache
- Do not compute the result for the same sub-formula twice
$\varphi=\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(\neg v_{1} \vee v_{2} \vee v_{3}\right)$

\#SAT - Caching

- Store model counts of sub-formulas in a cache
- Do not compute the result for the same sub-formula twice
$\varphi=\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(\neg v_{1} \vee v_{2} \vee v_{3}\right)$

\#SAT - Caching

- Store model counts of sub-formulas in a cache
- Do not compute the result for the same sub-formula twice
$\varphi=\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(\neg v_{1} \vee v_{2} \vee v_{3}\right)$

\#SAT - Caching

- Store model counts of sub-formulas in a cache
- Do not compute the result for the same sub-formula twice
$\varphi=\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(\neg v_{1} \vee v_{2} \vee v_{3}\right)$

\#SAT - Caching

- Store model counts of sub-formulas in a cache
- Do not compute the result for the same sub-formula twice
$\varphi=\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(\neg v_{1} \vee v_{2} \vee v_{3}\right)$

\#SAT - Component Analysis

- The formula might split into disjoint sub-formulas

\#SAT - Component Analysis

- The formula might split into disjoint sub-formulas
$\varphi=\left(\neg p_{2} \vee a_{2}\right) \wedge\left(a_{1} \vee a_{2} \vee a_{3}\right) \wedge\left(b_{1}\right) \wedge\left(\neg b_{3} \vee b_{4}\right) \wedge\left(p_{2} \vee \neg b_{2}\right)$

\#SAT - Component Analysis

- The formula might split into disjoint sub-formulas
- $\varphi=\left(\neg p_{2} \vee a_{2}\right) \wedge\left(a_{1} \vee a_{2} \vee a_{3}\right) \wedge\left(b_{1}\right) \wedge\left(\neg b_{3} \vee b_{4}\right) \wedge\left(p_{2} \vee \neg b_{2}\right)$
- Assignment: $p_{2}=$ false

\#SAT - Component Analysis

- The formula might split into disjoint sub-formulas
- $\varphi=\left(\neg p_{2} \vee a_{2}\right) \wedge\left(a_{1} \vee a_{2} \vee a_{3}\right) \wedge\left(b_{1}\right) \wedge\left(\neg b_{3} \vee b_{4}\right) \wedge\left(p_{2} \vee \neg b_{2}\right)$
- Assignment: $p_{2}=$ false
- Sub-formulas:

$$
\begin{aligned}
& \varphi_{1}=\left(a_{1} \vee a_{2} \vee a_{3}\right) \\
& \varphi_{2}=\left(b_{1}\right) \wedge\left(\neg b_{3} \vee b_{4}\right) \wedge\left(\neg b_{2}\right)
\end{aligned}
$$

\#SAT - Component Analysis

- The formula might split into disjoint sub-formulas
$\varphi=\left(\neg p_{2} \vee a_{2}\right) \wedge\left(a_{1} \vee a_{2} \vee a_{3}\right) \wedge\left(b_{1}\right) \wedge\left(\neg b_{3} \vee b_{4}\right) \wedge\left(p_{2} \vee \neg b_{2}\right)$
- Assignment: $p_{2}=$ false
- Sub-formulas:

$$
\begin{aligned}
& \varphi_{1}=\left(a_{1} \vee a_{2} \vee a_{3}\right) \\
& \varphi_{2}=\left(b_{1}\right) \wedge\left(\neg b_{3} \vee b_{4}\right) \wedge\left(\neg b_{2}\right)
\end{aligned}
$$

- Model count is computed by multiplying results for sub-formulas:
$m c\left(\left.\varphi\right|_{p_{2}=\text { false }}\right)=m c\left(\varphi_{1}\right) \cdot m c\left(\varphi_{2}\right)=7 \cdot 3=21$

Security Issues - Fault Injection

- Extract secret information from a security circuit (AES, ...)
- Inject fault by increasing the clock frequency
- Incorrect output allows for calculation of secret

Security Issues - Fault Injection

- Extract secret information from a security circuit (AES, ...)
- Inject fault by increasing the clock frequency
- Incorrect output allows for calculation of secret

Security Issues - Fault Injection

- Extract secret information from a security circuit (AES, ...)
- Inject fault by increasing the clock frequency
- Incorrect output allows for calculation of secret

Security Issues - Fault Injection

- Extract secret information from a security circuit (AES, ...)
- Inject fault by increasing the clock frequency
- Incorrect output allows for calculation of secret

- Flip-flops store value on rising clock edge

Security Issues - Fault Injection

- Extract secret information from a security circuit (AES, ...)
- Inject fault by increasing the clock frequency
- Incorrect output allows for calculation of secret

- Flip-flops store value on rising clock edge
- Successful injection: flip-flops store an incorrect value
- How likely is a successful injection for unknown input?

Security Issues - Fault Injection

1 Encode combinational circuit and its timing as CNF formula φ with the tool WaveSAT ${ }^{1}$

2 Make φ satisfiable iff at least one fault is injected
3 Add conditions for outputs that must be correct

Security Issues - Fault Injection

1 Encode combinational circuit and its timing as CNF formula φ with the tool WaveSAT ${ }^{1}$

2 Make φ satisfiable iff at least one fault is injected
3 Add conditions for outputs that must be correct
4 Calculate number of satisfying assignments $m c(\varphi)$
$5 P($ Successful Injection $)=\frac{m c(\varphi)}{2 \# \text { circuit inputs }}$

Conclusion

Some Papers...

[Abraham, Schubert, Becker, Fränzle, Herde. Parallel SAT Solving in BMC. Logic \& Computation, 2011]
[Burchard, Schubert, Becker. Laissez-Faire Caching for Parallel \#SAT Solving. SAT, 2015]
[Feiten, Sauer, Schubert, Czutro, Boehl, Polian, Becker. \#SAT-Based Vulnerability Analysis of Security Components - A Case Study. IEEE DFTS, 2012]
[Fränzle, Herde, Teige, Ratschan, Schubert. Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure. JSAT, 2007]
[Gitina, Wimmer, Reimer, Sauer, Scholl, Becker. Solving DQBF Through Quantifier Elimination. DATE, 2015]
[Kalinnik, Schubert, Abraham, Wimmer, Becker. Picoso - A Parallel Interval Constraint Solver. PDPTA, 2009]
[Lewis, Marin, Schubert, Narizzano, Becker, Giunchiglia. Parallel QBF Solving with Advanced Knowledge Sharing. Fundamenta Informaticae, 2011]
[Lewis, Schubert, Becker. Multithreaded SAT Solving. ASP-DAC, 2007]
[Reimer, Sauer, Schubert, Becker. Incremental Encoding and Solving of Cardinality Constraints. ATVA, 2014]
[Reimer, Sauer, Schubert, Becker. Using MaxBMC for Pareto-Optimal Circuit Initialization. DATE, 2014]
[Sauer, Czutro, Schubert, Hillebrecht, Polian, Becker. SAT-based Analysis of Sensitisable Paths. IEEE Design \& Test of Computers, 2013]
[Sauer, Reimer, Schubert, Polian, Becker. Efficient SAT-Based Dynamic Compaction and Relaxation for Longest Sensitizable Paths. DATE, 2103]
[Sauer, Reimer, Polian, Schubert, Becker. Provably Optimal Test Cube Generation Using Quantified Boolean Formula Solving. ASP-DAC, 2013]
[Schubert, Lewis, Becker. Parallel SAT Solving with Threads and Message Passing. JSAT, 2009]

