
SAT-based Approaches for Test & Verification of
Integrated Circuits

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert
Chair of Computer Architecture
Institute of Computer Science
Faculty of Engineering
schubert@informatik.uni-freiburg.de

Summer School on Verification Technology, Systems & Applications 2015

About Me

Just a very short CV

Studied computer science & microsystems engineering at the
University of Freiburg

Made my PhD working on efficient parallel SAT solving at the
University of Freiburg

Member of the Transregional Collaborative Research Center 14
AVACS – Automatic Verification and Analysis of Complex
Systems

Principal investigator within the cluster of excellence
BrainLinks-BrainTools

Member of the part-time distance learning program Intelligent
Embedded Microsystems

VTSA’15 Tobias Schubert – SAT-based Test & Verification 2 / 192

About Me

My research interests include

Efficient (parallel) algorithms for SAT and related domains

Real-world applications using
SAT,
#SAT,
MaxSAT,
QBF, and
SMT solvers

as the underlying backend

Embedded & cyber-physical systems

Industrial internet & internet of things

E-learning, blended learning, distance teaching

VTSA’15 Tobias Schubert – SAT-based Test & Verification 3 / 192

Collaborators

University of Freiburg

Bernd Becker

Jan Burchard

Alejandro Czutro

Linus Feiten

Karina Gitina

Paolo Marin

Sven Reimer

Matthias Sauer

Karsten Scheibler

Christoph Scholl

Ralf Wimmer

University of Bremen

Rolf Drechsler

University of Oldenburg

Martin Fränzle

University of Passau

Ilia Polian

University of Potsdam

Torsten Schaub

MPI Saarbrücken

Christoph Weidenbach

VTSA’15 Tobias Schubert – SAT-based Test & Verification 4 / 192

Motivation: Embedded Systems

Embedded Systems

Information processing systems
embedded into a “larger” product

Without Embedded Systems

No cars would drive today

No planes would fly today

No factory would work today

No mobile communication would be
possible

Verifying designs and testing produced
chips are mandatory tasks, in particular for
safety-critical applications!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 5 / 192

Motivation: Embedded Systems

Embedded Systems

Information processing systems
embedded into a “larger” product

Without Embedded Systems

No cars would drive today

No planes would fly today

No factory would work today

No mobile communication would be
possible

Verifying designs and testing produced
chips are mandatory tasks, in particular for
safety-critical applications!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 5 / 192

Motivation: Automotive Area

Many functions controlled by embedded systems
Multiple networks / system busses
Up to 70 different processors within one car

VTSA’15 Tobias Schubert – SAT-based Test & Verification 6 / 192

Motivation: Automotive Area

Consequences

Increasing system complexity

Increasing number of dependencies between different
subsystems

Up to 40% of the total costs are caused by electronics & software

Up to 90% of the innovations are driven by electronics & software

40–50% of all car breakdowns are caused by electronics &
software

Errors related to electronics or software are responsible for more
than 40% of all call-backs

Reliable function is of outmost importance, because otherwise
human lives can be endangered!

⇒ Safety-critical application of embedded systems!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 7 / 192

Verifying Integrated Circuit Designs

Focus is on detecting design errors

Errors which occur during the translation of a specification into
the final integrated circuit (implementation)

Errors in the design make all produced chips erroneous

⇒ Formal methods to avoid design errors before producing any
chip

VTSA’15 Tobias Schubert – SAT-based Test & Verification 8 / 192

Schubert
Pencil

Schubert
Pencil

Testing Integrated Circuits

Focus is on production errors
Defects which are caused during the production of single chips
and which change their functionality
Causes are contaminations, shifted exposure masks, wrong
doping, . . .

⇒ Formal methods to ensure that all production errors can be found

VTSA’15 Tobias Schubert – SAT-based Test & Verification 9 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

But why using SAT Solvers?

Tremendous performance improvements within the last 15 years

Nowadays SAT solvers (and their extensions) are able to . . .

solve problems coming from real-world applications (e.g.,
large industrial circuits)
handle optimization & enumeration problems, multi-valued
domains, hybrid systems

VTSA’15 Tobias Schubert – SAT-based Test & Verification 10 / 192

Schubert
Pencil

Schubert
Pencil

Typical SAT-based Flow

VTSA’15 Tobias Schubert – SAT-based Test & Verification 11 / 192

Schubert
Pencil

Schubert
Pencil

Outline

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

VTSA’15 Tobias Schubert – SAT-based Test & Verification 12 / 192

Schubert
Pencil

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 13 / 192

Boolean Satisfiability Problem (SAT)

Given
A Boolean formula ϕ in Conjunctive Normal Form (CNF)

A CNF is a conjunction of clauses: C1∧ . . .∧Cm
A clause is a disjunction of literals: (l1∨ . . .∨ lk)
A literal l is a Boolean variable or its negation: l or ¬l

Question
Is there a valuation of the variables that satisfies ϕ?

Example
x1 = x2 = 0,x3 = 1 satisfies
ϕ = (¬x1∨x2∨x3)∧ (x1∨¬x2∨¬x3)

Techniques for solving instances of the SAT problem are called
SAT algorithms or SAT solvers
Complexity of the “general” SAT problem: NP-complete
(S.A. Cook, 1971)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 14 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Overview of SAT Algorithms

Focus here is on complete methods

Due to a systematic procedure complete solvers are able to
prove the unsatisfiability of a CNF formula

DP algorithm
M. Davis, H. Putnam, 1960
Based on resolution

DLL algorithm
M. Davis, G. Logemann, D. Loveland, 1962
Based on depth-first search

Modern SAT algorithms
Based on the DLL algorithm, but enriched with efficient
data structures and several acceleration & optimization
techniques
zChaff, MiniSat, MiraXT, lingeling, antom, Glucose

VTSA’15 Tobias Schubert – SAT-based Test & Verification 15 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Preliminaries

Definition (Empty Clause)

The empty clause, denoted with 2, describes the empty set of literals,
and it is unsatisfiable by definition.

Definition (Empty Formula)

The empty formula describes an empty set of clauses and it is
satisfiable by definition.

VTSA’15 Tobias Schubert – SAT-based Test & Verification 16 / 192

Preliminaries

Definition (Pure Literal)

Let F be a CNF formula and L be a literal contained in F . L is called a
pure literal iff L occurs in F only positive or only negative.

Steps in order to simplify a CNF formula F

Delete from F all clauses in which a pure literal L occurs,
because these ones will be satisfied by an appropriate
assignment to L

Remark

As it is rather time consuming, pure literal detection is applied by
modern SAT solvers during pre-/inprocessing only

VTSA’15 Tobias Schubert – SAT-based Test & Verification 17 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Preliminaries

Definition (Unit Clause)

A clause consisting of a single literal L is called a unit clause with L
being the corresponding unit literal.

Steps in order to simplify a CNF formula F

Assign a unit literal L to 1

Delete from F all clauses containing L

Delete all occurrences of ¬L

VTSA’15 Tobias Schubert – SAT-based Test & Verification 18 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Preliminaries

Definition (Subsumption)

Let C1 and C2 be two clauses. C1 subsumes C2 iff all literals
occurring in C1 also occur in C2: C1 ⊆ C2.

Steps in order to simplify a CNF formula F

Delete all clauses from F that are subsumed by at least one
other clause of F

Remark

Typically, modern SAT solvers apply subsumption checks during
pre-/inprocessing only

VTSA’15 Tobias Schubert – SAT-based Test & Verification 19 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Preliminaries

Definition (Resolution)

Let C1 and C2 be two clauses and L be a literal with the following
property: L ∈ C1 and ¬L ∈ C2. Then one can compute the clause R

R =
(
C1−{L}

)
∪
(
C2−{¬L}

)
that is denoted as the resolvent of the clauses C1 and C2 over L.
Typically, the notation R = C1⊗LC2 is used.

Lemma (Resolution Lemma)

Let F be a CNF formula and R be the resolvent of two clauses C1 and
C2 from F. Then F and F ∪{R} are equivalent: F ≡ F ∪{R}.

VTSA’15 Tobias Schubert – SAT-based Test & Verification 20 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Preliminaries

Definition
Let F be a CNF formula. Then Res(F) is defined as

Res(F) = F ∪{R |R is the resolvent of two clauses in F}.

Moreover, let us define:

Res0(F) = F

Rest+1(F) = Res(Rest(F)) for t ≥ 0
Res∗(F) = limt≥0 Rest(F)

Theorem (Resolution Theorem)

A CNF formula F is unsatisfiable iff 2 ∈ Res∗(F).

VTSA’15 Tobias Schubert – SAT-based Test & Verification 21 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Preliminaries

Definition
Let F be a CNF formula and xi a variable occurring in F with L = xi
and ¬L = ¬xi . The we define P, N and W as follows:

P is the set of clauses in F which contain L:

P = {C ∈ F |L ∈ C}

N is the set of clauses in F which contain ¬L:
N = {C ∈ F |¬L ∈ C}

W is the set of clauses in F which contain neither L nor ¬L:
W = {C ∈ F |L 6∈ C∧¬L 6∈ C}

Obviously, we have F = P∪N∪W .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 22 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Preliminaries

Definition (Pairwise Resolution)

Using this partitioning of the clauses we define P⊗xi N as the set of
clauses, which can be constructed by resolution of all pairs
(p,n) ∈ P×N:

P⊗xi N = {R |(R = C1⊗xi C2)∧ (C1 ∈ P)∧ (C2 ∈ N)}.

Theorem (Variable Elimination)

Let F be a formula in CNF and xi a variable which appears both
positive and negative in F. Further let the sets P, N, and W be the
partition of F as defined before.
Then F = P∪N∪W and F ′ = (P⊗xi N)∧W are satisfiability
equivalent.

VTSA’15 Tobias Schubert – SAT-based Test & Verification 23 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

DLL Algorithm

Main idea: If a CNF formula F is satisfiable, then for an arbitrary
variable xi occuring in F either xi = 1 or xi = 0 must hold
⇒ Try both cases one after the other
⇒ Depth-first search

Applying unit clause & pure literal rule to accelerate the search

Recursive algorithm, in particular the given formula gets
modified when going from recursion level r to r +1

In the literature both “DLL” and “DPLL” can be found

VTSA’15 Tobias Schubert – SAT-based Test & Verification 24 / 192

Schubert
Pencil

DLL Algorithm

bool DLL(CNF F)
{

if (F = /0) { return SATISFIABLE; } // Empty set of clauses
if (2 ∈ F) { return UNSATISFIABLE; } // Empty Clause
if (F contains a unit clause (L)) // Unit Clause
{

// Unit Subsumption.
F ′ = F −{C |(L ∈ C)∧ (C ∈ F)∧ (C 6= (L))};
// Unit Resolution.
P = {(L)};
N = {C |(¬L ∈ C)∧ (C ∈ F ′)};
W = F ′−P−N;
return DLL([P⊗L N]∧W);

}
if (F contains a pure literal L) // Pure Literal

{
// Delete from F every clause containing L.
F ′ = F −{C |(L ∈ C)∧ (C ∈ F)};
return DLL(F ′);

}
L = SelectLiteral(F); // Choose a Literal
if (DLL(F ∪{(L)}) == SATISFIABLE) // Case distinction

{ return SATISFIABLE; }
else

{ return DLL(F ∪{(¬L)}); }
}

VTSA’15 Tobias Schubert – SAT-based Test & Verification 25 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

DLL Algorithm

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1
1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x1 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1
1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x1 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x2 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x2 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Unit clauses x3 = 0 and x3 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Contradiction/conflict

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x2 = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x2 = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Unit clauses x3 = 0 and x3 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Contradiction/conflict

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

10

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x1 = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

10

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Case distinction x1 = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

x2

10

0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Pure literal x2 = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

x2

10

0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Pure literal x2 = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

DLL Algorithm

x1

x2
0 1

x2

10

0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
Formula satisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 26 / 192

From DLL to modern SAT Algorithms

Overall

DLL algorithm
Recursive procedure
For the transition from recursion level r to level r +1 the
given formula gets modified
For backtracking from level r +1 to r the original
(sub)formula at level r has to be restored

Modern SAT algorithms
Non-recursive implementation
Apart from special cases (preprocessing), the CNF remains
unmodified
Typically, the pure literal rule is not applied

VTSA’15 Tobias Schubert – SAT-based Test & Verification 27 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

From DLL to modern SAT Algorithms

Unit clause

DLL algorithm
A clause consisting exactly one literal

Modern SAT algorithms
In addition to the rule above, clauses where all literals but
one are assigned with negated polarity are also referred to
as unit clauses
Example: Assignment x1 = 0,x2 = 1 turns (x1,¬x2,x3) into a
unit clause
In the example, the evaluation x1 = 0,x2 = 1 forces the
assignment x3 = 1 in order to satisfy the clause (x1,¬x2,x3)
⇒ implication

VTSA’15 Tobias Schubert – SAT-based Test & Verification 28 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

From DLL to modern SAT Algorithms

Unit propagation to determine all implications forced by a variable
assignment

DLL algorithm
Repeated application of the unit clause rule on successsive
recursion levels until the rule cannot be applied anymore

Modern SAT algorithms
Done non-recursively, also called Boolean Constraint
Propagation (BCP)
Example: For the CNF F = (x1,¬x2)∧ (x1,x2,x3)∧ (¬x3,x4),
x1 = 0 leads to the implications x2 = 0,x3 = 1,x4 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 29 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

From DLL to modern SAT Algorithms

Contradiction/conflict

DLL algorithm
Empty clause

Modern SAT algorithms
Unsatisfied clause
Example: Valuation x1 = 0,x2 = 1,x3 = 0 makes
(x1,¬x2,x3) unsatisfied, and so the whole CNF formula
containing it cannot be satisfied anymore

VTSA’15 Tobias Schubert – SAT-based Test & Verification 30 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

From DLL to modern SAT Algorithms

Conflict analysis & backtracking

DLL algorithm
The combination of the decisions done before will always
be considered as the origin of a conflict
Backtracking to the recursion level of the last “branching” in
which one case for a variable assignment has not been
explored yet
If such a recursion level does not exist, the given CNF
formula is unsatisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 31 / 192

Schubert
Pencil

Schubert
Pencil

From DLL to modern SAT Algorithms

Conflict analysis & backtracking

Modern SAT algorithms
Complex analysis of the conflict setting, because not all
“branchings” done before have to be involved in the current
conflict
Learning of a conflict clause via resolution to avoid running
into the same conflict again
(Non-)chronological backtracking according to the derived
conflict clause
If a conflict occurs on decision level 0, the given CNF
formula is unsatisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 32 / 192

Schubert
Pencil

Schubert
Pencil

Modern SAT Algorithms

Main techniques of today’s SAT solvers

Preprocessing

In turn. . .
Choose the next decision variable
Boolean constraint propagation / unit propagation
If necessary, conflict analysis & backtracking

At some fixed points during the search process
Unlearning (of some conflict clauses)
Restarts
Inprocessing

In case of a satisfiable CNF formula
Output the satisfying variable assignment⇒ model

VTSA’15 Tobias Schubert – SAT-based Test & Verification 33 / 192

Schubert
Pencil

Modern SAT Algorithms

bool SequentialSatEngine(CNF F)
{

if (PreprocessCNF(F) == CONFLICT) // Preprocessing the CNF formula
{ return UNSATISFIABLE; } // Problem unsatisfiable

while (true)
{

if (DecideNextBranch()) // Choice of the next unassigned variable
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation
{

BLevel = AnalyzeConflict(); // Conflict analysis
if (BLevel > 0)

{ Backtrack(BLevel); } // Cancel the „incorrect“ assignment
else

{ return UNSATISFIABLE; } // Problem unsatisfiable
}

}
else
{ return SATISFIABLE; } // All variables assigned, problem satisfiable

}
}

Not explicitly stated: Inprocessing, unlearning, restarts, model output

VTSA’15 Tobias Schubert – SAT-based Test & Verification 34 / 192

Schubert
Pencil

Modern SAT Algorithms

bool SequentialSatEngine(CNF F)
{

if (PreprocessCNF(F) == CONFLICT) // Preprocessing the CNF formula
{ return UNSATISFIABLE; } // Problem unsatisfiable

while (true)
{

if (DecideNextBranch()) // Choice of the next unassigned variable
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation
{

BLevel = AnalyzeConflict(); // Conflict analysis
if (BLevel > 0)

{ Backtrack(BLevel); } // Cancel the „incorrect“ assignment
else

{ return UNSATISFIABLE; } // Problem unsatisfiable
}

}
else
{ return SATISFIABLE; } // All variables assigned, problem satisfiable

}
}

Not explicitly stated: Inprocessing, unlearning, restarts, model output

VTSA’15 Tobias Schubert – SAT-based Test & Verification 35 / 192

Preprocessing

Goal
Reduce the formula’s size in terms of clauses and literals to
speed up the search process

Observation from the experience
As a rule of thumb, the size of a formula is related to the
time necessary for the SAT algorithm to solve it

Identification & preprocessing of unit clauses within the original
set of clauses belong to the common operations done in modern
SAT algorithms

It is very important to find a good compromise between the
additional effort required by preprocessing and the expected
saving during the search process

VTSA’15 Tobias Schubert – SAT-based Test & Verification 36 / 192

Preprocessing

Unit Propagation Lookahead (UPLA)

Fix a variable xi to 0, check implications; then change its value
to xi = 1, check implications. Simplify the formula exploiting the
following consequences:

(xi = 0→ conflict)∧ (xi = 1→ conflict)⇒ UNSAT
(xi = 0→ conflict)⇒ xi = 1
(xi = 1→ conflict)⇒ xi = 0
(xi = 0→ xj = 1)∧ (xi = 1→ xj = 1)⇒ xj = 1
(xi = 0→ xj = 0)∧ (xi = 1→ xj = 0)⇒ xj = 0
(xi = 0→ xj = 0)∧ (xi = 1→ xj = 1)⇒ xi ≡ xj

VTSA’15 Tobias Schubert – SAT-based Test & Verification 37 / 192

Preprocessing

Unit Propagation Lookahead (UPLA)

Advantage
Built on top of the components already available in the
solver

Disadvantages
Requires binary clauses in the original formula
Necessary to extend the model when e. g. xi ≡ xj is
detected and all the occurrences of xi are substituted with xj
In general quite time consuming, in particular if all the
variables are tested

VTSA’15 Tobias Schubert – SAT-based Test & Verification 38 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Preprocessing

Application of resolution

Advantages
No particular kind of clauses necessary in the original
formula
Usually, simplifies effectively within a manageable time

Disadvantages
In case of a satisfiable CNF formula, model extension
required

Techniques (SatELite)
Self-subsuming resolution
Elimination by clause distribution
Variable elimination by substitution
Forward subsumption
Backward subsumption

VTSA’15 Tobias Schubert – SAT-based Test & Verification 39 / 192

Preprocessing

Self-subsuming resolution

Original formula
F = (x1∨¬x3)∧ (x1∨x2∨x3)∧ . . .

Resolution applied to the first two clauses
(x1∨¬x3)⊗x3 (x1∨x2∨x3) = (x1∨x2)

⇒ (x1∨x2) subsumes (x1∨x2∨x3)
⇒ Replace (x1∨x2∨x3) with (x1∨x2)

Simplified formula
F ′ = (x1∨¬x3)∧ (x1∨x2)∧ . . .

Saving
1 literal

VTSA’15 Tobias Schubert – SAT-based Test & Verification 40 / 192

Schubert
Pencil

Preprocessing

Elimination by clause distribution

Sometimes also called variable elimination

Original formula
F = (x1∨x2)∧ (x1∨¬x3)∧ (¬x1∨x3)∧ (¬x1∨¬x2)

Variable elimination applied to x1 leads to
F ′ = (x2∨x3)∧ (¬x3∨¬x2)

Saving
1 variable, 2 clauses, 4 literals

Applied only if it leads to a reduction of the formula’s size

VTSA’15 Tobias Schubert – SAT-based Test & Verification 41 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Preprocessing

Variable elimination by substitution
Original formula

F = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2) ∧
(x4∨¬x5)∧ (¬x4∨x5∨x6)

The first three clauses represent an AND gate (Tseitin
transformation)

[(¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)]↔ [x5 ≡ x1∧x2]

Removing the first three clauses, and replacing the occurrences
of x5 by x1∧x2 in the other clauses leads to

F ′ = (x4∨¬(x1∧x2))∧ (¬x4∨ (x1∧x2)∨x6)

Transformation into CNF
F ′′ = (x4∨¬x1∨¬x2)∧ (¬x4∨x1∨x6)∧ (¬x4∨x2∨x6)

Saving: 1 variable, 2 clauses, 3 literals
Applied only if it leads to a reduction of the formula’s size
Procedure for OR, NAND, other “basic gates” quite similar

VTSA’15 Tobias Schubert – SAT-based Test & Verification 42 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Preprocessing

Forward subsumption

Test if a clause generated during one of the preprocessing
techniques described before is already subsumed by one clause
of the current CNF formula

Backward subsumption

Test if a clause generated during one of the preprocessing
techniques described before subsumes one (or more) clauses of
the current CNF formula

⇒ Remove all the clauses subsumed

VTSA’15 Tobias Schubert – SAT-based Test & Verification 43 / 192

Modern SAT Algorithms

bool SequentialSatEngine(CNF F)
{

if (PreprocessCNF(F) == CONFLICT) // Preprocessing the CNF formula
{ return UNSATISFIABLE; } // Problem unsatisfiable

while (true)
{

if (DecideNextBranch()) // Choice of the next unassigned variable
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation
{

BLevel = AnalyzeConflict(); // Conflict analysis
if (BLevel > 0)

{ Backtrack(BLevel); } // Cancel the „incorrect“ assignment
else

{ return UNSATISFIABLE; } // Problem unsatisfiable
}

}
else
{ return SATISFIABLE; } // All variables assigned, problem satisfiable

}
}

Not explicitly stated: Inprocessing, unlearning, restarts, model output

VTSA’15 Tobias Schubert – SAT-based Test & Verification 44 / 192

Decision Stack

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 1

x8 = 1

x4 = 1

x23 = 1

x13 = 0

x19 = 1 x10 = 1 Central data structure of modern SAT
algorithms
Decision stack stores the order of the
executed assignments
If a model for a CNF formula could be
found, the decision stack stores the
satisfying assignment

VTSA’15 Tobias Schubert – SAT-based Test & Verification 45 / 192

Decision Stack

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 1

x8 = 1

x4 = 1

x23 = 1

x13 = 0

x19 = 1 x10 = 1

Each variable assignment has an
associated decision level
Decision level gets initialized with 0;
before a decision is made, it is
incremented by one; backtracking
decrements the decision level
appropriately
Decision level 0 plays a special role: It
stores only implications from unit
clauses in the original formula, but no
decisions
A conflict on decision level 0 means
that the CNF is unsatisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 46 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Decision Stack – First Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 1

x2 = 1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

Conflict!

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 1

x3 = 0x2 = 1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 1 x2 = 0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

Conflict!

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 1 x2 = 0 x3 = 0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

x2 = 0

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

x2 = 0

x3 = 1

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – First Example

x2 = 0

x3 = 1

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 0

⇒ Formula satisfiable with, e. g., x1 = 0,x2 = 0,x3 = 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 47 / 192

Decision Stack – Second Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

x1 = 0

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

x1 = 0

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1

x2 = 1

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

Conflict!x1 = 0

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1

x2 = 1 x3 = 0

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1 x1 = 1

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1 x1 = 1 x3 = 1

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

Conflict!

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1 x1 = 1 x3 = 1 x2 = 0

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Decision Stack – Second Example

Conflict!

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1 x1 = 1 x3 = 1 x2 = 0

⇒ Formula unsatisfiable due to a conflict on decision level 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 48 / 192

Modern SAT Algorithms

bool SequentialSatEngine(CNF F)
{

if (PreprocessCNF(F) == CONFLICT) // Preprocessing the CNF formula
{ return UNSATISFIABLE; } // Problem unsatisfiable

while (true)
{

if (DecideNextBranch()) // Choice of the next unassigned variable
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation
{

BLevel = AnalyzeConflict(); // Conflict analysis
if (BLevel > 0)

{ Backtrack(BLevel); } // Cancel the „incorrect“ assignment
else

{ return UNSATISFIABLE; } // Problem unsatisfiable
}

}
else
{ return SATISFIABLE; } // All variables assigned, problem satisfiable

}
}

Not explicitly stated: Inprocessing, unlearning, restarts, model output

VTSA’15 Tobias Schubert – SAT-based Test & Verification 49 / 192

Decision Heuristics

Have the role of choosing the next decision variable

Comparable with “case distinction” in the DLL algorithm

Affects the search process significantly

Modern SAT algorithms do not test whether the CNF formula is
already satisfied during the search, rather it is indirectly
guaranteed from assigning all variables without running into a
conflict

Example: F = (x1,x2,x3)∧ (¬x1,x4)
⇒ A satisfying assignment is for example x1 = 1,x4 = 1
⇒ Today’s solvers do no test whether x1 = x4 = 1 already

satisfies all the clauses, but assign the remaining variables
without generating a conflict (e. g., x2 = x3 = 0) before they
conclude that the CNF is satisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 50 / 192

Decision Heuristics

Classical decision heuristics
Several flavors

Dynamic Largest Individual/Combined Sum
Maximum Occurrences on Clauses of Minimal Size

Choice criteria
“How often does a still unassigned variable occur in
currently unresolved clauses?”
Among the unassigned variables, choose the one that
occurs most frequently in unresolved clauses
In most cases also weighted with the length of those
clauses

These heuristics are quite time consuming, because both the
status of each clause and the distribution of the variables within
the set of clauses have to be computed and kept up to date
⇒ Computation complexity defined over #clauses

VTSA’15 Tobias Schubert – SAT-based Test & Verification 51 / 192

Decision Heuristics

Variable State Independent Decaying Sum (VSIDS)

Today’s standard method used by almost every SAT solver

Computation complexity defined over #variables

No update is mandatory during the backtrack phase

Each variable xi has two activity counters Pxi and Nxi

For each literal L in a learned clause C the activity is
incremented as follows:

Pxi = Pxi +1, if L = xi
Nxi = Nxi +1, if L = ¬xi

The unassigned variable xi with the highest activity (Pxi or Nxi) is
chosen as the next decision variable

Polarity depends on whether Pxi > Nxi holds or not

VTSA’15 Tobias Schubert – SAT-based Test & Verification 52 / 192

Decision Heuristics

Variable State Independent Decaying Sum (VSIDS)

Periodically, the activities are “normalized”, i. e., divided by a
constant factor
⇒ After the normalization, the recently learned clauses have a

higher weight in comparison to the clauses learned before
the last normalization process

⇒ Takes into account the “history” of the search process

Several optimizations possible
By which amount should the activities be incremented?
How often should the normalization take place?
By which factor should the activity scores be divided?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 53 / 192

Modern SAT Algorithms

bool SequentialSatEngine(CNF F)
{

if (PreprocessCNF(F) == CONFLICT) // Preprocessing the CNF formula
{ return UNSATISFIABLE; } // Problem unsatisfiable

while (true)
{

if (DecideNextBranch()) // Choice of the next unassigned variable
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation
{

BLevel = AnalyzeConflict(); // Conflict analysis
if (BLevel > 0)

{ Backtrack(BLevel); } // Cancel the „incorrect“ assignment
else

{ return UNSATISFIABLE; } // Problem unsatisfiable
}

}
else
{ return SATISFIABLE; } // All variables assigned, problem satisfiable

}
}

Not explicitly stated: Inprocessing, unlearning, restarts, model output

VTSA’15 Tobias Schubert – SAT-based Test & Verification 54 / 192

Boolean Constraint Propagation

Tasks
Detect all implications forced by a variable assignment
Detect conflicts

Comparable to the repeated application of the unit clause rule of
the DLL algorithm

Efficient implementation mandatory, because roughly 80% of the
runtime of a SAT algorithm is spent by the BCP routine

VTSA’15 Tobias Schubert – SAT-based Test & Verification 55 / 192

Boolean Constraint Propagation

General flow

After every variable assignment, identify the implications that
have arisen, and push them into the implication queue

As long as there are items in the implication queue. . .
1 Remove the first element from the queue
2 Assign to each implied variable its forced truth value
3 Check which consecutive implications arise, and push them

into the implication queue
4 Check for conflicts

VTSA’15 Tobias Schubert – SAT-based Test & Verification 56 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

Implication Queue

x8 = 1

x4 = 1

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

Implication Queue

x8 = 1

x4 = 1

x12 = 0 x16 = 1

x23 = 1

x13 = 0

x19 = 1

x11 = 1

4 6

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

Implication Queue

x8 = 1

x4 = 1

x12 = 0

x12 = 0 x16 = 1

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0

Implication Queue

x8 = 1

x4 = 1

x16 = 1x12 = 0

x12 = 0 x16 = 1

7

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0

x2 = 0

Implication Queue

8

x8 = 1

x4 = 1

x16 = 1x12 = 0

x12 = 0 x16 = 1

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x10 = 0

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0

x2 = 0 x5 = 0 x3 = 1 x1 = 1

Implication Queue

x8 = 1

x4 = 1

x16 = 1x12 = 0

x12 = 0 x16 = 1

x23 = 1

x13 = 0

x19 = 1

x11 = 1 x10 = 0

x10 = 0

10 11 12

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0

x2 = 0 x5 = 0 x3 = 1 x1 = 1

Implication Queue

x8 = 1

x4 = 1

x16 = 1x12 = 0

x12 = 0 x16 = 1

x23 = 1

x13 = 0

x19 = 1

x11 = 1 x10 = 0

x10 = 0

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

Implication Queue

13

x8 = 1

x4 = 1

x16 = 1x12 = 0

x12 = 0 x16 = 1 x18 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1 x10 = 0

x10 = 0

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

14

Implication Queue

x8 = 1

x4 = 1

x16 = 1x12 = 0

x12 = 0 x16 = 1 x18 = 1x18 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1 x10 = 0

x10 = 0

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation – Example

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

Implication Queue

Conflict!

x8 = 1

x4 = 1

x16 = 1x12 = 0

x12 = 0 x16 = 1 x18 = 0 x18 = 1

x18 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1 x10 = 0

x10 = 0

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 57 / 192

Boolean Constraint Propagation

Approaches for the implementation of a BCP routine

Counter-Based Schemes

Watched Literals / 2-Literal Watching Scheme

VTSA’15 Tobias Schubert – SAT-based Test & Verification 58 / 192

Boolean Constraint Propagation

Counter-Based Schemes

2-Counter Scheme
Two counters for each clause

One counter for the literals which satisfy the clause
One counter for the unassigned literals

1-Counter Scheme
One counter for each clause to count the number of not
falsifying literals

Disadvantages
“Unnecessary” counter updates
Adjustment of the counter values during backtrack
Requires a list for each variable and polarity to store all the
clauses where the “related literal” (variable having that
polarity) occurs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 59 / 192

Boolean Constraint Propagation

Watched Literals

For each clause mark two different literals

Invariant
Watched literals of a clause are either unassigned or satisfy
the clause

Advantages in comparison to counter-based schemes
Update operations only when necessary, i. e., when an
assignment “breaks” the invariant
One list for each variable and polarity (like before), but
containing only the clauses currently watched by that literal

Disadvantage
Literals of a clause are checked several times

VTSA’15 Tobias Schubert – SAT-based Test & Verification 60 / 192

Watched Literals

¬x1 x18 ¬x3 x5x17

(a) Initial state

¬x1 x18 ¬x3 x5x17

(b) x17 = 0

¬x1 x18x17 ¬x3 x5

(c) x5 = 0

x17 ¬x3 x5x18¬x1

(d) x3 = 1

x17 ¬x3 x5x18¬x1

(e) x1 = 1 ⇒ x18 = 1

x17 ¬x3 x5x18¬x1

(f) x18 = 0 ⇒ Conflict!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 61 / 192

Watched Literals

Possible optimizations

Always store the watched literals in the first two positions of a
clause

Allows for a fast access to the “second” watched literal of a
clause
If the second watched literal satisfies the clause, it is not
necessary to find a replacement for the first one (in case
the status of the first one switches from unresolved to false)

Nowadays, the BCP procedures of almost all modern SAT solvers are
based on watched literals!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 62 / 192

Modern SAT Algorithms

bool SequentialSatEngine(CNF F)
{

if (PreprocessCNF(F) == CONFLICT) // Preprocessing the CNF formula
{ return UNSATISFIABLE; } // Problem unsatisfiable

while (true)
{

if (DecideNextBranch()) // Choice of the next unassigned variable
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation
{

BLevel = AnalyzeConflict(); // Conflict analysis
if (BLevel > 0)

{ Backtrack(BLevel); } // Cancel the „incorrect“ assignment
else

{ return UNSATISFIABLE; } // Problem unsatisfiable
}

}
else
{ return SATISFIABLE; } // All variables assigned, problem satisfiable

}
}

Not explicitly stated: Inprocessing, unlearning, restarts, model output

VTSA’15 Tobias Schubert – SAT-based Test & Verification 63 / 192

Conflict Analysis & Backtracking

DLL algorithm

The combination of the decisions done before will always be
considered as the origin of a conflict

Backtracking to the recursion level of the last “branching” in
which one case for a variable assignment has not been explored
yet (chronological backtracking)

If such a recursion level does not exist, the given CNF formula is
unsatisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 64 / 192

Conflict Analysis & Backtracking

Chronological Backtracking

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

x8 = 1

x4 = 1

x12 = 0

x4 = 1

x11 = 0

x8 = 1

x16 = 1 x18 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

x23 = 1

x13 = 0

x19 = 1

x54 = 0

x10 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 65 / 192

Schubert
Pencil

Schubert
Pencil

Conflict Analysis & Backtracking

Modern SAT algorithms

Complex analysis of the conflict setting, because not all
“branchings” done before have to be involved in the current
conflict

Learning of a conflict clause via resolution to avoid running into
the same conflict again

(Non-)chronological backtracking according to the derived
conflict clause

If a conflict occurs on decision level 0, the given CNF formula is
unsatisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 66 / 192

Conflict Analysis & Backtracking

Implication graph

Data structure for performing the conflict analysis in today’s SAT
solvers

Directed, acyclic graph

Nodes represent assignments to variables

Edges represent which set of assignments have caused an
implication

Implication graph gets updated after every variable assignment
and after every backtrack operation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 67 / 192

Conflict Analysis & Backtracking

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x4 = 1@3

x8 = 1@2
x19 = 1@3

Conflict!
x2 = 0@5

x10 = 0@5

x6 = 0@1

x11 = 1@5

x13 = 0@2

x8 = 1

x4 = 1

x12 = 0 x16 = 1 x18 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

x10 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 68 / 192

Conflict Analysis & Backtracking

During the conflict analysis the implication graph gets traversed
backwards (in reverse order of the assignments stored by the
decision stack) starting from the conflicting point, to allow to
compute the succession of resolution steps which finally lead to
the conflict clause

Different termination criteria for interrupting the resolution steps
lead to different conflict clauses

Implementations
1UIP (standard technique explained in the following)
RelSat
Grasp
. . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 69 / 192

Schubert
Pencil

Schubert
Pencil

Conflict Analysis & Backtracking

x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12 ,¬x16 ,¬x2)∧ (x2 ,¬x4,¬x10)∧
(¬x19,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10 ,¬x8 ,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1 ,x18 ,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3,x5)⊗x18 (¬x19 ,¬x18,¬x3) = (x17,¬x1,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3,x5 ,¬x19)⊗x1 (x1 ,x10 ,¬x8) = (x17 ,¬x3 ,x5 ,¬x19 ,x10 ,¬x8)

R3 = (x17,¬x3 ,x5,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5 ,¬x19 ,x10 ,¬x8)

R4 = (x17,x5 ,¬x19,x10,¬x8)⊗x5 (x10,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause

VTSA’15 Tobias Schubert – SAT-based Test & Verification 70 / 192

Conflict Analysis & Backtracking

x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12 ,¬x16 ,¬x2)∧ (x2 ,¬x4,¬x10)∧
(¬x19,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10 ,¬x8 ,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1 ,x18 ,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3,x5)⊗x18 (¬x19 ,¬x18,¬x3) = (x17,¬x1,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3,x5 ,¬x19)⊗x1 (x1 ,x10 ,¬x8) = (x17 ,¬x3 ,x5 ,¬x19 ,x10 ,¬x8)

R3 = (x17,¬x3 ,x5,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5 ,¬x19 ,x10 ,¬x8)

R4 = (x17,x5 ,¬x19,x10,¬x8)⊗x5 (x10,¬x5) = (x17,¬x19,x10,¬x8)⇐ Finale Konflikt-Klausel

VTSA’15 Tobias Schubert – SAT-based Test & Verification 70 / 192

Conflict Analysis & Backtracking

x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12 ,¬x16 ,¬x2)∧ (x2 ,¬x4,¬x10)∧
(¬x19,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10 ,¬x8 ,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1 ,x18 ,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3,x5)⊗x18 (¬x19 ,¬x18,¬x3) = (x17,¬x1,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3,x5 ,¬x19)⊗x1 (x1 ,x10 ,¬x8) = (x17 ,¬x3 ,x5 ,¬x19 ,x10 ,¬x8)

R3 = (x17,¬x3 ,x5,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5 ,¬x19 ,x10 ,¬x8)

R4 = (x17,x5 ,¬x19,x10,¬x8)⊗x5 (x10,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause

VTSA’15 Tobias Schubert – SAT-based Test & Verification 70 / 192

Conflict Analysis & Backtracking

x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12 ,¬x16 ,¬x2)∧ (x2 ,¬x4,¬x10)∧
(¬x19,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10 ,¬x8 ,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1 ,x18 ,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3,x5)⊗x18 (¬x19 ,¬x18,¬x3) = (x17,¬x1,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3,x5 ,¬x19)⊗x1 (x1 ,x10 ,¬x8) = (x17 ,¬x3 ,x5 ,¬x19 ,x10 ,¬x8)

R3 = (x17,¬x3 ,x5,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5 ,¬x19 ,x10 ,¬x8)

R4 = (x17,x5 ,¬x19,x10,¬x8)⊗x5 (x10,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause

VTSA’15 Tobias Schubert – SAT-based Test & Verification 70 / 192

Conflict Analysis & Backtracking

x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12 ,¬x16 ,¬x2)∧ (x2 ,¬x4,¬x10)∧
(¬x19,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10 ,¬x8 ,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1 ,x18 ,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3,x5)⊗x18 (¬x19 ,¬x18,¬x3) = (x17,¬x1,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3,x5 ,¬x19)⊗x1 (x1 ,x10 ,¬x8) = (x17 ,¬x3 ,x5 ,¬x19 ,x10 ,¬x8)

R3 = (x17,¬x3 ,x5,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5 ,¬x19 ,x10 ,¬x8)

R4 = (x17,x5 ,¬x19,x10,¬x8)⊗x5 (x10,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause

VTSA’15 Tobias Schubert – SAT-based Test & Verification 70 / 192

Conflict Analysis & Backtracking

x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12 ,¬x16 ,¬x2)∧ (x2 ,¬x4,¬x10)∧
(¬x19,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10 ,¬x8 ,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1 ,x18 ,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3,x5)⊗x18 (¬x19 ,¬x18,¬x3) = (x17,¬x1,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3,x5 ,¬x19)⊗x1 (x1 ,x10 ,¬x8) = (x17 ,¬x3 ,x5 ,¬x19 ,x10 ,¬x8)

R3 = (x17,¬x3 ,x5,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5 ,¬x19 ,x10 ,¬x8)

R4 = (x17,x5 ,¬x19,x10,¬x8)⊗x5 (x10,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause

VTSA’15 Tobias Schubert – SAT-based Test & Verification 70 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Conflict Analysis & Backtracking

x2 = 0 x5 = 0 x3 = 1 x1 = 1

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x4 = 1@3

x8 = 1@2
x19 = 1@3

Conflict!
x2 = 0@5

x10 = 0@5

x6 = 0@1

x11 = 1@5

x13 = 0@2

Conflict clause: (x17,¬x19,x10,¬x8)

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x16 = 1 x18 = 0

x8 = 1

x4 = 1

x12 = 0 x10 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 71 / 192

Conflict Analysis & Backtracking

Observations

Conflict analysis according to the 1UIP scheme (First Unique
Implication Point) terminates as soon as the computed resolvent
contains exactly one literal at the current decision level (the
so-called UIP), whereas all other literals were assigned at lower
decision levels

Conflict clauses represent combinations of variables that will
inevitably lead to a conflict

Resolution Lemma allows to insert a conflict clause into the CNF
formula, and consequently to “prune” the whole search tree by
preventing the solver from running into the same conflict again

Compared to others, the 1UIP scheme turned out to be the most
powerful one (shorter conflict clauses, more effective pruning,
faster runtime)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 72 / 192

Conflict Analysis & Backtracking

(Non)-chronological backtracking

In today’s SAT algorithms the backtrack level is determined by
the derived conflict clause only

The backtrack level matches the maximum decision level among
all the literals in the conflict clause except the UIP, which
becomes an implication after backtracking

Idea: “What would have happened if the conflict clause had
already been contained into the original CNF formula?”

VTSA’15 Tobias Schubert – SAT-based Test & Verification 73 / 192

Conflict Analysis & Backtracking

(Non-)chronological backtracking

Procedure
1 Backtrack down to the given backtrack level
2 Assign the truth value implied by the UIP (after

backtracking, the conflict clause will be automatically a unit
clause)

3 Proceed with the search process

If a conflict appears at decision level 0, the CNF formula is
unsatisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 74 / 192

Conflict Analysis & Backtracking

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

Conflict clause: (x17,¬x19,x10,¬x8)

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

Non-Chronological Backtrackingx8 = 1

x4 = 1

x12 = 0

x4 = 1 x10 = 1

x16 = 1 x18 = 0

x8 = 1
x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

x10 = 0

x23 = 1

x13 = 0

x19 = 1

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10 ,¬x5)︸ ︷︷ ︸
10

∧(x10,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18 ,¬x3,x5)︸ ︷︷ ︸
14

∧ . . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 75 / 192

Other Features of modern SAT Solvers

Unlearning of conflict clauses
Inprocessing
Restarts
Termination guarantees
Unsatisfiability certificates
Assumptions
Incremental SAT solving
Parallel SAT algorithms
Incomplete SAT algorithms

VTSA’15 Tobias Schubert – SAT-based Test & Verification 76 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 77 / 192

Combinational Equivalence Checking

Given
Specification and implementation of a combinatorial circuit

Question
Are specification and implementation equivalent?

Approach for SAT-based equivalence checking
Generate a so-called Miter from specification and
implementation
Build a CNF formula from the Miter representation
Solve the formula with a SAT algorithm
Specification and implementation of a combinatorial circuit
are equivalent iff the CNF formula generated from the Miter
is unsatisfiable

VTSA’15 Tobias Schubert – SAT-based Test & Verification 78 / 192

Schubert
Pencil

Miter

xn

xn

x1

x1
Implementation fI

fSSpecification

⇒ Connect corresponding inputs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 79 / 192

Miter

xn

x1

Implementation fI

fSSpecification

⇒ Link corresponding outputs by EXOR gates

VTSA’15 Tobias Schubert – SAT-based Test & Verification 79 / 192

Miter

xn

x1

M

Implementation fI

fSSpecification

⇒ Miter circuit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 79 / 192

Miter

xn

x1

M

Implementation fI

fSSpecification

Miter

⇒M = 1⇔ Specification & implementation not equivalent

VTSA’15 Tobias Schubert – SAT-based Test & Verification 79 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Miter

Remarks

Drafted method can be extended to combinatorial circuits having
multiple outputs

Usually, SAT-algorithms take as input only CNF formulas, that
means the Boolean function of the Miter circuit must be
translated into a CNF representation Tseitin transformation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 80 / 192

Tseitin Transformation

In order to avoid the exponential size of the CNF form obtained from
the formula created from the function F of the circuit, some alternative
techniques can be applied:

Define a satisfiability equivalent CNF F ′ equivalent to F that is
satisfiable iff F is satisfiable

For each gate output insert an additional variable⇒ in general
the CNF F ′ will have variables which do not occur in F

For each gate realize a “characteristic function” in CNF which
evaluates to 1 for every possible consistent signal configuration

Put together the individual gates using an AND connection to
obtain the final CNF formula

⇒ Tseitin transformation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 81 / 192

Tseitin Transformation

Gates Function CNF formula

x1
x2

x3 x3 ≡ x1∧x2
(¬x3∨x1)∧ (¬x3∨x2)∧
(x3∨¬x1∨¬x2)

x1
x2

x3 x3 ≡ x1∨x2
(x3∨¬x1)∧ (x3∨¬x2)∧
(¬x3∨x1∨x2)

x1
x2

x3 x3 ≡ x1⊕x2
(¬x3∨x1∨x2)∧ (¬x3∨¬x1∨¬x2)∧
(x3∨¬x1∨x2)∧ (x3∨x1∨¬x2)

x1 x2 x2 ≡ ¬x1 (x2∨x1)∧ (¬x2∨¬x1)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 82 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Tseitin Transformation – Example

x1
x2

x3

x4
x6

x5

FSK = (x1∧x2)∨¬x3

FCNF
SK = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)∧

(x6∨x3)∧ (¬x6∨¬x3)∧
(x4∨¬x5)∧ (x4∨¬x6)∧ (¬x4∨x5∨x6)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 83 / 192

Tseitin Transformation – Example

x1
x2

x3

x4
x6

x5

FSK = (x1∧x2)∨¬x3

FCNF
SK = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)∧

(x6∨x3)∧ (¬x6∨¬x3)∧
(x4∨¬x5)∧ (x4∨¬x6)∧ (¬x4∨x5∨x6)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 83 / 192

Tseitin Transformation – Example

x1
x2

x3

x4
x6

x5

FSK = (x1∧x2)∨¬x3

FCNF
SK = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)∧

(x6∨x3)∧ (¬x6∨¬x3)∧
(x4∨¬x5)∧ (x4∨¬x6)∧ (¬x4∨x5∨x6)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 83 / 192

Tseitin Transformation – Example

x1
x2

x3

x4
x6

x5

FSK = (x1∧x2)∨¬x3

FCNF
SK = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)∧

(x6∨x3)∧ (¬x6∨¬x3)∧
(x4∨¬x5)∧ (x4∨¬x6)∧ (¬x4∨x5∨x6)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 83 / 192

Schubert
Pencil

Tseitin Transformation

Important property

As long as for the CNF representation of each single gate only a
constant number of clauses is required, the number of clauses in
the final CNF will be linear in the number of gates in the circuit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 84 / 192

Combinational Equivalence Checking – Example

Let the specification and the implementation of a combinatorial circuit
be defined as follows:

x1
x2

x3

x7 x8x1
x2

x3
x9

Implementation

x′4

x5

x6

Specification

x4

Question: Are the specification and the implementation equivalent?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 85 / 192

Combinational Equivalence Checking – Example

x7 x8

M

x5

x6

x1
x2

x3

x4

x9 x′4

Specification

Implementation

FM = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)∧ (x6∨x3)∧ (¬x6∨¬x3)∧
(x4∨¬x5)∧ (x4∨¬x6)∧ (¬x4∨x5∨x6)∧ (¬x7∨x1)∧ (¬x7∨x2)∧
(x7∨¬x1∨¬x2)∧ (x7∨x8)∧ (¬x7∨¬x8)∧ (¬x9∨x3)∧ (¬x9∨x8)∧
(x9∨¬x3∨¬x8)∧ (x9∨x′4)∧ (¬x9∨¬x′4)∧ (¬M ∨¬x4∨¬x′4)∧
(¬M ∨x4∨x′4)∧ (M ∨¬x4∨x′4)∧ (M ∨x4∨¬x′4)∧ (M)

FM is unsatisfiable⇒ Implementation and specification are equivalent!
VTSA’15 Tobias Schubert – SAT-based Test & Verification 86 / 192

Schubert
Pencil

Schubert
Pencil

Combinational Equivalence Checking – Example

x7 x8

M

x5

x6

x1
x2

x3

x4

x9 x′4

Specification

Implementation

FM = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)∧ (x6∨x3)∧ (¬x6∨¬x3)∧
(x4∨¬x5)∧ (x4∨¬x6)∧ (¬x4∨x5∨x6)∧ (¬x7∨x1)∧ (¬x7∨x2)∧
(x7∨¬x1∨¬x2)∧ (x7∨x8)∧ (¬x7∨¬x8)∧ (¬x9∨x3)∧ (¬x9∨x8)∧
(x9∨¬x3∨¬x8)∧ (x9∨x′4)∧ (¬x9∨¬x′4)∧ (¬M ∨¬x4∨¬x′4)∧
(¬M ∨x4∨x′4)∧ (M ∨¬x4∨x′4)∧ (M ∨x4∨¬x′4)∧ (M)

FM is unsatisfiable⇒ Implementation and specification are equivalent!
VTSA’15 Tobias Schubert – SAT-based Test & Verification 86 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Structural Methods

Nowadays SAT solvers can handle problems with millions of clauses.
But how to compare (large) combinatorial circuits for which SAT
methods still fail?⇒ Structural methods

Solve several “small” problems instead of one “large” problem

Various options
Compute equivalent gates inside the miter circuit
And-Inverter-Graphs (AIGs)
. . .

VTSA’15 Tobias Schubert – SAT-based Test & Verification 87 / 192

Schubert
Pencil

Structural Methods

Observation from real-world instances

In most cases circuits which have to be compared show
structural similarities

Example: Only small changes in later design phases
In many cases logic optimizations respect hierarchy
boundaries
Thus, changes are not fundamental in most cases

How can we exploit structural similarities?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 88 / 192

Structural Methods

Observation from real-world instances

In most cases circuits which have to be compared show
structural similarities

Example: Only small changes in later design phases
In many cases logic optimizations respect hierarchy
boundaries
Thus, changes are not fundamental in most cases

How can we exploit structural similarities?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 88 / 192

Structural Methods

Approach

1 Traverse the circuits which have to be compared from inputs to
outputs

Identify equivalences at the internal signals of the miter
If there are any equivalences, replace equivalent nodes by
one (shared) representative

2 Check satisfiability of the simplified miter circuit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 89 / 192

Structural Methods – Simple Example

a

b
c

d

f

e g

i
j

z

h

Implementierung

Spezifikation

Starting point

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

a

b
c

d

f

e g

i
j

z

h

Implementierung

Spezifikation

?

Are the internal signals d and e equivalent?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Schubert
Pencil

Schubert
Pencil

Structural Methods – Simple Example

b
c

d

e

?

Parts of the miter which are relevant for the proof of d ≡ e

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

b
c

d

e

=

Local analysis is sufficient to show that d ≡ e

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Schubert
Pencil

Schubert
Pencil

Structural Methods – Simple Example

a

b
c

d

f

g

i
j

z

h

Simplified miter

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

a

b
c

d

f

g

i
j

z

h

?

Are the internal signals h and j equivalent?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

a

d

f

g

i
j

h

?

Parts of the miter which are relevant for the proof of h≡ j

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

a

d

f

g

i
j

h

=

Local analysis is sufficient to show that h≡ j

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Schubert
Pencil

Schubert
Pencil

Structural Methods – Simple Example

a

b
c

d

j

z

h

More simplified miter

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

a

b
c

d

j

z

h

Does z = 0 hold? Are specification and implementation equivalent?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Schubert
Pencil

Structural Methods – Simple Example

j

z

h

Parts of the miter which are relevant for the proof of z = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

j

z

h

Local analysis is sufficient to show that z = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Structural Methods – Simple Example

a

b
c

d

f

e g

i
j

z

h

Implementierung

Spezifikation

⇒ Specification and implementation are equivalent!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 90 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Structural Methods – Detection of Equivalences

Detect potential candidates for pairs of equivalent nodes by
simulation with random patterns

By an (incomplete) simulation of a restricted number of patterns
we can only show “non-equivalence”

Use simulation to partition the nodes into equivalence classes
which consist of the nodes with identical simulation results

Use a complete method (e.g. SAT) to detect equivalent nodes
within the computed equivalence classes

VTSA’15 Tobias Schubert – SAT-based Test & Verification 91 / 192

Schubert
Pencil

Structural Methods – Detection of Equivalences

Using SAT to prove equivalences

In order to keep the miter circuit “small”, the inputs of the SAT
problem are not necessarily primary inputs, but rather equivalent
internal nodes which have already been detected to be
equivalent

Two nodes are equivalent, if the SAT instance representing the
corresponding miter is unsatisfiable

If two nodes are proved to be equivalent, then one of the nodes
may be replaced by its equivalent counterpart

Be careful: If the SAT instance is satisfiable, then this does not
necessarily mean that the corresponding nodes are not
equivalent!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 92 / 192

Schubert
Pencil

Structural Methods – Detection of Equivalences

Equivalent nodes can be used as so-called cut points after they have
been replaced by a common representative

Cut points will be new input variables during miter construction
and thus keep the miter “small”

If the resulting circuits are equivalent, then the original circuits
have already been equivalent

Problem: Using cut points may lead to so-called “false
negatives”, i.e., two equivalent nodes are not classified to be
equivalent!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 93 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Structural Methods – Detection of Equivalences

Equivalent nodes can be used as so-called cut points after they have
been replaced by a common representative

Cut points will be new input variables during miter construction
and thus keep the miter “small”

If the resulting circuits are equivalent, then the original circuits
have already been equivalent

Problem: Using cut points may lead to so-called “false
negatives”, i.e., two equivalent nodes are not classified to be
equivalent!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 93 / 192

Structural Methods – Example

g

b

d

e

f

c

a

y1

g

b

d

e

f

c

a

y2

Spezifikation

Implementierung

Starting point

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Structural Methods – Example

g

b

d

e

f

c

a

y1

g

b

d

e

f

c

a

y2

Spezifikation

Implementierung

Note: Specification and implementation are equivalent

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Structural Methods – Example

g

b

d

e

f

c

a

y1

g

b

d

e

f

c

a

y2

Spezifikation

Implementierung

Try to show equivalence of y1 and y2 using cut points

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Schubert
Pencil

Schubert
Pencil

Structural Methods – Example

g

b

d

e

f

c

a

eq1

eq3

eq2

y1

g

b

d

e

f

c

a

eq1

eq3

eq2

y2

Assumption: Equivalences eq1, eq2, and eq3 already shown

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Schubert
Pencil

Structural Methods – Example

g

b

d

e

f

c

a

eq1

eq3

eq2

y1

g

b

d

e

f

c

a

eq1

eq3

eq2

y2

Cut the circuits at the internal equivalent signals

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Structural Methods – Example

g

b

d

e

f

c

a

eq1

eq3

eq2

y1

g

b

d

e

f

c

a

eq1

eq3

eq2

y2

Compute the miter depending on “cut variables”

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Structural Methods – Example

eq1
eq3

d
e
b

eq2

y1'

eq1
eq3

e

b
eq2

y2'

Corresponding CNF formula satisfiable
⇒ y1 and y2 not equivalent

⇒ Specification and implementation not equivalent
⇒ But it is a False Negative!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Schubert
Pencil

Structural Methods – Example

eq1
eq3

d
e
b

eq2

y1'

eq1
eq3

e

b
eq2

y2'

Corresponding CNF formula satisfiable
⇒ y1 and y2 not equivalent

⇒ Specification and implementation not equivalent
⇒ But it is a False Negative!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 94 / 192

Structural Methods – False Negatives

Problem

New variables at cut points may be assigned to arbitrary values

But. . .

The “rightmost” parts of the circuit need only to be equivalent for
values at the cut points which can be produced by the “leftmost”
parts

VTSA’15 Tobias Schubert – SAT-based Test & Verification 95 / 192

Structural Methods – Avoiding False Negatives

Do not use cut points
Makes proofs of equivalence for two nodes much more
difficult in many cases, since the corresponding SAT
problems become significantly “larger”

SAT sweeping
In a first step stop at cut points when constructing the miter
If necessary (satisfiable CNF) include more parts of the
circuit into the SAT problem to check for false negative
results

VTSA’15 Tobias Schubert – SAT-based Test & Verification 96 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 97 / 192

Automatic Test Pattern Generation

Motivation

Post-production test is a crucial step
Have there been problems during production?
Does the circuit contain faults?

In particular when used in safety-critical applications, every
produced chip has to be tested

Testing comprises more than 40% of costs in semiconductor
industry

VTSA’15 Tobias Schubert – SAT-based Test & Verification 98 / 192

Automatic Test Pattern Generation

Testing: Experiment on real manufactored chips
Goal is to check whether the chip behaves correctly
1. step: Apply an appropriate test pattern
2. step: Analyse the response of the circuit under test

VTSA’15 Tobias Schubert – SAT-based Test & Verification 99 / 192

Automatic Test Pattern Generation

Physical defects are modeled on the Boolean level according to
a fault model

Fault models are an abstract representation of real defects
Single stuck-at
Bridging faults
Interconnect opens
Path delay faults
. . .

Automatic Test Pattern Generation (ATPG)
Given: Circuit CUT and fault model FM
Goal: Determine test patterns for (all) faults in CUT wrt. FM

VTSA’15 Tobias Schubert – SAT-based Test & Verification 100 / 192

Automatic Test Pattern Generation

Single stuck-at fault model (s@)

s@0: One line is always at logic 0

s@1: One line is always at logic 1

In total only (2 × number_of_signals_CUT) faults to be checked

High amount of real defects detected by the s@ fault model!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 101 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

Faults:

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

Faults: Patterns:

p1

p2

p3

p4

p5

generate
random
patterns

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

Faults: Patterns:

p1

p2

p3

p4

p5

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end

 yes
f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

p6

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

mark f
as

detected;
add p to
test set

yes

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

p6

generate
random
patterns

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

mark f
as

detected;
add p to
test set

yes

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

simulate
generated
pattern(s)

(fault
dropping)

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

p6

generate
random
patterns

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

mark f
as

detected;
add p to
test set

yes

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

simulate
generated
pattern(s)

(fault
dropping)

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

p6

generate
random
patterns

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

mark f
as

detected;
add p to
test set

yes

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

simulate
generated
pattern(s)

(fault
dropping)

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

p6

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

mark f
as

detected;
add p to
test set

yes

mark f
as

aborted

 timeout

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation – Typical Flow
TIGUAN: SAT-BASED COMBINATIONAL ATPG IRA/ABS-SEMINAR 2008, WINDEN IM ELZTAL

© ALEJANDRO CZUTRO, University of Freiburg 11th April 2008

Usual ATPG-flow
Faults: Patterns:

p1

p2

p3

p4

p5

p6

generate
random
patterns

simulate
generated
pattern(s)

(fault
dropping)

all faults
classified?

end choose
a fault f
from list

determi-
nistic TPG

for f

 yes

no

pattern p
found?

mark f
as

redundant

no

mark f
as

detected;
add p to
test set

yes

mark f
as

aborted

 timeout

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

Test set

ATPG basics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 102 / 192

Automatic Test Pattern Generation

Redundant faults: s@0 at x3 is redundant

Justifying the error requires x1 = 1 and x2 = 1

But propagating the error to output x4 requires x1 = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 103 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

Justify the fault and find a propagation path

VTSA’15 Tobias Schubert – SAT-based Test & Verification 104 / 192

Schubert
Pencil

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

Justify the fault and find a propagation path

VTSA’15 Tobias Schubert – SAT-based Test & Verification 104 / 192

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

Justify the fault and find a propagation path

VTSA’15 Tobias Schubert – SAT-based Test & Verification 104 / 192

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

Justify the fault and find a propagation path

VTSA’15 Tobias Schubert – SAT-based Test & Verification 104 / 192

Schubert
Pencil

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

Justify the fault and find a propagation path

VTSA’15 Tobias Schubert – SAT-based Test & Verification 104 / 192

Automatic Test Pattern Generation

Main concept of automatic test pattern generation

Justify the fault and find a propagation path

VTSA’15 Tobias Schubert – SAT-based Test & Verification 104 / 192

Automatic Test Pattern Generation

Several ATPG-Approaches

Structural methods
D-algorithm
PODEM
FAN

SAT-based methods

VTSA’15 Tobias Schubert – SAT-based Test & Verification 105 / 192

SAT-based ATPG

Main flow
Construct the miter containing the correct and the faulty circuit
Encode the miter as CNF & solve the SAT problem
If the SAT formula is satisfiable we have found a test pattern for
the particular fault under consideration
Otherwise, the fault is redundant

VTSA’15 Tobias Schubert – SAT-based Test & Verification 106 / 192

SAT-based ATPG – Example
Conversion to CNF

x6

x5

x4

x3

x1

x2

(a) Correct circuit

x5

x6

x ′5
0

1

x1

x2

x3
x ′4

(b) Faulty circuit, s@1-error at x5

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Example
Conversion to CNF

x5

0

x6

x1

x2

x3

1

x4

M

x6
x ′

4

x ′
5

x5

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Example
Conversion to CNF

x5

0

x6

x1

x2

x3

1

x4

M

x6
x ′

4

x ′
5

x5

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Example
Conversion to CNF

x5

0

x6

x1

x2

x3

1

x4

M

x6
x ′

4

x ′
5

x5

(¬x5)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

SAT-based ATPG – Example
Conversion to CNF

x5

x6

x4

M

x3

x2

x1

x6 x ′
4

1
x ′

5

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

Schubert
Pencil

SAT-based ATPG – Example
Conversion to CNF

x5

x6

x4

M

x3

x2

x1

x6 x ′
4

1
x ′

5

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Example
Conversion to CNF

x5

x6

x4

M

x3

x2

x1

x ′
4

1
x ′

5

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Example
Conversion to CNF

x5

x6

x4

M

x3

x2

x1

1
x ′

5

x ′
4

FM = (¬x5 ∨ x1) ∧ (¬x5 ∨ x2) ∧ (x5 ∨ ¬x1 ∨ ¬x2) ∧ (x6 ∨ x3)∧
(¬x6 ∨ ¬x3) ∧ (x4 ∨ ¬x5) ∧ (x4 ∨ ¬x6) ∧ (¬x4 ∨ x5 ∨ x6)∧
(x ′4 ∨ ¬x ′5) ∧ (x ′4 ∨ ¬x6) ∧ (¬x ′4 ∨ x ′5 ∨ x6) ∧ (¬M ∨ x4 ∨ x ′4)∧
(¬M ∨ ¬x4 ∨ ¬x ′4) ∧ (M ∨ ¬x4 ∨ x ′4) ∧ (M ∨ x4 ∨ ¬x ′4)∧
(M) ∧ (¬x5) ∧ (x ′5)

F ′M = (¬x1 ∨ ¬x2) ∧ (x3) ∧ (¬x6) ∧ (x ′4) ∧ (¬x4) ∧ (M) ∧ (¬x5) ∧ (x ′5)

Test set: (x1, x2, x3) = {(0,0,1), (1,0,1), (0,1,1)}

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

Schubert
Pencil

Schubert
Pencil

SAT-based ATPG – Example
Conversion to CNF

x5

x6

x4

M

x3

x2

x1

1
x ′

5

x ′
4

FM = (¬x5 ∨ x1) ∧ (¬x5 ∨ x2) ∧ (x5 ∨ ¬x1 ∨ ¬x2) ∧ (x6 ∨ x3)∧
(¬x6 ∨ ¬x3) ∧ (x4 ∨ ¬x5) ∧ (x4 ∨ ¬x6) ∧ (¬x4 ∨ x5 ∨ x6)∧
(x ′4 ∨ ¬x ′5) ∧ (x ′4 ∨ ¬x6) ∧ (¬x ′4 ∨ x ′5 ∨ x6) ∧ (¬M ∨ x4 ∨ x ′4)∧
(¬M ∨ ¬x4 ∨ ¬x ′4) ∧ (M ∨ ¬x4 ∨ x ′4) ∧ (M ∨ x4 ∨ ¬x ′4)∧
(M) ∧ (¬x5) ∧ (x ′5)

F ′M = (¬x1 ∨ ¬x2) ∧ (x3) ∧ (¬x6) ∧ (x ′4) ∧ (¬x4) ∧ (M) ∧ (¬x5) ∧ (x ′5)

Test set: (x1, x2, x3) = {(0,0,1), (1,0,1), (0,1,1)}

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Example
Conversion to CNF

x5

x6

x4

M

x3

x2

x1

1
x ′

5

x ′
4

FM = (¬x5 ∨ x1) ∧ (¬x5 ∨ x2) ∧ (x5 ∨ ¬x1 ∨ ¬x2) ∧ (x6 ∨ x3)∧
(¬x6 ∨ ¬x3) ∧ (x4 ∨ ¬x5) ∧ (x4 ∨ ¬x6) ∧ (¬x4 ∨ x5 ∨ x6)∧
(x ′4 ∨ ¬x ′5) ∧ (x ′4 ∨ ¬x6) ∧ (¬x ′4 ∨ x ′5 ∨ x6) ∧ (¬M ∨ x4 ∨ x ′4)∧
(¬M ∨ ¬x4 ∨ ¬x ′4) ∧ (M ∨ ¬x4 ∨ x ′4) ∧ (M ∨ x4 ∨ ¬x ′4)∧
(M) ∧ (¬x5) ∧ (x ′5)

F ′M = (¬x1 ∨ ¬x2) ∧ (x3) ∧ (¬x6) ∧ (x ′4) ∧ (¬x4) ∧ (M) ∧ (¬x5) ∧ (x ′5)

Test set: (x1, x2, x3) = {(0,0,1), (1,0,1), (0,1,1)}

VTSA’15 Tobias Schubert – SAT-based Test & Verification 107 / 192

SAT-based ATPG – Adding Structural Information
Adding structural information to the CNF

Additional
Logic

x3
x6

x1

x2

x5

x8

x9

x10

x7

x4 x11

VTSA’15 Tobias Schubert – SAT-based Test & Verification 108 / 192

SAT-based ATPG – Adding Structural Information
Adding structural information to the CNF

Additional
Logic

x3
x6

x1

x2

x5

x8

x9

x10

x7

x4 x11

s@1-error

VTSA’15 Tobias Schubert – SAT-based Test & Verification 108 / 192

Schubert
Pencil

SAT-based ATPG – Adding Structural Information
Adding structural information to the CNF

Additional
Logic

x3

x1

x2

x5

x8

x9

x10

x7

x4 x11
0/1

0/1

0/11 x6 0

0

0
s@1-error

VTSA’15 Tobias Schubert – SAT-based Test & Verification 108 / 192

SAT-based ATPG – Adding Structural Information
Adding structural information to the CNF

Additional
Logic

x1

x2

0

0

x3

x5

x8

x9

x10

x7

x4 x11

0

0

0/1

0

0

0

0/1

0/1

0
1 x6 0

s@1-error

VTSA’15 Tobias Schubert – SAT-based Test & Verification 108 / 192

SAT-based ATPG – Adding Structural Information
Adding structural information to the CNF

Additional
Logic

x1

x2

0

0

x3

x5

x8

x9

x10

x7

x4 x11

0

0

0/1

0

0

0

0/1

0/1

0
1 x6 0

s@1-error

Add (x7, x8) to the CNF

VTSA’15 Tobias Schubert – SAT-based Test & Verification 108 / 192

SAT-based ATPG – Adding Structural Information
Adding structural information to the CNF

Additional
Logic

x1

x2

0

0

x3

x5

x8

x9

x10

x4 x11

0

0/1

0

1

0/1

0/1

0
1 x6 0

x7
1

0/1
s@1-error

Add (x7, x8) to the CNF

VTSA’15 Tobias Schubert – SAT-based Test & Verification 108 / 192

SAT-based ATPG – Cone-of-Influence Reduction

s@−error

Circuit under Test

Which inputs may be relevant for justifying the fault?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 109 / 192

SAT-based ATPG – Cone-of-Influence Reduction

s@−error

Circuit under Test

Which inputs might be relevant for justifying the fault?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 109 / 192

SAT-based ATPG – Cone-of-Influence Reduction

s@−error

Circuit under Test

Which outputs might be on the propagation path?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 109 / 192

SAT-based ATPG – Cone-of-Influence Reduction

s@−error

Circuit under Test

What about side-effects?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 109 / 192

Schubert
Pencil

SAT-based ATPG – Cone-of-Influence Reduction

s@−error

Circuit under Test

⇒ Only the “brown” parts have to be transformed into CNF!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 109 / 192

SAT-based ATPG – Testing of Sequential Circuits

VTSA’15 Tobias Schubert – SAT-based Test & Verification 110 / 192

Schubert
Pencil

SAT-based ATPG – Testing of Sequential Circuits

Problems specific wrt. test of sequential circuits

Initialization
Circuit’s state at the beginning of test application might be
unknown

Counters
Setting a counter to a specific value might take a lot of clock
cycles

Complexity of test generation
Finding a sequence to distinguish between a faulty and a
fault-free chip might require a large number of state
transitions

⇒ Practical methods reduce sequential to combinatorial ATPG
⇒ Solution: “Design for Testability”-techniques within the chips
⇒ Example: Scan-based designs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 111 / 192

SAT-based ATPG – Testing of Sequential Circuits

Problems specific wrt. test of sequential circuits

Initialization
Circuit’s state at the beginning of test application might be
unknown

Counters
Setting a counter to a specific value might take a lot of clock
cycles

Complexity of test generation
Finding a sequence to distinguish between a faulty and a
fault-free chip might require a large number of state
transitions

⇒ Practical methods reduce sequential to combinatorial ATPG
⇒ Solution: “Design for Testability”-techniques within the chips
⇒ Example: Scan-based designs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 111 / 192

SAT-based ATPG – Scan-based Designs

Scan: ScanEnable = 1

Capture: ScanEnable = 0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 112 / 192

Schubert
Pencil

SAT-based ATPG – Scan-based Designs

Test flow

1 Scan in data into SFFs

2 Apply test vector to PIs

3 Perform the test

4 Check POs

5 Scan out & check the
data available at SFFs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 112 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 113 / 192

Schubert
Pencil

Sequential Equivalence Checking

Combinational Part

FFk

FF1

FF0

...

Outputs
(Mealy Machine)

Cu
rr
en
tS

ta
te

N
ex
tS

ta
te

Implementation

Combinational Part

FFk

FF1

FF0

...

Outputs
(Mealy Machine)

Cu
rr
en
tS

ta
te

N
ex
tS

ta
te

Specification

Inputs

Inputs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 114 / 192

Sequential Equivalence Checking

1

Combinational Part

FFk

FF1

FF0

...

Outputs
(Mealy Machine)

Cu
rr
en
tS

ta
te

N
ex
tS

ta
te

Implementation

Combinational Part

FFk

FF1

FF0

...

Outputs
(Mealy Machine)

Cu
rr
en
tS

ta
te

N
ex
tS

ta
te

Specification

Inputs

Inputs
54

6 7

0/0

1/1

0/1

0/0

0/0

1/0

1/1

1/1

23

0/0

0/0

0/01/1 1/1

1/0

VTSA’15 Tobias Schubert – SAT-based Test & Verification 114 / 192

Sequential Equivalence Checking

1

1,4

Combinational Part

FFk

FF1

FF0

...

Outputs
(Mealy Machine)

Cu
rr
en
tS

ta
te

N
ex
tS

ta
te

Implementation

Combinational Part

FFk

FF1

FF0

...

Outputs
(Mealy Machine)

Cu
rr
en
tS

ta
te

N
ex
tS

ta
te

Specification

Inputs

Inputs
54

6 7

0/0

1/1

0/1

0/0

0/0

1/0

1/1

1/1

23

0/0

0/0

0/01/1 1/1

1/0 1,5

2,73,6

0/1

0/1

0/1

0/0

1/1
1/1

1/1

1/1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 114 / 192

Schubert
Pencil

Schubert
Pencil

Sequential Equivalence Checking

What can we do with equivalence checking of sequential circuits?

Functional equivalence of two sequential circuits (in general)
provable

We cannot prove with equivalence checking whether a circuit
satisfies a more abstract specification, which is not given as a
sequential circuit or a deterministic finite automaton!

Examples for such abstract specifications are
Safety properties
Liveness properties

⇒ New specification language(s) for timed properties and
in connection with that new proof methods are necessary!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 115 / 192

Preliminaries – Kripke Structure

To model computational runs of a sequential circuit, Kripke structures (also referred to
as temporal structures) can be used:

Definition (Kripke structure, temporal structure)

A Kripke structure M is a 4-tuple M := (S, I,R,L) consisting of
a finite set S of states
a set /0 6= I ⊆ S of initial states
a transition relation R ⊆ S×S
with ∀s ∈ S ∃t ∈ S : (s, t) ∈ R, and
a labeling function L : S→ 2V ,
where V is a set of propositional variables (atomic formulas, atomic propositions).

Atomic propositions are observable elementary properties of states, like “a
timeout has occured”, “a request has been made”
Using such a temporal structure, we can derive all possible computational runs.
They are obtained by “unrolling” the Kipke structure according to its transition
relation R

VTSA’15 Tobias Schubert – SAT-based Test & Verification 116 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)
Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)
Xϕ: Formula ϕ holds in the second state on
the path (“next”)
ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)
Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)
Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)
Xϕ: Formula ϕ holds in the second state on
the path (“next”)
ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)
Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)

Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)
Xϕ: Formula ϕ holds in the second state on
the path (“next”)
ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)
Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)
Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)

Xϕ: Formula ϕ holds in the second state on
the path (“next”)
ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)
Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)
Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)
Xϕ: Formula ϕ holds in the second state on
the path (“next”)

ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)
Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)
Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)
Xϕ: Formula ϕ holds in the second state on
the path (“next”)
ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)

Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)
Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)
Xϕ: Formula ϕ holds in the second state on
the path (“next”)
ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)

Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Preliminaries – Temporal Propositional Logic

Temporal propositional logic = Propositional logic + Temporal operators

Linear temporal operators
They make statements about a single path of the
computation tree:

Gϕ: Formula ϕ holds in every state on the
path (“globally” or “always”)
Fϕ: Formula ϕ holds in some state on the
path (“finally” or “eventually”)
Xϕ: Formula ϕ holds in the second state on
the path (“next”)
ϕUψ: Formula ϕ holds in every state on the
path until a state is reached where ψ holds
(“until”)

Path quantifiers
They make statements about
properties of states:

Aϕ: Formula ϕ holds on all
paths starting in this state
(“for all paths”)
Eϕ: Formula ϕ holds on
some path starting in this
state (“there exists a path”)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 117 / 192

Property/Model Checking in a Nutshell

(Temporal Logic)
Property ϕ

M |= ϕ!

Counterexample

Model Checker

(Kripke Structure)
Model M

VTSA’15 Tobias Schubert – SAT-based Test & Verification 118 / 192

Property/Model Checking in a Nutshell

s1

s0 s3

s2
p

p

q

Model M

M, s0 |= E(pUq)!

Model Checker

ϕ = E(pUq)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 118 / 192

SAT-based Bounded Model Checking

Idea
Formulate the existence of paths with certain properties as
satisfiability problem

Only properties which require the existence of paths
Certificate or counterexample depending on context
E.g.: Counterexamples for safety and liveness

In general, arbitrarily long paths necessary, but this is not
possible in SAT!

Restriction to finite path lengths⇒ bounded model checking

VTSA’15 Tobias Schubert – SAT-based Test & Verification 119 / 192

Model Checking vs. Bounded Model Checking

Given

Kripke structure M

Temporal formula ϕ “suited for BMC”

Maximum unrolling depth k

Model Checking

M |= ϕ?

Bounded Model Checking

M |=k ϕ?

|=k means in this context that from the initial states in M, the
outgoing paths are considered only up to a maximum length k

VTSA’15 Tobias Schubert – SAT-based Test & Verification 120 / 192

Illustration 2-Bit Counter: Time Frame Expansion

00 11

1001

s0

FF FF rst
clk

b a

rst
clk

VTSA’15 Tobias Schubert – SAT-based Test & Verification 121 / 192

Illustration 2-Bit Counter: Time Frame Expansion

00 11

1001

s0

b0 a0

a1b1

Let ϕ be a temporal formula and k = 1. M |=1 ϕ?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 121 / 192

Illustration 2-Bit Counter: Time Frame Expansion

00 11

1001

s0

b0 a0

b1 a1

a2b2

Let ϕ be a temporal Formula and k = 2. M |=2 ϕ?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 121 / 192

Illustration 2-Bit Counter: Time Frame Expansion

00 11

1001

s0

b0 a0

b2 a2

a3b3

b1 a1

Let ϕ be a temporal Formula and k = 3. M |=3 ϕ?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 121 / 192

SAT-based Bounded Model Checking

General flow

1 Generate a propositional logic formula from the given Kripke
structure M, property ϕ, and unrolling depth k, which is
satisfiable iff M |=k ϕ

2 Translate the formula generated above into CNF

3 Solve it with a SAT solver
CNF satisfiable⇒M |=k ϕ ⇒ certificate/counterexample
CNF unsatisfiable⇒M 6|=k ϕ ⇒ no statement can be made
regarding M |= ϕ

Repeat the steps from 1 to 3 with increasing values for k until either a
counterexample is found, or a fixed stopping criterion is met

VTSA’15 Tobias Schubert – SAT-based Test & Verification 122 / 192

Construction of the propositional logic formula

Definition
Let M = (S, I,R,L) be a Kripke structure, ϕ a property, and k an
unfolding depth. Then the characteristic function JM,ϕKk
corresponding to M, ϕ, and k is defined as

I(s0)∧
[k−1∧

i=0
R(si ,si+1)

]
∧
[∧

sj∈S
(sj → L(sj))

]
∧Pk(ϕ)

with

I(s0): characteristic fct. of the initial states,

R(si ,si+1): characteristic fct. of the transition relation,

L(sj): characteristic fct. of the label function L,

Pk(ϕ): characteristic fct. of ϕ at depth k.

VTSA’15 Tobias Schubert – SAT-based Test & Verification 123 / 192

Types of Properties – Safety

Safety

Specify invariants of the system:

AGsafe

BMC-formulation for refuting safety (= proving EF¬safe):

I(s0)∧
k−1∧
i=0

T(si ,si+1)∧¬safe(sk)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 124 / 192

Types of Properties – Liveness

Liveness

Specified in temporal logic:

AFgood

Refutation of liveness (= proving EG¬good) requires infinitely
long paths!

If AFgood is violated, there is a “lasso” on which all states
satisfy ¬good
BMC-formulation:

I(s0)∧
k∧

i=0
T(si ,si+1)∧

k∧
i=0
¬good(si)∧

k∨
l=0

(sl = sk+1)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 125 / 192

Schubert
Pencil

BMC Example Safety – 2-Bit Counter

00 11

1001

ab

Requirement: State (1,1) may not reached, or later an
overflow will occur, i.e. the following must hold:

AG(¬(b∧a))⇔¬EF(b∧a)

Possible query: Can one reach (1,1) from the initial
state (0,0) in ≤ 2 steps?

⇒ M |=2 ϕ with ϕ = EF(b∧a)?

⇒ I(s0) = ¬b0 ∧¬a0

⇒ R(s0,s1) = (b1↔ (b0⊕a0))∧ (a1↔¬a0)

⇒ R(s1,s2) = (b2↔ (b1⊕a1))∧ (a2↔¬a1)

⇒ P2(ϕ) = (b0 ∧a0)∨ (b1 ∧a1)∨ (b2 ∧a2)

⇒ JM,ϕK2 = I(s0)∧R(s0,s1)∧R(s1,s2)∧P2(ϕ)

⇒ JM,ϕK2 = 0

⇒ Starting from (0,0), (1,1) cannot reached in max.
2 steps⇒M 6|=2 ϕ!

But: M 6|= AG(¬(b∧a))⇔M 6|= ¬EF(b∧a)!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 126 / 192

BMC Example Safety – 2-Bit Counter

00 11

1001

ab

Requirement: State (1,1) may not reached, or later an
overflow will occur, i.e. the following must hold:

AG(¬(b∧a))⇔¬EF(b∧a)

Possible query: Can one reach (1,1) from the initial
state (0,0) in ≤ 2 steps?

⇒ M |=2 ϕ with ϕ = EF(b∧a)?

⇒ I(s0) = ¬b0 ∧¬a0

⇒ R(s0,s1) = (b1↔ (b0⊕a0))∧ (a1↔¬a0)

⇒ R(s1,s2) = (b2↔ (b1⊕a1))∧ (a2↔¬a1)

⇒ P2(ϕ) = (b0 ∧a0)∨ (b1 ∧a1)∨ (b2 ∧a2)

⇒ JM,ϕK2 = I(s0)∧R(s0,s1)∧R(s1,s2)∧P2(ϕ)

⇒ JM,ϕK2 = 0

⇒ Starting from (0,0), (1,1) cannot reached in max.
2 steps⇒M 6|=2 ϕ!

But: M 6|= AG(¬(b∧a))⇔M 6|= ¬EF(b∧a)!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 126 / 192

BMC Example Safety – 2-Bit Counter

00 11

1001

ab

Requirement: State (1,1) may not reached, or later an
overflow will occur, i.e. the following must hold:

AG(¬(b∧a))⇔¬EF(b∧a)

Possible query: Can one reach (1,1) from the initial
state (0,0) in ≤ 2 steps?

⇒ M |=2 ϕ with ϕ = EF(b∧a)?

⇒ I(s0) = ¬b0 ∧¬a0

⇒ R(s0,s1) = (b1↔ (b0⊕a0))∧ (a1↔¬a0)

⇒ R(s1,s2) = (b2↔ (b1⊕a1))∧ (a2↔¬a1)

⇒ P2(ϕ) = (b0 ∧a0)∨ (b1 ∧a1)∨ (b2 ∧a2)

⇒ JM,ϕK2 = I(s0)∧R(s0,s1)∧R(s1,s2)∧P2(ϕ)

⇒ JM,ϕK2 = 0

⇒ Starting from (0,0), (1,1) cannot reached in max.
2 steps⇒M 6|=2 ϕ!

But: M 6|= AG(¬(b∧a))⇔M 6|= ¬EF(b∧a)!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 126 / 192

BMC Example Safety – 2-Bit Counter

00 11

1001

ab

Requirement: State (1,1) may not reached, or later an
overflow will occur, i.e. the following must hold:

AG(¬(b∧a))⇔¬EF(b∧a)

Possible query: Can one reach (1,1) from the initial
state (0,0) in ≤ 2 steps?

⇒ M |=2 ϕ with ϕ = EF(b∧a)?

⇒ I(s0) = ¬b0 ∧¬a0

⇒ R(s0,s1) = (b1↔ (b0⊕a0))∧ (a1↔¬a0)

⇒ R(s1,s2) = (b2↔ (b1⊕a1))∧ (a2↔¬a1)

⇒ P2(ϕ) = (b0 ∧a0)∨ (b1 ∧a1)∨ (b2 ∧a2)

⇒ JM,ϕK2 = I(s0)∧R(s0,s1)∧R(s1,s2)∧P2(ϕ)

⇒ JM,ϕK2 = 0

⇒ Starting from (0,0), (1,1) cannot reached in max.
2 steps⇒M 6|=2 ϕ!

But: M 6|= AG(¬(b∧a))⇔M 6|= ¬EF(b∧a)!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 126 / 192

BMC Example Liveness – Modified 2-Bit counter

00 11

1001

ab

Requirement: State (1,1) must be reachable from every state, i.e.
the following must hold:

AF(b∧a)⇔¬EG(¬(b∧a))

Counterexample exists iff from the initial state (0,0) there exists a
path of length k that belongs to a cycle, and in no state of this path
(b∧a) holds. Given k = 2 and ϕ = EG(¬(b∧a)):

⇒ I(s0) = ¬b0 ∧¬a0
⇒ R(si ,si+1) = ((bi+1↔ (bi ⊕ai))∧ (ai+1↔¬ai))∨

(bi+1 ∧¬ai+1 ∧bi ∧¬ai) with i = 0,1,2

⇒ P2(ϕ) = (¬b0 ∨¬a0)∧ (¬b1 ∨¬a1)∧ (¬b2 ∨¬a2)

⇒ [s3 ≡ si] = (b3↔ bi)∧ (a3↔ ai) with i = 0,1,2

⇒ JM,ϕK2 = I(s0)∧
[2∧

i=0
R(si ,si+1)

]
∧
[2∨

i=0
[s3 ≡ si]

]
∧P2(ϕ)

⇒ JM,ϕK2 = ¬b0 ∧¬a0 ∧¬b1 ∧a1 ∧b2 ∧¬a2 ∧b3 ∧¬a3
⇒ Counterexample found!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 127 / 192

BMC Example Liveness – Modified 2-Bit counter

00 11

1001

ab

Requirement: State (1,1) must be reachable from every state, i.e.
the following must hold:

AF(b∧a)⇔¬EG(¬(b∧a))

Counterexample exists iff from the initial state (0,0) there exists a
path of length k that belongs to a cycle, and in no state of this path
(b∧a) holds. Given k = 2 and ϕ = EG(¬(b∧a)):

⇒ I(s0) = ¬b0 ∧¬a0
⇒ R(si ,si+1) = ((bi+1↔ (bi ⊕ai))∧ (ai+1↔¬ai))∨

(bi+1 ∧¬ai+1 ∧bi ∧¬ai) with i = 0,1,2

⇒ P2(ϕ) = (¬b0 ∨¬a0)∧ (¬b1 ∨¬a1)∧ (¬b2 ∨¬a2)

⇒ [s3 ≡ si] = (b3↔ bi)∧ (a3↔ ai) with i = 0,1,2

⇒ JM,ϕK2 = I(s0)∧
[2∧

i=0
R(si ,si+1)

]
∧
[2∨

i=0
[s3 ≡ si]

]
∧P2(ϕ)

⇒ JM,ϕK2 = ¬b0 ∧¬a0 ∧¬b1 ∧a1 ∧b2 ∧¬a2 ∧b3 ∧¬a3
⇒ Counterexample found!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 127 / 192

BMC Example Liveness – Modified 2-Bit counter

00 11

1001

ab

Requirement: State (1,1) must be reachable from every state, i.e.
the following must hold:

AF(b∧a)⇔¬EG(¬(b∧a))

Counterexample exists iff from the initial state (0,0) there exists a
path of length k that belongs to a cycle, and in no state of this path
(b∧a) holds. Given k = 2 and ϕ = EG(¬(b∧a)):

⇒ I(s0) = ¬b0 ∧¬a0
⇒ R(si ,si+1) = ((bi+1↔ (bi ⊕ai))∧ (ai+1↔¬ai))∨

(bi+1 ∧¬ai+1 ∧bi ∧¬ai) with i = 0,1,2

⇒ P2(ϕ) = (¬b0 ∨¬a0)∧ (¬b1 ∨¬a1)∧ (¬b2 ∨¬a2)

⇒ [s3 ≡ si] = (b3↔ bi)∧ (a3↔ ai) with i = 0,1,2

⇒ JM,ϕK2 = I(s0)∧
[2∧

i=0
R(si ,si+1)

]
∧
[2∨

i=0
[s3 ≡ si]

]
∧P2(ϕ)

⇒ JM,ϕK2 = ¬b0 ∧¬a0 ∧¬b1 ∧a1 ∧b2 ∧¬a2 ∧b3 ∧¬a3
⇒ Counterexample found!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 127 / 192

Schubert
Pencil

SAT-based Bounded Model Checking

BMC can be used to disprove invariants AGϕ

... by proving EF¬ϕ considering paths of length k
If paths longer than k are needed for the proof, then BMC
fails

BMC can be used to disprove liveness properties like AFϕ

... by proving EG¬ϕ considering “lassos” of length k
If lassos longer than k are needed for the proof, then BMC
fails

In the following we restrict ourselves to invariants / safety
properties

VTSA’15 Tobias Schubert – SAT-based Test & Verification 128 / 192

Usage of BMC to falsify Safety Properties

Idea: Restrict system behavior to runs of some given bounded length,
i.e. runs with a bounded number of transition steps

reachable
state set

length

reachable state set
for runs of bounded

VTSA’15 Tobias Schubert – SAT-based Test & Verification 129 / 192

Usage of BMC to falsify Safety Properties

Idea: If the restricted system is unsafe (i.e. violates some safety
property, state invariant) then the original system is unsafe, too

reachable
state set

length

reachable state set
for runs of bounded

unsafe
state set

VTSA’15 Tobias Schubert – SAT-based Test & Verification 130 / 192

Schubert
Pencil

Usage of BMC in the Verification Domain

· · ·

· · ·

......

x0
0 ... x0

n

y0
0 ... y0

m

· · ·

· · ·

...

x1
0 ... x1

n

s10

s1r

y1
0 ... y1

m

· · ·

· · ·

...

xk−1
0 ... xk−1

n

sk−1
0

sk−1
r

s20

s2r

...· · ·
sk0

skr

s00

s0r

T 1,2T 0,1 T k−1,kI0 ¬P k

yk−1
0 ... yk−1

m

∧ ∧ ∧ . . . ∧ ∧

Initial state I, transition relation T , property P

Iterative unrolling of the system for k = 0,1, ...,K up to a given maximal unrolling
depth K

BMCk = I0 ∧
k−1∧
i=0

T i,i+1 ∧¬Pk

Convert BMCk into CNF by Tseitin transformation and solve it using a SAT solver

CNF satisfiable⇒ Invariant condition P violated after k steps
CNF unsatisfiable⇒ no conclusion, next iteration step

VTSA’15 Tobias Schubert – SAT-based Test & Verification 131 / 192

Some Remarks

Typically, BMC is used as an efficient means to find errors in a
system M, i.e. is there a k > 0 such that we can reach a state
violating ϕ for a given invariant AGϕ?

BMC is really efficient if there is a short error path

Without extensions it is not possible to prove that ϕ holds for all
reachable states

Bounded Model Checking→ Model Checking
Computing the “radius” of the Kripke structure
k-induction
Craig interpolation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 132 / 192

Observation

· · ·

· · ·

......

x0
0 ... x0

n

y0
0 ... y0

m

· · ·

· · ·

...

x1
0 ... x1

n

s10

s1r

y1
0 ... y1

m

· · ·

· · ·

...

xk−1
0 ... xk−1

n

sk−1
0

sk−1
r

s20

s2r

...· · ·
sk0

skr

s00

s0r

T 1,2T 0,1 T k−1,kI0 ¬P k

yk−1
0 ... yk−1

m

∧ ∧ ∧ . . . ∧ ∧

k = i : I0 ∧T0,1 ∧T1,2 ∧ ...∧T i−1,i ∧¬Pi

k = i +1 : I0 ∧T0,1 ∧T1,2 ∧ ...∧T i−1,i ∧T i,i+1 ∧¬Pi+1

The main part of the formula remains unchanged

¬Pi has to be removed

T i,i+1 ∧¬Pi+1 has to be added

How to profit from the similarity between those problems?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 133 / 192

Incremental SAT Solving

In many practical applications – not only in the area of BMC –
often several SAT instances are generated to solve a real-world
problem

Generated SAT instances are often very similar and contain
identical subformulas

Idea: Instead of constructing and solving each instance
separately, the SAT formula is processed incrementally

Knowledge learnt so far (conflict clauses, variable activity, . . .)
can be re-used in later instances

Standard feature of all modern SAT solvers

VTSA’15 Tobias Schubert – SAT-based Test & Verification 134 / 192

Incremental SAT Solving

Main idea

Make use of the knowledge learnt in the previous instance by
re-using the learnt conflict clauses

Question

Is this always allowed?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 135 / 192

Incremental SAT Solving

Idea: Make use of the knowledge learnt in the previous instance
by re-using the learnt conflict clauses.

Question: Is this always allowed?

Observation
If c is a conflict clause for SAT instance A with CNF CNFA,
then CNFA⇒ c
If instance B results from A just by adding clauses (i.e.
CNFB ⊇ CNFA), then CNFB⇒ c holds as well
Conflict clauses be may re-used then

But what if CNFB ⊇ CNFA does not hold?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 136 / 192

Incremental SAT Solving

General case: CNFA contains clauses that do not occur in CNFB
anymore

Now we need for each conflict clause c the information about the
set of original clauses it was derived from

Remember: Conflict clauses result from original and/or conflict
clauses by resolution (implication graph)

⇒ Conflict clauses which are derived from original clauses in
CNFA \CNFB are not allowed to be added to CNFB!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 137 / 192

Illustration: Re-using Clauses

VTSA’15 Tobias Schubert – SAT-based Test & Verification 138 / 192

Illustration: Re-using Clauses

VTSA’15 Tobias Schubert – SAT-based Test & Verification 139 / 192

Illustration: Re-using Clauses

VTSA’15 Tobias Schubert – SAT-based Test & Verification 140 / 192

Incremental SAT Solving with Assumptions

In general, storing which conflict clause depends on which original clauses is too
expensive! Here is the most common approach to solve the problem:

Activation variables and assumptions
Use “special” new de-activation variables di
For clauses c which should be removable from the clause set, a positive
de-activation literal is added: c := c∪di
There are only positive occurrences of de-activation variables!

Turning c on and off:
Turning on by di = 0
Turning off by di = 1

Example
ϕ = (a∨b)∧ (¬c∨d) Initial formula

ϕ0/¬d0 = (a∨b)∧ (¬c∨d)∧ (b∨d0) incr. step 0

ϕ1/d0,¬d1 = (a∨b)∧ (¬c∨d)∧ (b∨d0)∧ (d ∨d1) incr. step 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 141 / 192

Incremental SAT Solving with Assumptions

In general, storing which conflict clause depends on which original clauses is too
expensive! Here is the most common approach to solve the problem:

Activation variables and assumptions
Use “special” new de-activation variables di
For clauses c which should be removable from the clause set, a positive
de-activation literal is added: c := c∪di
There are only positive occurrences of de-activation variables!

Turning c on and off:
Turning on by di = 0
Turning off by di = 1

Example
ϕ = (a∨b)∧ (¬c∨d) Initial formula

ϕ0/¬d0 = (a∨b)∧ (¬c∨d)∧ (b∨d0) incr. step 0

ϕ1/d0,¬d1 = (a∨b)∧ (¬c∨d)∧ (b∨d0)∧ (d ∨d1) incr. step 1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 141 / 192

Incremental SAT Solving with Assumptions

Activation variables and assumptions
...

De-activation variables are assigned by assumptions before SAT
solving (activating / de-activating clauses)

Assumptions can not be changed during SAT solving (Note: Unit
clauses and assumptions are not the same!)

Important observation: All conflict clauses resulting from c∪di
by resolution contain literal di

⇒ If c∪di is turned off in the next run, i.e., di is set to 1 by
assumption, then all conflict clauses depending on c∪di are
turned off as well!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 142 / 192

Incremental SAT Solving and BMC

· · ·

· · ·

......

x0
0 ... x0

n

y0
0 ... y0

m

· · ·

· · ·

...

x1
0 ... x1

n

s10

s1r

y1
0 ... y1

m

· · ·

· · ·

...

xk−1
0 ... xk−1

n

sk−1
0

sk−1
r

s20

s2r

...· · ·
sk0

skr

s00

s0r

T 1,2T 0,1 T k−1,kI0 ¬P k

yk−1
0 ... yk−1

m

∧ ∧ ∧ . . . ∧ ∧

k = i : I0 ∧T0,1 ∧T1,2 ∧ ...∧T i−1,i ∧¬Pi

k = i +1 : I0 ∧T0,1 ∧T1,2 ∧ ...∧T i−1,i ∧T i,i+1 ∧¬Pi+1

Add de-activation literal di for each clause representing ¬Pi

For k = i activate ¬Pi by assumption di = 0
For k > i de-activate ¬Pi by assumption di = 1
All knowledge / conflict clauses learnt for k = i can be re-used (except the
knowledge depending on ¬Pi)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 143 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 144 / 192

Satisfiability Modulo Theory

Hybrid Systems

Typically, embedded systems are characterized by the
combination of discrete and continuous variables

iSAT

Satisfiability and BMC checker for quantifier-free Boolean
combinations of arithmetic constraints over the reals and
integers

SAT

iSAT UNSAT

unknown

∧ (b → sin(x) ·y < 7.2)

∧ (i2 = 3j−5)

∧ (
√

2x−y = 8 ∨ c)

(¬b ∨ ¬c)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 145 / 192

Satisfiability Modulo Theory – iSAT

iSAT

Not a “pure” SAT-Modulo-Theory solver

yes / no
consistent:

arithmetic
constraint system

explanation

SAT
reasoner

Arithmetic

Can be seen as a generalization of a SAT solver
Branch-and-deduce framework inherited from SAT
Deduction rule for clauses

Unit propagation
Deduction rules for arithmetic operators

Interval constraint propagation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 146 / 192

Satisfiability Modulo Theory – ICP

Interval Constraint Propagation (ICP)

h1 = z2, z ∈ [3,7], h1 ∈ [−2,25]

z ∈ [3,7]⇒ h1 ≥ 9⇒ h1 ∈ [9,25] h1 ∈ [9,25]⇒ z ≤ 5⇒ z ∈ [3,5]

VTSA’15 Tobias Schubert – SAT-based Test & Verification 147 / 192

Satisfiability Modulo Theory – BMC Mode of iSAT

iSAT

There’s no sequence of
input values such that
3.14≤ x ≤ 3.15

Safety property:

DECL
boole b;
float [0.0, 1000.0] x;

INIT
– Initial state.
x = 2.0;

TRANS
– Transition relation.
b -> x’ = xˆ2 + 1;
!b -> x’ = nrt(x, 3);

TARGET
– State(s) to be reached.
x >= 3.14 and x <= 3.15;

CANDIDATE SOLUTION:
b (boole):
@0: [1, 1]
@1: [0, 0]
@2: [0, 0]
@3: [0, 0]
@4: [1, 1]
@5: [1, 1]
@6: [1, 1]
@7: [0, 0]
@8: [0, 0]
@9: [1, 1]
@10: [0, 0]
@11: [1, 1]

x (float):
@0: [2, 2]
@1: [5, 5]
@2: [1.7099, 1,7100]
@3: [1.1874, 1,1959]
@4: [1.0589, 1.0615]
@5: [2.1214, 2.1267]
@6: [5.5013, 5.5114]
@7: [31.329, 31.3391]
@8: [3.1499, 1.1576]
@9: [1.4597, 1.4671]
@10: [3.1307, 3.1402]
@11: [1.4629,1.4663]
@12: [3.1400, 3.1500]

b/

¬b/

x := 2

C
O

U
N

TER
EXA

M
PLE

x := 3√x

x := x2+1

VTSA’15 Tobias Schubert – SAT-based Test & Verification 148 / 192

Satisfiability Modulo Theory – iSAT

iSAT

All acceleration techniques known from modern SAT solvers
also apply to arithmetic constraints

Conflict-driven learning
Non-chronological backtracking
2-watched-literal scheme
Restarts
Conflict clause deletion
Efficient decision heuristics

VTSA’15 Tobias Schubert – SAT-based Test & Verification 149 / 192

Satisfiability Modulo Theory – iSAT

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

input formula into a conjunction of constraints

• Auxiliary variables h1,h2,h3 are used for decomposition
of complex constraint x2−2y ≥ 6.2.

• Use Tseitin-style transformation to rewrite

. n-ary disjunctions of bounds (’clauses’)

. Arithmetic constraints having at most one

Allows identification of literals with bounds on Booleans
• Boolean variables are regarded as 0-1 integer variables.

operation symbol

b≤ 0
b≥ 1

≡
≡b

¬b

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

a≥ 1

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 : DL 1:

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

c2
c3

c1a≥ 1

b≥ 1

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

c ≥ 1 d ≥ 1

d ≤ 0

DL 1:

DL 2:

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Schubert
Pencil

Satisfiability Modulo Theory – iSAT

c3

c2

c1

b≥ 1

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

∧ (¬a ∨ ¬c)c9 :

d ≥ 1

d ≤ 0

c ≥ 1

a≥ 1DL 1:

DL 2:

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

c9 c2 c4
a≥ 1 c ≤ 0 b≤ 0 x ≥−2

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

∧ (¬a ∨ ¬c)c9 :

DL 1:

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

c9 c2 c4

c7

a≥ 1 c ≤ 0 b≤ 0

y ≥ 4

x ≥−2

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

∧ (¬a ∨ ¬c)c9 :

DL 1:

DL 2: h2 ≤−8

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

c9 c2 c4

c7

c8
c6

c5

a≥ 1 c ≤ 0 b≤ 0

y ≥ 4

x ≤ 3 h3 ≥ 6.2

h1 ≤ 9

h2 ≥−2.8

x ≥−2

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

∧ (¬a ∨ ¬c)c9 :

DL 1:

DL 2: h2 ≤−8

DL 3:

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

c9 c2 c4

c7

c8
c6

c5

a≥ 1 c ≤ 0 b≤ 0

y ≥ 4

x ≤ 3 h3 ≥ 6.2

h1 ≤ 9

h2 ≥−2.8

x ≥−2

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

← Conflict clause = symbolic description

of a rectangular region of the search space

which is excluded from future search

∧ (¬a ∨ ¬c)c9 :

DL 1:

DL 2: h2 ≤−8

DL 3:

∧ (x <−2 ∨ y < 4 ∨ x > 3)c10 :

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

c9 c2 c4

c7

c6c10

a≥ 1 c ≤ 0 b≤ 0

h3 = h1 +h2∧c8 :

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

y ≥ 4

x ≥−2

x > 3

h2 ≤−8

h1 > 9

∧ (¬a ∨ ¬c)c9 :

DL 1:

DL 2:

∧ (x <−2 ∨ y < 4 ∨ x > 3)c10 :

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

c9 c2 c4

c7

c6c10

a≥ 1 c ≤ 0 b≤ 0

(x ≥ 4 ∨ y ≤ 0 ∨ h3 ≥ 6.2)∧c5 :

∧ (b ∨ x ≥−2)c4 :

∧ (¬c ∨ ¬d)c3 :

∧ (¬a ∨ ¬b ∨ c)c2 :

(¬a ∨ ¬c ∨ d)c1 :

y ≥ 4

x ≥−2

x > 3

h2 ≤−8

h1 > 9

h2 =−2 ·y∧c7 :

h1 = x2∧c6 :

h3 = h1 +h2c8 : ∧

∧ (¬a ∨ ¬c)c9 :

DL 1:

DL 2:

• Continue do split and deduce until either

• Avoid infinite splitting and deduction

. formula turns out to be UNSAT (unresolvable conflict),

. Minimal splitting width

. Discard a deduced bound if it yields small progress only

search space for which it cannot derive any contradiction.

. formula turns out to be SAT (point interval),

. solver is left with ‘sufficiently small’ portion of the∧ (x <−2 ∨ y < 4 ∨ x > 3)c10 :

VTSA’15 Tobias Schubert – SAT-based Test & Verification 150 / 192

Satisfiability Modulo Theory – iSAT

Remarks

All variables have to be bounded initially

Reliable results due to outward rounding

Further features
Clever normalization rules
Continue search after “unknown”
Proof of unsatisfiability
Unbounded model checking using interpolants
Handling of stochastic constraint systems
Parallelization based on message passing

VTSA’15 Tobias Schubert – SAT-based Test & Verification 151 / 192

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

Part of the forthcoming European Train Control
Standard

Minimal distance between two trains equals
braking distance plus safety margin

First train reports position of its end to the
second train every 8 seconds

Controller of the second train automatically
initiates braking to maintain safety margin

Top-level view of the Matlab/Simulink model for two trains

VTSA’15 Tobias Schubert – SAT-based Test & Verification 152 / 192

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

Model of controller and train dynamics

Safety property to be checked:
Does the controller guarantee that collisions aren’t possible?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 153 / 192

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

VTSA’15 Tobias Schubert – SAT-based Test & Verification 154 / 192

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

VTSA’15 Tobias Schubert – SAT-based Test & Verification 155 / 192

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

VTSA’15 Tobias Schubert – SAT-based Test & Verification 156 / 192

Hybrid System Verification

Example: Train Separation in Absolute Braking Distance

Simulation Error trace found by iSAT

From top to bottom positions, accelerations, speeds, and distances of the two trains are shown

VTSA’15 Tobias Schubert – SAT-based Test & Verification 157 / 192

Schubert
Pencil

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security Issues
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

Path Compaction

VTSA’15 Tobias Schubert – SAT-based Test & Verification 158 / 192

MaxSAT in a Nutshell

Max-SAT

Given a CNF ϕ, find a truth assignment for all variables that
satisfies the maximum number of clauses within ϕ

Variants of Max-SAT

Partial Max-SAT
ϕ consists of hard and soft clauses
All hard clauses must be satisfied
Maximize number of satisfied soft clauses

Weighted Max-SAT

Weighted Partial Max-SAT

VTSA’15 Tobias Schubert – SAT-based Test & Verification 159 / 192

MaxSAT in a Nutshell

Solving (Partial) Max-SAT using SAT Algorithms

Each soft clause gets extended by a fresh “trigger” variable:
(x1∨x2) ; (t1∨x1∨x2)

By construction, after adding trigger variables all soft clauses
can be satisfied simultaneously

Now, Max-SAT corresponds to minimizing k in ∑
m
c=1 tc ≤ k with m

representing the number of soft clauses

Encode ∑
m
c=1 tc ≤ k with a bitonic sorting network (unary

representation), convert it to CNF, and add it to the formula

Solve the Max-SAT problem by using incremental SAT solving,
iterating over k

VTSA’15 Tobias Schubert – SAT-based Test & Verification 160 / 192

Bitonic Sorting Network

Each arrow in the example above represents a comparator (half adder):
comp(x1,x2,y1,y2) ↔ ((y1↔ x1∨x2) ∧ (y2↔ x1∧x2))

Using Tseitin encoding each comparator can be modeled with
2 auxiliary variables & 6 clauses

VTSA’15 Tobias Schubert – SAT-based Test & Verification 161 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Path Compaction

Production of circuits is erroneous
Various types and sources of faults
Covered here: Small-delay faults

General workflow
Predefined paths obtained from path analysis tool
Sensitize all target paths using as less patterns as possible
to reduce overall test overhead
Test pattern relaxation

Approach
SAT-based maximization of sensitized target paths

Results
Applicable to large industrial circuits
Significantly reduced number of test patterns compared to
other state-of-the-art approaches

VTSA’15 Tobias Schubert – SAT-based Test & Verification 162 / 192

Path Compaction

Sensitizable Paths and Small Delay Faults

Sensitizable path: Transition from input to output
Length of a path according to sum of gate delays
The longer the path the higher the detection quality
Two-pattern delay test

VTSA’15 Tobias Schubert – SAT-based Test & Verification 163 / 192

Schubert
Pencil

Schubert
Pencil

Path Compaction

Sensitizable Paths and Small Delay Faults

Small delay faults: Assume additional delay for one gate
Output transition too late for clock
The longer the path the higher the detection quality
Two-pattern delay test

VTSA’15 Tobias Schubert – SAT-based Test & Verification 164 / 192

Schubert
Pencil

Path Compaction

Production of circuits is erroneous
Various types and sources of faults
Covered here: Small-delay faults

General workflow
Predefined paths obtained from path analysis tool
Sensitize all target paths using as less patterns as possible
to reduce overall test overhead
Test pattern relaxation

Approach
SAT-based maximization of sensitized target paths

Results
Applicable to large industrial circuits
Significantly reduced number of test patterns compared to
other state-of-the-art approaches

VTSA’15 Tobias Schubert – SAT-based Test & Verification 165 / 192

Path Compaction

Maximization of Sensitized Target Paths using Partial Max-SAT

sPi indicates whether a path p is sensitized or not
< sPi , . . . ,sPn > gets sorted by 1’s and 0’s
< SO1, . . . ,SOn >=< 1, . . . ,1,0, . . . ,0>

Setting SOi to 1 forces the solver to sensitize at least i paths

VTSA’15 Tobias Schubert – SAT-based Test & Verification 166 / 192

Path Compaction

Production of circuits is erroneous
Various types and sources of faults
Covered here: Small-delay faults

General workflow
Predefined paths obtained from path analysis tool
Sensitize all target paths using as less patterns as possible
to reduce overall test overhead
Test pattern relaxation

Approach
SAT-based maximization of sensitized target paths

Results
Applicable to large industrial circuits
Significantly reduced number of test patterns compared to
other state-of-the-art approaches

VTSA’15 Tobias Schubert – SAT-based Test & Verification 167 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 168 / 192

QBF in a Nutshell

Quantified Boolean Formula (QBF)

Extension of SAT where the variables are either universal or
existential quantified

Example
Ψ = ∃x1∀x2,x3∃x4, . . . ,xn︸ ︷︷ ︸

prefix

ϕ(x1, . . . ,xn)︸ ︷︷ ︸
matrix(CNF)

Semantics (for this particular example)
Ψ is satisfied iff there exists one assignment for x1 such that
for every assignment of x2 and x3, there exists one
assignment for x4, . . . ,xn, such that ϕ is satisfied

VTSA’15 Tobias Schubert – SAT-based Test & Verification 169 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Test Pattern Relaxation using QBF

Motivation

Parts of the pattern get unspecified (don’t care) ; test cube

Test properties still hold

Reduced overall test overhead

Focus of this work: Test cube generation with maximum number
of don’t cares ; optimal test cube

Fault model considered here

Again, small-delay Faults

VTSA’15 Tobias Schubert – SAT-based Test & Verification 170 / 192

Modeling Don’t Cares with QBF

A = 1

B

C = 1
D

E

F

G

= 0
= 1

= 1
= 0

= 0
= 1

= 1
= 1

= 1
= 1

D= 0
= 1

Simulation for B= 0
= 1

⇒ F can be set to 1, even if B is unspecified!
⇒ Don’t cares can be represented by ∀ variables
⇒ ∃{A,C}∀{B}∃{D,E,F ,G}︸ ︷︷ ︸

Prefix

. ϕ(A, . . . ,G)︸ ︷︷ ︸
Tseitin encoding

∧ (F)︸︷︷︸
property

VTSA’15 Tobias Schubert – SAT-based Test & Verification 171 / 192

Test Pattern Relaxation using QBF

Identifying small-delay faults requires two timeframes
Test cube with maximum number of unspecified inputs using QBF
Quantify unspecified inputs universally, specified ones existentially
If a path for small-delay fault is sensitizable:
Universally quantified inputs: Excluded from test cube
Existential quantified inputs: Test cube
But: The quantifier of a variable cannot be changed in QBF

⇒ Unspecified inputs are not known a-priori
⇒ Which inputs have to be quantified universally?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 172 / 192

Test Pattern Relaxation using QBF

Ψ = ∃SO1, . . . ,SOn,S1, . . . ,Sn,E1, . . . ,En∀A1, . . . ,An∃ . . .ϕcirc.∧ϕprop.∧ϕmux ∧ϕbsn∧SOk

Dynamic choice of (un-)specified inputs using multiplexers
Select input Si switches between specified (Si = 0 ∃Ei) and unspecified
(Si = 1 ∀Ai) for any primary input Ii
Find the maximum number of multiplexer select inputs that can be set to 1
Search for k, such that: Path is sensitizable with k unspecified inputs (SOk = 1),
but not with k +1 (SOk+1 = 0)

⇒ Optimal test cube, i.e., maximum number of don’t cares

VTSA’15 Tobias Schubert – SAT-based Test & Verification 173 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 174 / 192

Motivation – Equivalence Checking

≡

X1 X2

Y1 Y2

I

Specification

Implementation

≡ 1?
Miter

Are implementation and
specification equivalent?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 175 / 192

Motivation – Partial Equivalence Checking

≡

BB1 BB2

X1 X2

Y1 Y2

Specification

Implementation

≡ 1?
Miter

Realizability, i.e. are there
implementations of the black
boxes (BBs) such that
implementation and
specification are equivalent?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 176 / 192

QBF vs. Dependency-QBF (DQBF)

≡

BB1 BB2

X1 X2

Y1 Y2

Specification

Implementation

≡ 1?
Miter

...

Expressible with QBF

⇒ Approximation

BBs read all inputs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 177 / 192

Schubert
Pencil

QBF vs. Dependency-QBF (DQBF)

≡

BB1 BB2

X1 X2

Y1 Y2

Specification

Implementation

≡ 1?
Miter

...

Expressible with QBF

⇒ Approximation

BBs read all inputs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 177 / 192

QBF vs. Dependency-QBF (DQBF)

≡

BB1 BB2

X1 X2

Y1 Y2

Specification

Implementation

≡ 1?
Miter

...

Expressible with QBF

⇒ Approximation

BBs read all inputs

≡

BB1 BB2

X1 X2

Y1 Y2

Specification

Implementation

≡ 1?
Miter

...

Expressible with DQBF

⇒ More precise

BBs read actual inputs

VTSA’15 Tobias Schubert – SAT-based Test & Verification 177 / 192

QBF vs. DQBF

QBF

Linear quantifier-order

Existentially quantified
variables depend on all
universally quantified
variables left of it

...

ψQBF =

Q︷ ︸︸ ︷
∀x1∀x2∃y1∃y2 : ϕ

DQBF

Non-linear quantifier-order

Dependencies between
variables are explicitly
expressible

...

ψDQBF =

Q︷ ︸︸ ︷
∀x1∀x2∃y1{x1}︸︷︷︸∃y2{x2}︸︷︷︸ : ϕ

dependencies

VTSA’15 Tobias Schubert – SAT-based Test & Verification 178 / 192

Semantics of DQBF

ψDQBF = ∀x1∀x2∃y1{x1}∃y2{x2} : ϕ

Additional constraints compared to QBF

1) For the same assignment of all ∀ variables u ∈ dep(e) the
assignment of the ∃ variable e has to be the same

2) For different assignments of at least one ∀ variable u ∈ dep(e)
the assignment of the ∃ variable e is allowed to change

VTSA’15 Tobias Schubert – SAT-based Test & Verification 179 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

QBF and DQBF for Partial Equivalence Checking

QBF

Does not take dependencies
between BBs into account

BBs read all circuit inputs

...

UNSAT⇒ unrealizability

SAT ; realizability

DQBF

...

BBs read only affecting
signals

...

UNSAT⇒ unrealizability

SAT⇒ realizability

For one black box QBF is as accurate as DQBF!

VTSA’15 Tobias Schubert – SAT-based Test & Verification 180 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

Schubert
Pencil

Schubert
Pencil

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

Schubert
Pencil

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

Schubert
Pencil

Schubert
Pencil

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

Schubert
Pencil

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

Schubert
Pencil

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

DQBF-based Partial Equiv. Checking – Example

VTSA’15 Tobias Schubert – SAT-based Test & Verification 181 / 192

Schubert
Pencil

Henkin Quantified Solver (HQS)

VTSA’15 Tobias Schubert – SAT-based Test & Verification 182 / 192

Main Idea behind HQS – Acyclic Dependency Graph

VTSA’15 Tobias Schubert – SAT-based Test & Verification 183 / 192

Outline

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 184 / 192

#SAT in a Nutshell

#SAT

Given a CNF ϕ, count how many disjoint truth assignments
satisfy ϕ

#SAT solver have to continue search after one solution has been
found

With n variables, ϕ can have up to 2n satisfying assignments

#SAT corresponds to model counting, not enumerating all
satisfying assignments

Accelerating techniques differ from classical SAT solving
Caching of already analyzed sub-formulae: [ϕ ′,Mϕ ′]

Component analysis: ϕ = ϕ ′∧ϕ ′′ ⇒ Mϕ = Mϕ ′ ·Mϕ ′′

Different approaches: Exact vs. approximate model counting

VTSA’15 Tobias Schubert – SAT-based Test & Verification 185 / 192

#SAT – Example

ϕ = (v1∨¬v2)∧ (v1∨v2∨v3)∧ (¬v4∨v5)∧ (¬v3∨v5)

v3 ϕ

v1(v1∨¬v2)∧ (v1∨v2)∧ (¬v4∨v5)

fals
e

unsat(¬v2)∧ (v2)∧(¬v4∨v5)

fal
se

0
v4 (¬v4∨v5)

true

sat

fa
lse

v2 and v5 free
4

true

(v5)

2

6

6

. . .

true

6

12

mc(ϕ) = 12

VTSA’15 Tobias Schubert – SAT-based Test & Verification 186 / 192

#SAT – Example

ϕ = (v1∨¬v2)∧ (v1∨v2∨v3)∧ (¬v4∨v5)∧ (¬v3∨v5)

v3 ϕ

v1(v1∨¬v2)∧ (v1∨v2)∧ (¬v4∨v5)

fals
e

unsat(¬v2)∧ (v2)∧(¬v4∨v5)

fal
se

0

v4 (¬v4∨v5)
true

sat

fa
lse

v2 and v5 free
4

true

(v5)

2

6

6

. . .

true

6

12

mc(ϕ) = 12

VTSA’15 Tobias Schubert – SAT-based Test & Verification 186 / 192

#SAT – Example

ϕ = (v1∨¬v2)∧ (v1∨v2∨v3)∧ (¬v4∨v5)∧ (¬v3∨v5)

v3 ϕ

v1(v1∨¬v2)∧ (v1∨v2)∧ (¬v4∨v5)

fals
e

unsat(¬v2)∧ (v2)∧(¬v4∨v5)

fal
se

0
v4 (¬v4∨v5)

true

sat

fa
lse

v2 and v5 free
4

true

(v5)

2

6

6

. . .

true

6

12

mc(ϕ) = 12

VTSA’15 Tobias Schubert – SAT-based Test & Verification 186 / 192

#SAT – Example

ϕ = (v1∨¬v2)∧ (v1∨v2∨v3)∧ (¬v4∨v5)∧ (¬v3∨v5)

v3 ϕ

v1(v1∨¬v2)∧ (v1∨v2)∧ (¬v4∨v5)

fals
e

unsat(¬v2)∧ (v2)∧(¬v4∨v5)

fal
se

0
v4 (¬v4∨v5)

true

sat

fa
lse

v2 and v5 free
4

true

(v5)

2

6

6

. . .

true

6

12

mc(ϕ) = 12

VTSA’15 Tobias Schubert – SAT-based Test & Verification 186 / 192

#SAT – Example

ϕ = (v1∨¬v2)∧ (v1∨v2∨v3)∧ (¬v4∨v5)∧ (¬v3∨v5)

v3 ϕ

v1(v1∨¬v2)∧ (v1∨v2)∧ (¬v4∨v5)

fals
e

unsat(¬v2)∧ (v2)∧(¬v4∨v5)

fal
se

0
v4 (¬v4∨v5)

true

sat

fa
lse

v2 and v5 free

4

true

(v5)

2

6

6

. . .

true

6

12

mc(ϕ) = 12

VTSA’15 Tobias Schubert – SAT-based Test & Verification 186 / 192

#SAT – Example

ϕ = (v1∨¬v2)∧ (v1∨v2∨v3)∧ (¬v4∨v5)∧ (¬v3∨v5)

v3 ϕ

v1(v1∨¬v2)∧ (v1∨v2)∧ (¬v4∨v5)

fals
e

unsat(¬v2)∧ (v2)∧(¬v4∨v5)

fal
se

0
v4 (¬v4∨v5)

true

sat

fa
lse

v2 and v5 free

4

true

(v5)

2

6

6

. . .

true

6

12

mc(ϕ) = 12

VTSA’15 Tobias Schubert – SAT-based Test & Verification 186 / 192

#SAT – Example

ϕ = (v1∨¬v2)∧ (v1∨v2∨v3)∧ (¬v4∨v5)∧ (¬v3∨v5)

v3 ϕ

v1(v1∨¬v2)∧ (v1∨v2)∧ (¬v4∨v5)

fals
e

unsat(¬v2)∧ (v2)∧(¬v4∨v5)

fal
se

0
v4 (¬v4∨v5)

true

sat

fa
lse

v2 and v5 free

4

true

(v5)

2

6

6

. . .

true

6

12

mc(ϕ) = 12
VTSA’15 Tobias Schubert – SAT-based Test & Verification 186 / 192

#SAT – Caching

Store model counts of sub-formulas in a cache

Do not compute the result for the same sub-formula twice

ϕ = (v1∨v2∨v3)∧ (¬v1∨v2∨v3)

v1 ϕ

6

v2 (v2∨v3)

3

(v3)

1

(v2∨v3)

3

sat
2

fals
e

true

fal
se true

cache hit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 187 / 192

#SAT – Caching

Store model counts of sub-formulas in a cache

Do not compute the result for the same sub-formula twice

ϕ = (v1∨v2∨v3)∧ (¬v1∨v2∨v3)

v1 ϕ

6

v2 (v2∨v3)

3

(v3)

1

(v2∨v3)

3

sat
2

fals
e

true

fal
se true

cache hit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 187 / 192

#SAT – Caching

Store model counts of sub-formulas in a cache

Do not compute the result for the same sub-formula twice

ϕ = (v1∨v2∨v3)∧ (¬v1∨v2∨v3)

v1 ϕ

6

v2 (v2∨v3)

3

(v3)

1

(v2∨v3)

3

sat
2

fals
e true

fal
se true

cache hit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 187 / 192

#SAT – Caching

Store model counts of sub-formulas in a cache

Do not compute the result for the same sub-formula twice

ϕ = (v1∨v2∨v3)∧ (¬v1∨v2∨v3)

v1 ϕ

6

v2 (v2∨v3)

3

(v3)

1

(v2∨v3)

3

sat
2

fals
e true

fal
se true

cache hit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 187 / 192

#SAT – Caching

Store model counts of sub-formulas in a cache

Do not compute the result for the same sub-formula twice

ϕ = (v1∨v2∨v3)∧ (¬v1∨v2∨v3)

v1 ϕ

6

v2 (v2∨v3)

3

(v3)

1

(v2∨v3)

3

sat
2

fals
e true

fal
se true

cache hit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 187 / 192

#SAT – Caching

Store model counts of sub-formulas in a cache

Do not compute the result for the same sub-formula twice

ϕ = (v1∨v2∨v3)∧ (¬v1∨v2∨v3)

v1 ϕ

6

v2 (v2∨v3)

3

(v3)

1

(v2∨v3)

3

sat
2

fals
e true

fal
se true

cache hit

VTSA’15 Tobias Schubert – SAT-based Test & Verification 187 / 192

#SAT – Component Analysis

The formula might split into disjoint sub-formulas

ϕ = (¬p2∨a2)∧ (a1∨a2∨a3)∧ (b1)∧ (¬b3∨b4)∧ (p2∨¬b2)

Assignment: p2 = false
Sub-formulas:
ϕ1 = (a1∨a2∨a3)
ϕ2 = (b1)∧ (¬b3∨b4)∧ (¬b2)

Model count is computed by multiplying results for
sub-formulas:
mc(ϕ|p2=false) = mc(ϕ1) ·mc(ϕ2) = 7 ·3 = 21

VTSA’15 Tobias Schubert – SAT-based Test & Verification 188 / 192

#SAT – Component Analysis

The formula might split into disjoint sub-formulas
ϕ = (¬p2∨a2)∧ (a1∨a2∨a3)∧ (b1)∧ (¬b3∨b4)∧ (p2∨¬b2)

Assignment: p2 = false
Sub-formulas:
ϕ1 = (a1∨a2∨a3)
ϕ2 = (b1)∧ (¬b3∨b4)∧ (¬b2)

Model count is computed by multiplying results for
sub-formulas:
mc(ϕ|p2=false) = mc(ϕ1) ·mc(ϕ2) = 7 ·3 = 21

VTSA’15 Tobias Schubert – SAT-based Test & Verification 188 / 192

#SAT – Component Analysis

The formula might split into disjoint sub-formulas
ϕ = (¬p2∨a2)∧ (a1∨a2∨a3)∧ (b1)∧ (¬b3∨b4)∧ (p2∨¬b2)

Assignment: p2 = false

Sub-formulas:
ϕ1 = (a1∨a2∨a3)
ϕ2 = (b1)∧ (¬b3∨b4)∧ (¬b2)

Model count is computed by multiplying results for
sub-formulas:
mc(ϕ|p2=false) = mc(ϕ1) ·mc(ϕ2) = 7 ·3 = 21

VTSA’15 Tobias Schubert – SAT-based Test & Verification 188 / 192

#SAT – Component Analysis

The formula might split into disjoint sub-formulas
ϕ = (¬p2∨a2)∧ (a1∨a2∨a3)∧ (b1)∧ (¬b3∨b4)∧ (p2∨¬b2)

Assignment: p2 = false
Sub-formulas:
ϕ1 = (a1∨a2∨a3)
ϕ2 = (b1)∧ (¬b3∨b4)∧ (¬b2)

Model count is computed by multiplying results for
sub-formulas:
mc(ϕ|p2=false) = mc(ϕ1) ·mc(ϕ2) = 7 ·3 = 21

VTSA’15 Tobias Schubert – SAT-based Test & Verification 188 / 192

#SAT – Component Analysis

The formula might split into disjoint sub-formulas
ϕ = (¬p2∨a2)∧ (a1∨a2∨a3)∧ (b1)∧ (¬b3∨b4)∧ (p2∨¬b2)

Assignment: p2 = false
Sub-formulas:
ϕ1 = (a1∨a2∨a3)
ϕ2 = (b1)∧ (¬b3∨b4)∧ (¬b2)

Model count is computed by multiplying results for
sub-formulas:
mc(ϕ|p2=false) = mc(ϕ1) ·mc(ϕ2) = 7 ·3 = 21

VTSA’15 Tobias Schubert – SAT-based Test & Verification 188 / 192

Security Issues – Fault Injection

Extract secret information from a security circuit (AES, . . .)
Inject fault by increasing the clock frequency
Incorrect output allows for calculation of secret

Security circuit

Combinational circuit Flip-Flops

Clock

Input Output

Attacker

Flip-flops store value on rising clock edge
Successful injection: flip-flops store an incorrect value
How likely is a successful injection for unknown input?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 189 / 192

Security Issues – Fault Injection

Extract secret information from a security circuit (AES, . . .)
Inject fault by increasing the clock frequency
Incorrect output allows for calculation of secret

Security circuit

Combinational circuit Flip-Flops

Clock

Input Output

Attacker

Flip-flops store value on rising clock edge
Successful injection: flip-flops store an incorrect value
How likely is a successful injection for unknown input?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 189 / 192

Security Issues – Fault Injection

Extract secret information from a security circuit (AES, . . .)
Inject fault by increasing the clock frequency
Incorrect output allows for calculation of secret

Security circuit

Combinational circuit Flip-Flops

Clock

Input Output

Attacker

Flip-flops store value on rising clock edge
Successful injection: flip-flops store an incorrect value
How likely is a successful injection for unknown input?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 189 / 192

Security Issues – Fault Injection

Extract secret information from a security circuit (AES, . . .)
Inject fault by increasing the clock frequency
Incorrect output allows for calculation of secret

Security circuit

Combinational circuit Flip-Flops

Clock

Input Output

Attacker

Flip-flops store value on rising clock edge

Successful injection: flip-flops store an incorrect value
How likely is a successful injection for unknown input?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 189 / 192

Security Issues – Fault Injection

Extract secret information from a security circuit (AES, . . .)
Inject fault by increasing the clock frequency
Incorrect output allows for calculation of secret

Security circuit

Combinational circuit Flip-Flops

Clock

Input Output

Attacker

Flip-flops store value on rising clock edge
Successful injection: flip-flops store an incorrect value
How likely is a successful injection for unknown input?

VTSA’15 Tobias Schubert – SAT-based Test & Verification 189 / 192

Security Issues – Fault Injection

1 Encode combinational circuit and its timing as CNF
formula ϕ with the tool WaveSAT1

2 Make ϕ satisfiable iff at least one fault is injected

3 Add conditions for outputs that must be correct

4 Calculate number of satisfying assignments mc(ϕ)

5 P(Successful Injection) =
mc(ϕ)

2#circuit inputs

1M. Sauer et al. "Small-Delay-Fault ATPG with Waveform Accuracy". In: ICCAD 2012.

VTSA’15 Tobias Schubert – SAT-based Test & Verification 190 / 192

Security Issues – Fault Injection

1 Encode combinational circuit and its timing as CNF
formula ϕ with the tool WaveSAT1

2 Make ϕ satisfiable iff at least one fault is injected

3 Add conditions for outputs that must be correct

4 Calculate number of satisfying assignments mc(ϕ)

5 P(Successful Injection) =
mc(ϕ)

2#circuit inputs

1M. Sauer et al. "Small-Delay-Fault ATPG with Waveform Accuracy". In: ICCAD 2012.

VTSA’15 Tobias Schubert – SAT-based Test & Verification 190 / 192

Conclusion

Applications

Core Algorithms

MaxSAT #SAT QBF DQBF SMT

Combinational

Equivalence Checking

Hybrid System Verification

The End

Security IssuesPath Compaction
Bounded Model / Property

Checking

Black Box Verification

SAT

Test Pattern Relaxation
Automatic

Test Pattern Generation

VTSA’15 Tobias Schubert – SAT-based Test & Verification 191 / 192

Some Papers. . .

[Abraham, Schubert, Becker, Fränzle, Herde. Parallel SAT Solving in BMC. Logic & Computation, 2011]

[Burchard, Schubert, Becker. Laissez-Faire Caching for Parallel #SAT Solving. SAT, 2015]

[Feiten, Sauer, Schubert, Czutro, Boehl, Polian, Becker. #SAT-Based Vulnerability Analysis of Security Components
– A Case Study. IEEE DFTS, 2012]

[Fränzle, Herde, Teige, Ratschan, Schubert. Efficient Solving of Large Non-linear Arithmetic Constraint Systems with
Complex Boolean Structure. JSAT, 2007]

[Gitina, Wimmer, Reimer, Sauer, Scholl, Becker. Solving DQBF Through Quantifier Elimination. DATE, 2015]

[Kalinnik, Schubert, Abraham, Wimmer, Becker. Picoso - A Parallel Interval Constraint Solver. PDPTA, 2009]

[Lewis, Marin, Schubert, Narizzano, Becker, Giunchiglia. Parallel QBF Solving with Advanced Knowledge Sharing.
Fundamenta Informaticae, 2011]

[Lewis, Schubert, Becker. Multithreaded SAT Solving. ASP-DAC, 2007]

[Reimer, Sauer, Schubert, Becker. Incremental Encoding and Solving of Cardinality Constraints. ATVA, 2014]

[Reimer, Sauer, Schubert, Becker. Using MaxBMC for Pareto-Optimal Circuit Initialization. DATE, 2014]

[Sauer, Czutro, Schubert, Hillebrecht, Polian, Becker. SAT-based Analysis of Sensitisable Paths. IEEE Design & Test
of Computers, 2013]

[Sauer, Reimer, Schubert, Polian, Becker. Efficient SAT-Based Dynamic Compaction and Relaxation for Longest
Sensitizable Paths. DATE, 2103]

[Sauer, Reimer, Polian, Schubert, Becker. Provably Optimal Test Cube Generation Using Quantified Boolean
Formula Solving. ASP-DAC, 2013]

[Schubert, Lewis, Becker. Parallel SAT Solving with Threads and Message Passing. JSAT, 2009]

VTSA’15 Tobias Schubert – SAT-based Test & Verification 192 / 192

	About Me
	Motivation
	SAT
	Preliminaries
	DLL Algorithm
	From DLL to modern SAT Algorithms
	Modern SAT Algorithms
	Preprocessing
	Decision Stack
	Decision Heuristics
	Boolean Constraint Propagation
	Conflict Analysis & Backtracking
	Other Features

	Combinational Equivalence Checking
	Miter
	Tseitin Transformation
	Structural Methods

	Automatic Test Pattern Generation
	SAT-based ATPG

	Bounded Model / Property Checking
	Satisfiability Modulo Theory
	Hybrid System Verification

	MaxSAT & Path Compaction
	QBF & Test Pattern Relaxation
	DQBF & Black Box Verification
	#SAT & Security Issues
	Some Papers…

