
Communication security: Formal models and

proofs

Hubert Comon

September 1, 2016

1 Introduction to protocol security

The context (I)

• credit cards

• contactless cards

• telephones

• online transactions

• cars, fridges,... Internet of Things

• Big Brother: NSA

• Biomedical applications

• ...

The context (III)

• Security protocols

• Testing is not very useful

• Hiding the code is not a good idea

• The scope of formal methods

A simple handshake protocol

A ! B : ⌫n, r. aenc(hA, ni , pk(skB), r)
B ! A : ⌫r0. aenc(n, pk(skA), r0)

1

The formal verification problem

8A. A k P |= �

8A. A k P1 ⇠ A k P2

Universal quantification on A: we cannot apply directly model-checking
techniques.

One important issue: range of A ?

Attacker models

The DY-attacker
Messages are terms, the attacker is defined through an equation theory or an
inference system

The computational attacker
Messages are bitstrings, the attacker is a probabilistic polynomial time Turing
machine

Other attackers

Goals of the lecture

Verification inputs

• Cryptographic libraries

• Protocol programs

• Attacker model

• Security property

Goals of the lecture
Show how to derive the proof obligations in a parametric way, abstracting from
crypto libraries, attacker models.

Focus on the semantics of protocols, for arbitrary libraries and attacker
models.

2

Roadmap
4 successive versions of the calculus, by increasing expressiveness (we could

have considered the last case only...)

1. Simple case

2. Adding events: required for agreement properties

3. Adding replication

4. Adding channel generation: required for computational semantics

Then indistinguishability properties (privacy).

2 A simple version of the process calculus

Cryptographic libraries
Syntax

• An arbitrary set of cryptographic primitives F : hash, public-key encryp-
tion(s), symmetric encryption(s), zkp,... represented by (typed) function
symbols

• At least one random generation algorithm. Random numbers are repre-
sented by names n, n1, r, ... out of a set N

Terms are built over variables, function symbols and names.

Cryptographic libraries
Semantics

M is an interpretation domain. Typically ground or constructor terms (the
DY semantics) or bitstrings (the computational semantics).

M includes error messages (exceptions) Err.
If � is an environment (mapping from variables to M), u is a term,

[[u]]M�

is the interpretation of u in M w.r.t. �: M is a (partial) F-algebra.
The interpretation is strict:

ui 2 Err) [[f(u1, . . . , un)]]
M
� 2 Err

Cryptographic libraries
A possible set of function symbols

• aenc(u, pk, r) is (supposed to be) the asymmetric encryption of u with the
public key pk and random input r.

• dec(u, sk) is (supposed to be) the decryption of u with the secret key sk

3

• pk(sk) is (supposed to be) the public key associated with the secret key sk

• hu, vi

• ⇡1(u),⇡2(u)

Cryptographic libraries
A DY model

MDY (messages) is the least set of ground terms such that:

• N ✓ MDY

• if u, v 2 MDY then hu, vi 2 MDY

• if k 2 N then pk(k) 2 MDY

• if u 2 MDY , k, r 2 N , then aenc(u, pk(k), r) 2 MDY .

MDY also includes special error terms Err (not messages).

dec(aenc(u, pk(k), r), k) ! u For k, r 2 N , u a message
⇡1(hu, vi) ! u u, v are messages
⇡2(hu, vi) ! v u, v are messages

[[u]]MDY

� = u� #

Any irreducible ground term, which is not a message, is an error.

Cryptographic libraries
Computational models

• ⌘ 2 N is a security parameter

• ⌧ maps N to {0, 1}⌘

• Mc(⌧, ⌘) ✓ {0, 1}⇤

• [[n]]Mc

(⌧,⌘) = ⌧(n)

• aenc(, ,), dec(,), pk() are interpreted as a public-key encryption scheme.

• with an interpretation of pairing/projections, Mc(⌧, ⌘) is an F-algebra

4

A simple process calculus
Syntax

P ::= 0 null process (stalled)
| in(x).P input of x (binds x)
| out(t).P output of t
| if EQ(u, v) then P else P conditional branching
| let y = u in P evaluation (binds y)
| ⌫n.P random generation
| PkP parallel composition

All variable occurrences are bound.

Example
The simple handshake protocol

A ! B : ⌫n, r. aenc(hA, ni , pk(skB), r)
B ! A : ⌫r0. aenc(n, pk(skA), r0)

A(ska, pk(skb)) =
⌫n, r. out(aenc(hpk(ska), ni , pk(skb), r)).
in(z). let z1 = dec(z, ska) in
if EQ(z1, n) then 0(Success) else 0(Fail)

B(skb) =
⌫r0. in(x).let y = dec(x, skb) in
let y1 = ⇡1(y) in let y2 = ⇡2(y) in
out(aenc(y2, y1, r0)). 0.

⌫ska, skb. out(hpk(ska), pk(skb)i). (A(ska, pk(skb)) k B(skb))

Structural equivalence

0 k P ⌘ P
P k Q ⌘ Q k P

P k (Q k R) ⌘ (P k Q) k R
⌫n.P ⌘ ⌫n0.P{n 7! n0}

in(x).P ⌘ in(x0).P{x 7! x0}
let x = u in P ⌘ let x0 = u in P{x 7! x0}

(⌫n.P)kQ ⌘ ⌫n0.(PkQ) if n /2 freenames(Q)

Operational semantics
States of the network are tuples (�,�, P), where

5

• � is a frame of the form ⌫n.m1, . . . ,mk, where n is a set of names (used
so far) and m1, . . . ,mk is a sequence of values in M (that have been sent
out so far)

• � is an environment: an assignment of the free variables to values in M

• P is a process

The semantics is a labeled transition system, whose labels are the inputs
provided by the attacker (sometimes, an empty input)

6

Operational semantics
The transition system (I)

(�,�, in(x).P)
u�! (�,�] {x 7! u}, P)

(�,�, P)
u�! (�0,�0, P 0)

(�,�, if EQ(s, t) then P else Q)
u�! (�0,�0, P 0)

if[[s]]M� = [[t]]M� /2 Err

(�,�, Q)
u�! (�0,�0, P 0)

(�,�, if EQ(s, t) then P else Q)
u�! (�0,�0, P 0)

if[[s]]M� 6= [[t]]M� or [[s]]M� 2 Err or [[t]]M� 2 Err

Operational semantics
The transition system (II)

if [[u]]M� = w /2 Err
(�,�, let x = u in P) �! (�,�] {x 7! w}, P)

(⌫n.✓,�, out(s).P) �! (⌫n.✓ · [[s]]M� ,�, P)

(�,�, P)
u�! (�0,�0, P 0)

(�,�, PkQ)
u�! (�0,�0, P 0kQ)

if n /2 n [freename(✓)
(⌫n.✓,�, ⌫n.P) �! ⌫n] n.✓,�, P)

7

Example

Restricting the feasible transitions

(�1,�1, P1)
u1�! · · · u

k�1���! (�k,�k, Pk)

is possible w.r.t. model M and an attacker A if , for every i,

A([[�i]]
M
�
i

, Pi) = [[ui]]
M
�
i

Note: could include a state in A.

Example DY
There is a DY attacker A such that A(�) = [[u]]MDY

� i↵

� `I u� #

where I is defined by:

� ` u1 · · ·� ` un

� ` f(u1, . . . , un) #
For every f 2 F

⌫n.u1, . . . , un ` ui

⌫n.✓ ` n0

if n0 2 N \ n.

Exercise
In the simple handshake example, describe all feasible transition sequences

in the DY model (assume the name extrusion, let, conditionals and outputs are
always performed before inputs).

Is the nonce n secret ?

Example computational
A is a Probabilistic Polynomial Time Turing machine (PPT).
Some inputs that were not possible in the DY model might now be possible.

A typical example
Amight be able to compute (with a significant probability) [[aenc(u, pk(k1), r1)]]Mc

(⌧,⌘)

from [[aenc(v, pk(k1), r1)]]Mc

(⌧,⌘)

9A, Prob{⌧ , ⇢ : A([[aenc(v, pk(k1), r1)]]Mc

(⌧,⌘)) =
[[aenc(u, pk(k1), r1)]]Mc

(⌧,⌘)} > ✏(⌘)

8

✏ is non-negligible: there is a polynomial Pol such that

lim inf
⌘!+1

✏(⌘)⇥ Pol(⌘) > 1

Confidentiality

In the DY case
Is there a DY attacker A and a feasible transition sequence

(;, ;, P)
⇤�! (�,�, Q)

such that A(�, Q) = s ? This problem is in NP

In the computational case
Is there a PPT A such that, for every computational model Mc(⌧, ⌘), the prob-
ability that there is a feasible sequence

(;, ;, P)
⇤�! (�,�, Q)

such that A(�, Q) = s is negligible in ⌘ ?
This requires in general assumptions on the libraries

For example, the protocol

⌫n⌫s.in(x).if EQ(x, n) then out(s) · 0 else 0

satisfies the confidentiality of s in the computational model, as soon as n is
uniformly drawn at random. (For any attacker the probability of success is
bounded by 1

2⌘).

Exercises
In the following cases, give reasonable processes A,B and either give an

attack on the confidentiality of s or prove that there is no such attack in the
DY model.

9

1.
A ! B : ⌫n, ⌫r. hpk(skA), aenc(s, pk(skB), r)i
B ! A ⌫r0. hpk(skB), aenc(s, pk(skA), r0)i

P = ⌫ska, ⌫skb. out(hpk(skA), pk(skB)i) · (A(ska, pk(skB)) k B(skb))

2.

A ! B : ⌫s, r1, r2. aenc(hpk(skA), aenc(s, pk(skB), r1)i , pk(skB), r2)
B ! A : ⌫r3, r4.aenc(hpk(skB), aenc(s, pk(skA), r3)i , pk(skA), r4)

P = ⌫ska, ⌫skb. out(hpk(skA), pk(skB)i) · (A(ska, pk(skB)) k B(skb) k B(skb))

3 Symbolic (Abstract) semantics

Gathering feasability conditions
States of the network are tuples (�,�, P , ✓), where

• �,�, P as before

• ✓ is a constraint : equalities, disequalities and computational constraints
of the form � . u.

(�,�, in(x).P , ✓) �! (�,�, P , ✓ ^ � . x)

(�,�, if EQ(s, t) then P else Q, ✓) �! (�,�, P , ✓ ^ EQ(s, t))

(�,�, if EQ(s, t) then P else Q, ✓) �! (�,�, P , ✓ ^ ¬EQ(s, t))

Consequences

Advantages

• A finite transition system (regardless of the model)

• Confidentiality reduces to constraint satisfaction

✓ ^ �f . s

in NP in the DY model

10

Consequences

Computational case
Specify the assumptions on the libraries: impossibility conditions.

6 .n

S, aenc(n, pk(k), r) . n) S . n

S1 . x ^ S2, x . y) S1, S2 . y

S1 . x1 ^ . . . ^ Sn . xn) S1, . . . , Sn . f(x1, . . . , xn)

S, S1, S2 are finite sets of terms. [3mm]
Check the constraint satisfiability, together with � . s and the above axioms

(in PTIME !!)

Exercise
Back to the simple handshake protocol. Study its security in the compu-

tational model, assuming the properties of the cryptographic libraries that are
described in the lecture.

11

