Introduction to Permission-Based Program Logics

Part II – Concurrent Programs

Thomas Wies New York University

Example: Lock-Coupling List

- There is one lock per node; threads acquire locks in a hand over hand fashion.
- If a node is locked, we can insert a node just after it.
- If two adjacent nodes are locked, we can remove the second.

- There is one lock per node; threads acquire locks in a hand over hand fashion.
- If a node is locked, we can insert a node just after it.
- If two adjacent nodes are locked, we can remove the second.

- There is one lock per node; threads acquire locks in a hand over hand fashion.
- If a node is locked, we can insert a node just after it.
- If two adjacent nodes are locked, we can remove the second.

- There is one lock per node; threads acquire locks in a hand over hand fashion.
- If a node is locked, we can insert a node just after it.
- If two adjacent nodes are locked, we can remove the second.

- There is one lock per node; threads acquire locks in a hand over hand fashion.
- If a node is locked, we can insert a node just after it.
- If two adjacent nodes are locked, we can remove the second.

- There is one lock per node; threads acquire locks in a hand over hand fashion.
- If a node is locked, we can insert a node just after it.
- If two adjacent nodes are locked, we can remove the second.

- There is one lock per node; threads acquire locks in a hand over hand fashion.
- If a node is locked, we can insert a node just after it.
- If two adjacent nodes are locked, we can remove the second.

Extensions of Separation Logic for Concurrent Programs

Extensions of Separation Logic for Concurrent Programs

Fig. 1. CSL Family Tree (courtesy of Ilya Sergey)

RGSep Primer

[courtesy of Viktor Vafeiadis]

Program and Environment

- **Program:** the current thread being verified.
- Environment: all other threads of the system that execute in parallel with the thread being verified.
- Interference: The program interferes with the environment by modifying the shared state.

Conversely, the environment interferes with the program by modifying the shared state.

Local & Shared State

- The total state is logically divided into two components:
 - Shared: accessible by all threads via synchronization
 - Local: accessible only by one thread, its owner

State of the lock-coupling list just before inserting a new node.

The node to be added is local because other threads cannot yet access it.

Program Specifications

- The specification of a program consists of two assertions (precondition & postcondition), and two sets of actions:
- **Rely:** Describes the interference that the program can tolerate from the environment; i.e. specifies how the environment can change the shared state.
- Guarantee: Describes the interference that the program imposes on its environment; i.e. specifies how the program can change the shared state.

Rely/Guarantee Actions

Actions describe minimal atomic changes to the shared state.

An action allows any part of the *shared state* that satisfies the LHS to be changed to a part satisfying the RHS, but the rest of the shared state must not be changed.

Rely/Guarantee Actions

Actions can adjust the boundary between local state and stared state.

This is also known as *transfer of ownership*.

Rely/Guarantee Actions

Actions can adjust the boundary between local state and stared state.

This is also known as *transfer of ownership*.

local

local

local

local

Assertion Syntax

• Separation Logic

 $P, Q ::= e = e \mid e \neq e \mid e \mapsto (\mathbf{f} : \mathbf{e}) \mid P * Q \mid \dots$

• Extended Logic

Assertion Semantics

- $I, s \models P \quad \Leftrightarrow I \models_{SL} P$
- I, $s \models P$ \Leftrightarrow $s \models_{SL} P$ and $I = \{\}$
- $I, s \vDash p * q \Leftrightarrow exists I_1, I_2 :$ $I = I_1 \bullet I_2 and I_1, s \vDash p and I_2, s \vDash q$

Assertion Semantics

• $I, s \models P \quad \Leftrightarrow I \models_{SL} P$ • $I, s \models P \quad \Leftrightarrow s \models_{SL} P \text{ and } I = \{\}$ • $I, s \models p * q \Leftrightarrow \text{ exists } I_1, I_2 :$ $I = I_1 \bullet I_2 \text{ and } I_1, s \models p \text{ and } I_2, s \models q$ split local state

Assertion Semantics

• I, $s \models P \quad \Leftrightarrow I \models_{SL} P$ • I, $s \models P$ \Leftrightarrow $s \models_{SI} P$ and $I = \{\}$ • $I, s \models p \ast q \Leftrightarrow exists I_1, I_2$: $I = I_1 \bullet I_2$ and I_1 , s \models p and I_2 , s \models q share global state

Assertions: Lock Coupling List

Unlocked node x holding value v and pointing to y

Node x holding value v and pointing to y, locked by thread T

List segment from x to y of possibly locked nodes

$$\rightarrow y \qquad \mathbf{lseg}(x, y)$$

Programs: Syntax

- Basic commands c:
 - noop: skip
 - guard: assume(b)
 - heap write: [x] := y
 - heap read: x := [y]
 - allocation: x := new()
 - deallocation: free(x)

- Commands $C \in Com$:
 - basic commands: c
 - seq. composition: C_1 ; C_2
 - nondet. choice: $C_1 + C_2$
 - looping: C*
 - atomic com.: **atomic** C
 - par. composition: $C_1 \mid C_2$

Rely/Guarantee Judgements

⊢ C sat (p, R, G, q)

Parallel Composition Rule \vdash C₁ sat (p₁, R \cup G₂, G₁, q₁) \vdash C₂ sat (p₂, R \cup G₁, G₂, q₂) \vdash (C₁ \mid C₂) sat (p₁ * p₂, R, G₁ \cup G₂, q₁ * q₂)

- An assertion is *stable* iff it is preserved under interference by other threads.
- Example:

- An assertion is *stable* iff it is preserved under interference by other threads.
- Example:

- An assertion is *stable* iff it is preserved under interference by other threads.
- Example:

- An assertion is *stable* iff it is preserved under interference by other threads.
- Example:

- An assertion is *stable* iff it is preserved under interference by other threads.
- Example:

- An assertion is *stable* iff it is preserved under interference by other threads.
- Example:

- An assertion is *stable* iff it is preserved under interference by other threads.
- Example:

Stability (Formally)

Atomic Commands

 $\vdash \{ P \} C \{ Q \}$ $\vdash (atomic C) sat (P, \emptyset, \emptyset, Q)$

Atomic Commands reduction to sequential SL \vdash { P } C { Q } \vdash (atomic C) sat (P, \emptyset , \emptyset , Q) only local state

Atomic Commands

 $\vdash \{P\} C \{Q\}$ $\vdash (atomic C) sat (P, \emptyset, \emptyset, Q)$

p, q stable under R ⊢ (atomic C) sat (p, Ø, G, q) ⊢ (atomic C) sat (p, R, G, q)

Atomic Commands

 $P_{2}, Q_{2} \text{ precise} \qquad P_{2} \rightarrow Q_{2} \in G$ $\vdash (\texttt{atomic C}) \texttt{sat} (P_{1} * P_{2}, \emptyset, \emptyset, Q_{1} * Q_{2})$ $\vdash (\texttt{atomic C}) \texttt{sat} (P_{1} * P_{2} * F, \emptyset, G, Q_{1} * Q_{2} * F)$

Flow Interfaces

joint work with Siddharth Krishna and Dennis Shasha
Goal

- Data structure abstractions that
 - can handle unbounded sharing and overlays
 - treat structural and data constraints uniformly
 - do not encode specific traversal strategies
 - provide data-structure-agnostic composition and decomposition rules
 - remain within general theory of separation logic
- \Rightarrow Flow Interfaces

High-Level Idea

- Express all data structure invariants in terms of a local condition, satisfied by each node.
 - Local condition may depend on a quantity of the graph that is calculated inductively over the entire graph (the flow).
- Introduce a notion of graph composition that preserves local invariants of global flows.
- Introduce a generic *good graph* predicate that abstracts a heap region satisfying the local flow condition (the flow interface).

Local Data Structure Invariants with Flows

Can we express the property that **root** points to a tree as a local condition of each node in the graph?

Local Data Structure Invariants with Flows

Can we express the property that **root** points to a tree as a local condition of each node in the graph?

Local Data Structure Invariants with Flows

 $\forall n \in N. pc(root, n) \leq 1$

"G contains a tree rooted at root"

Can we express the property that **root** points to a tree as a local condition of each node in the graph?

Requirements of flow domain:

- (D, +, ·, 0, 1) is a semiring
- (D, \sqsubseteq) is ω -cpo with smallest element 0
- + and · are continuous

Path counting flow domain: $(\mathbb{N}\cup\{\infty\},\leq,+,\cdot,0,1)$

Flow graph G = (N, e)

- N finite set of nodes
- e: $N \times N \rightarrow D$

Flow graph G = (N, e)

- N finite set of nodes
- e: $N \times N \rightarrow D$

Flows Step 2: Define the Inflow

$$n_{root}(n) = \begin{cases} 1, n = root \\ 0, n \neq root \end{cases}$$

Label each node using an *inflow in*: $N \rightarrow D$

Flows Step 3: Calculate the flow

Flow graph G = (N, e)

Flows Step 3: Calculate the flow

Flow graph
$$G = (N, e)$$

 $flow(in, G) : N \to D$ $flow(in, G) = lfp\left(\lambda C.\lambda n \in N.in(n) + \sum_{n' \in N} C(n') \cdot e(n', n)\right)$

Flows Step 3: Calculate the flow

Flow graph G = (N, e)

 $\forall n \in N. flow(in_{root}, G)(n) \leq 1$

"G contains a tree rooted at root"

 $flow(in, G) : N \to D$ $flow(in, G) = lfp\left(\lambda C. \lambda n \in N. in(n) + \sum_{n' \in N} C(n') \cdot e(n', n)\right)$

Data Constraints

predicate tree(t: Node, C: Set<Int>) { t == null \land emp \land C = \emptyset \lor ∃ v, x, y, Cx, Cy :: $t \mapsto (d:v,r:x,l:y) * tree(x,Cx) * tree(y,Cy) \land$ $C = \{v\} \cup Cx \cup Cy \land v > Cx \land v < Cy$

tree(y,Cy)

tree(x,Cx)

Data Invariants

Data Invariants

KS: the set of all search keys e.g. KS = \mathbb{Z}

Inset flow domain: $(2^{KS}, \subseteq, \cup, \cap, \emptyset, KS)$

Label each edge with the set of keys that follow that edge in a search (edgeset).

KS: the set of all search keys e.g. KS = \mathbb{Z}

Inset flow domain: $(2^{KS}, \subseteq, \cup, \cap, \emptyset, KS)$

Label each edge with the set of keys that follow that edge in a search (edgeset).

KS: the set of all search keys e.g. KS = \mathbb{Z}

Inset flow domain: $(2^{KS}, \subseteq, \cup, \cap, \emptyset, KS)$

Set inflow *in* of **root** to KS and to \emptyset for all other nodes.

$$I_{1} = \{k \mid 3 < k\}$$
$$I_{2} = \{k \mid 3 < k < 6\}$$
$$I_{3} = \{k \mid 8 < k\}$$

flow(in, G)(n) is the *inset* of node n, i.e., the set of keys k such that a search for k will traverse node n.

From Insets to Keysets

keyset(in, G)(n) is the set of keys that could be in n

Verifying Concurrent Search Data Structures

- Local data structure invariants
 - edgesets are disjoint for each n: {e(n,n')}_{n'∈N} are disjoint
 - keyset of each n covers n's contents: $C(G)(n) \subseteq keyset(in, G)(n)$
- Observation: disjoint inflows imply disjoint keysets
 - If $\{in(n)\}_{n \in N}$ are disjoint (e.g. G has a single root)
 - then {keyset(in,G)(n)} $_{n\,\in\,N}$ are disjoint
 - ⇒ Can be used to prove linearizability of concurrent search data structures in a data-structure-agnostic fashion [Shasha and Goodman, 1988]

Compositional Reasoning

Can we reason compositionally about flows and flow graphs à la SL?

Flow Graph Composition

• Standard SL Composition (disjoint union) is too weak:

Flow Interface Graph

(*in*, *G*) is a *flow interface graph* iff

- $G = (N, N_o, \lambda, e)$ is a partial graph with
 - N the set of internal nodes of the graph
 - N_o the set of external nodes of the graph
 - $\lambda: \mathbb{N} \to \mathbb{A}$ a node labeling function
 - $e: N \ge (N \cup N_o) \rightarrow D$ is an edge function
- *in*: $N \rightarrow D$ is an inflow

Inflow *in* specifies rely of *G* on its context.

(in, G)

 $(in, G) = (in_1, G_1) \bullet (in_2, G_2)$

 $in_1 = ?, in_2 = ?$

 $(in, G) = (in_1, G_1) \bullet (in_2, G_2)$

 $(in, G) = (in_1, G_1) \bullet (in_2, G_2)$

 $(in, G) = (in_1, G_1) \bullet (in_2, G_2)$

- $H_1 \bullet H_2$ is
 - commutative: $H_1 \bullet H_2 = H_2 \bullet H_1$
 - associative : $(H_1 \bullet H_2) \bullet H_3 = H_1 \bullet (H_2 \bullet H_3)$
 - cancelative: $H \bullet H_1 = H \bullet H_2 \Rightarrow H_1 = H_2$
 - \Rightarrow Flow interface graphs form a *separation algebra*.
 - \Rightarrow We can use them to give semantics to SL assertions.
- How do we abstract flow interface graphs?

fm(G)(n, n_o) = $\sum \{ pathproduct(p) \mid p \text{ path from } n \text{ to } n_o \text{ in } G \}$

fm(G)(n, n_o) = $\sum \{ pathproduct(p) \mid p \text{ path from } n \text{ to } n_o \text{ in } G \}$

fm(G)(n, n_o) = $\sum \{ pathproduct(p) \mid p \text{ path from } n \text{ to } n_o \text{ in } G \}$

fm(G)(n, n_o) = $\sum \{ pathproduct(p) \mid p \text{ path from } n \text{ to } n_o \text{ in } G \}$

Flow Map: Example

Flow Map: Example

Flow map abstracts from internal structure of the graph

Flow Map: Example

Flow map abstracts from internal structure of the graph

Flow Map: Example

Flow map abstracts from internal structure of the graph

Flow Interfaces

- I = (*in*, *f*) is a *flow interface* if - *in*: N \rightarrow D is an inflow - *f*: N \times N₀ \rightarrow D is a flow map
- [[(in, f)]]_{good} denotes all flow interface graphs (in, G) s.t.
 fm(G) = f
 - for all $n \in N$ good(in(n), $G|_n$) holds
- where *good* is some *good node* condition
 - e.g. *good*(i, _) = i \leq 1

Flow Interfaces with Node Abstraction

- $I = (in, \alpha, f)$ is a *flow interface* if
 - *in*: $N \rightarrow D$ is an inflow
 - $-f: \mathbb{N} \times \mathbb{N}_{o} \rightarrow \mathbb{D}$ is a flow map
 - $\alpha \in \mathsf{A}$ is a node label
- [[(*in*, α, f)]]_{good} denotes all flow interface graphs (*in*, G) s.t.
 fm(G) = f
 - $\alpha = \sqcup \{ \lambda_{\mathsf{G}}(\mathsf{n}) \mid \mathsf{n} \in \mathsf{N} \}$
 - for all $n \in N$ good(in(n), $G|_n$) holds
- where *good* is some *good node* condition
 - e.g. $good(i, _) = i \le 1$

Flow Interface Composition

Composition of flow interface graphs can be lifted to flow interfaces:

• $I \in I_1 \oplus I_2$ iff $\exists H, H_1, H_2$ such that $- H \in \llbracket I \rrbracket, H_1 \in \llbracket I_1 \rrbracket$, and $H_2 \in \llbracket I_2 \rrbracket$ $- H = H_1 \bullet H_2$

Some nice properties of \oplus

- \oplus is associative and commutative
- $\bullet \quad \llbracket \mathsf{I}_1 \rrbracket \bullet \llbracket \mathsf{I}_2 \rrbracket \subseteq \llbracket \mathsf{I}_1 \oplus \mathsf{I}_2 \rrbracket$
- if $I \in I_1 \oplus I_2$, then for all $H_1 \in \llbracket I_1 \rrbracket$, $H_2 \in \llbracket I_2 \rrbracket$, $H_1 \bullet H_2$ defined

Separation Logic with Flow Interfaces

- Good graph predicate $Gr_{\gamma}(I)$
 - γ : SL predicate that defines good node condition and abstraction of heap onto nodes of flow graph
 - I: flow interface term
- Good node predicate $N_{\gamma}(x, I)$
 - like Gr but denotes a single node
 - definable in terms of Gr
- Dirty region predicate $[P]_{\gamma,I}$
 - P: SL predicate
 - denotes heap region that is expected to satisfy interface I but may currently not

Graph Predicate: Linked List

root
$$\dots \longrightarrow 3$$
 next y next $next$ $next$ $k', k' > 3$ $\{k', k' > 3\}$ $\{k', k' > 6\}$ $\{k', k' > 6\}$ $\{k', k' > 8\}$ \dots

Abstraction of linked list node

$$\begin{array}{l} \gamma(x, \textit{in, C, f}) = \exists k, y. \ x \mapsto (\textit{data: } k, \textit{next: } y) \land \\ C = \{k\} \land k \in \textit{in } \land \\ f = \textit{ITE}(y = \textit{null}, \epsilon, \{ (x, y) \mapsto \{k'. \ k' > k\} \}) \end{array}$$

Invariant

 $\exists \mathtt{I} :: \mathsf{Gr}_{\gamma}(\mathtt{I}) \land \mathtt{I}^{in} = \{ \mathsf{root} \mapsto \mathsf{KS} \} . \mathbf{0} \land \mathtt{I}^{f} = \epsilon$

Graph Predicate: Binary Search Tree

Abstraction of BST node

$$\gamma$$
(x, in, C, f) = $\exists k, y, z. x \mapsto$ (data: k, left: y, right: z) \land
 $C = \{k\} \land k \in in \land$
 $f = ITE(y = null, \epsilon, \{ (x,y) \mapsto \{k'. k' < k\} \}$.
ITE(z = null, ϵ , $\{ (x,z) \mapsto \{k'. k' > k\} \}$

Invariant

$$\exists \mathtt{I} :: \mathtt{Gr}_{\gamma}(\mathtt{I}) \land \mathtt{I}^{in} = \{ \mathtt{root} \mapsto \mathtt{KS} \}. \mathtt{O} \land \mathtt{I}^{f} = \epsilon$$

Graph Predicate: Binary Search Tree

Need tree invariant?

Abstraction of BST node

$$\gamma(x, in, C, f) = \exists k, y, z. x \mapsto (data: k, left: y, right: z) \land$$

 $C = \{k\} \land k \in in \land$
 $f = ITE(y = null, \epsilon, \{ (x,y) \mapsto \{k'. k' < k\} \}$.
 $ITE(z = null, \epsilon, \{ (x,z) \mapsto \{k'. k' > k\} \}$

Invariant

$$\exists \mathtt{I} :: \mathsf{Gr}_{\gamma}(\mathtt{I}) \land \mathtt{I}^{in} = \{ \mathsf{root} \mapsto \mathsf{KS} \}. \mathbf{0} \land \mathtt{I}^{f} = \epsilon$$

Graph Predicate: Binary Search Tree

Need tree invariant? No problem!

Abstraction of BST node

$$\begin{split} \gamma(x, (in, pc), C, f) &= \exists k, y, z. \ x \mapsto (\text{data: } k, \text{left: } y, \text{right: } z) \land \\ C &= \{k\} \land k \in in \land pc = 1 \land \\ f &= \text{ITE}(y = \text{null}, \epsilon, \{ (x, y) \mapsto (\{k'. \ k' < k\}, 1) \}. \\ \text{ITE}(z = \text{null}, \epsilon, \{ (x, z) \mapsto (\{k'. \ k' > k\}, 1) \} \end{split}$$

Invariant

 $\exists \mathtt{I} :: \mathsf{Gr}_{\gamma}(\mathtt{I}) \land \mathtt{I}^{in} = \{ \mathsf{root} \mapsto (\mathsf{KS}, \mathtt{1}) \} . \mathtt{0} \land \mathtt{I}^{f} = \epsilon$

Data-Structure-Agnostic Proof Rules

$$\label{eq:composition} \begin{split} & \mathsf{Decomposition} \\ & \mathsf{Gr}(\mathtt{I}) \land \mathtt{x} \in \mathtt{I}^{\mathsf{in}} \\ \hline \mathsf{N}(\mathtt{x}, \mathtt{I}_1) \ast \mathsf{Gr}(\mathtt{I}_2) \land \mathtt{I} \in \mathtt{I}_1 \oplus \mathtt{I}_2 \end{split}$$

Abstraction $Gr(I_1) * Gr(I_2) \land I \in I_1 \oplus I_2$ $Gr(I) \land I \in I_1 \oplus I_2$

 $\begin{aligned} & \mathsf{Replacement} \\ & \underline{\mathsf{I} \in \mathsf{I}_1 \oplus \mathsf{I}_2 \land \mathsf{I}_1 \precsim \mathsf{J}_1} \\ & \overline{\mathsf{J} \in \mathsf{J}_1 \oplus \mathsf{I}_2 \land \mathsf{I} \precsim \mathsf{J}} \end{aligned}$

Generic R/G Actions

- Lock node $N(x, (in, 0, f)) \rightarrow N(x, (in, T, f))$
- Unlock node $N(x, (in, T, f)) \rightarrow N(x, (in, 0, f))$
- Dirty $[true]_{I} \wedge I^{\alpha} = t \rightarrow [true]_{I}$
- Sync $[true]_{I} \wedge I^{\alpha} = t \rightarrow Gr(I') \wedge I \preceq I'$

Conclusion

- Radically new approach for building compositional abstractions of data structures.
- Fits in existing (concurrent) separation logics.
- Enables simple correctness proofs of concurrent data structure algorithms
- Proofs abstract from the details of the specific data structure implementation.