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Example: Lock-Coupling List 

• There is one lock per node; threads acquire locks in a 
hand over hand fashion. 

• If a node is locked, we can insert a node just after it. 

• If two adjacent nodes are locked, we can remove the 
second. 
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RGSep Primer 
[courtesy of Viktor Vafeiadis] 



Program and Environment 

• Program: the current thread being verified. 

• Environment: all other threads of the system 
that execute in parallel with the thread being 
verified. 

• Interference: The program interferes with the 
environment by modifying the shared state.  
 
Conversely, the environment interferes with 
the program by modifying the shared state. 



Local & Shared State 

• The total state is logically divided into two components: 
– Shared: accessible by all threads via synchronization 
– Local: accessible only by one thread, its owner 

 
 
 
 
 
 
State of the lock-coupling list just before inserting a new 
node. 
The node to be added is local because other threads cannot 
yet access it. 

2 3 5 7 8 9 

6 local 

shared 



Program Specifications 

• The specification of a program consists of two 
assertions (precondition & postcondition), and 
two sets of actions: 

• Rely: Describes the interference that the program 
can tolerate from the environment; i.e. specifies 
how the environment can change the shared 
state. 

• Guarantee: Describes the interference that the 
program imposes on its environment; i.e. 
specifies how the program can change the shared 
state. 



Rely/Guarantee Actions 

Lock node 

Unlock node 

Actions describe minimal atomic changes to the 
shared state. 

An action allows any part of the shared state that 
satisfies the LHS to be changed to a part satisfying 
the RHS, but the rest of the shared state must not 
be changed. 



Rely/Guarantee Actions 

Actions can adjust the boundary between local state 
and stared state.  
This is also known as transfer of ownership. 

Add node 

Delete node 



Rely/Guarantee Actions 

Actions can adjust the boundary between local state 
and stared state.  
This is also known as transfer of ownership. 

Add node 

Delete node 

this node becomes shared 

this node becomes local 
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Assertion Syntax 

• Separation Logic 

 P, Q ::= e = e | e  e | e  (f: e) | P * Q | … 

• Extended Logic 

 

 p, q ::= P | P | p * q | … 

local shared 



Assertion Semantics 

• l, s ² P     ,  l ²SL P  

• l, s ² P     ,  s ²SL P and l = {} 

• l, s ² p * q  , exists l1, l2 :  
   l = l1 ² l2 and l1, s ² p and l2, s ² q 
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Assertion Semantics 

• l, s ² P     ,  l ²SL P  

• l, s ² P     ,  s ²SL P and l = {} 

• l, s ² p * q  , exists l1, l2 :  
   l = l1 ² l2 and l1, s ² p and l2, s ² q 

share global state 



Assertions: Lock Coupling List 

v y 

x 
x  (0, v, y) 

v y 

x 
x  (T, v, y) 

T 

lseg(x, y) y 

x 

Unlocked node x holding value v and pointing to y 

Node x holding value v and pointing to y, locked by thread T 

List segment from x to y of possibly locked nodes 



Rely/Guarantee Actions:  
Lock Coupling List 

x  (0, v, y)    x  (T, v, y)  

x  (T, v, y)    x  (0, v, y)  

    x  (T, v, z) 
x  (T, v, y)              *  
   z  (0, w, y) 

x  (T, v, z) 
    *           x  (T, v, y) 
z  (T, w, y) 



Programs: Syntax 

• Basic commands c: 

– noop: skip 

– guard: assume(b) 

– heap write: [x] := y 

– heap read: x := [y] 

– allocation: x := new() 

– deallocation: free(x) 

– … 

 

• Commands C 2 Com: 

– basic commands: c 

– seq. composition: C1; C2 

– nondet. choice: C1 + C2 

– looping: C* 

– atomic com.: atomic C 

– par. composition: C1 | C2 



Rely/Guarantee Judgements 

  ` C sat (p, R, G, q) 

  

   (precondition, rely, guarantee, postcondition) 



Parallel Composition Rule 

` C1 sat (p1, R [ G2, G1, q1) 

` C2 sat (p2, R [ G1, G2, q2) 

` (C1 | C2) sat (p1 * p2, R, G1 [ G2, q1 * q2) 



Stability 

• An assertion is stable iff it is preserved under 
interference by other threads. 

• Example: 

5 7 
A A 
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Stability 

• An assertion is stable iff it is preserved under 
interference by other threads. 

• Example: 

5 7 
A A 

Delete 
B 

B 

B 

stable! 



Stability (Formally) 

S  stable under P  Q 

iff 

(P -* S) * Q ² S 

 

where   P -* S  :=  : (: P -* : S)  



Atomic Commands 

 

` { P } C { Q } 

` (atomic C) sat (P, ;, ;, Q) 

 

p, q stable under R 

` (atomic C) sat (p, ;, G, q) 

` (atomic C) sat (p, R, G, q) 
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reduction to  
sequential SL 

only local state 
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p, q stable under R 
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Atomic Commands 

P2, Q2 precise P2  Q2 2 G 

` (atomic C) sat (P1 * P2, ;, ;, Q1 * Q2) 

` (atomic C) sat (P1 * P2 * F , ;, G, Q1 * Q2 * F) 
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Atomic Commands 

P2, Q2 precise P2  Q2 2 G 

` (atomic C) sat (P1 * P2, ;, ;, Q1 * Q2) 

` (atomic C) sat (P1 * P2 * F , ;, G, Q1 * Q2 * F) 
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local 

shared 
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 P2  Q2 

Q1 = emp 
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Flow Interfaces 

joint work with Siddharth Krishna and Dennis Shasha 



Goal 

• Data structure abstractions that 
– can handle unbounded sharing and overlays 

– treat structural and data constraints uniformly 

– do not encode specific traversal strategies  

– provide data-structure-agnostic composition and 
decomposition rules 

– remain within general theory of separation logic 

 

) Flow Interfaces 



High-Level Idea 

• Express all data structure invariants in terms of a 
local condition, satisfied by each node. 
– Local condition may depend on a quantity of the 

graph that is calculated inductively over the entire 
graph (the flow). 

• Introduce a notion of graph composition that 
preserves local invariants of global flows. 

• Introduce a generic good graph predicate that 
abstracts a heap region satisfying the local flow 
condition (the flow interface). 



Local Data Structure Invariants with Flows 

l r l r 

l 
r 

l 

r 

r 

l 

root 

Can we express the property that root points to a tree as a 
local condition of each node in the graph? 



Local Data Structure Invariants with Flows 

l r l r 

l 
r 

l 

r 

r 

l 

root 

Can we express the property that root points to a tree as a 
local condition of each node in the graph? 

Path counting! 



Local Data Structure Invariants with Flows 

1 

1 1 

1 1 

0 

0 

0 

l r l r 

l 
r 

l 

r 

r 

l 

root 

Can we express the property that root points to a tree as a 
local condition of each node in the graph? 

8 n 2 N. pc(root, n) · 1 

"G contains a tree rooted at root" 



Flows 
Step 1: Defining the Flow Graph 

1 1 1 1 

1 
1 

1 

1 

1 

1 

root 

Label each edge in the graph with an element from some  
flow domain (D, v, +, ¢, 0, 1) 



Flows 
Step 1: Defining the Flow Graph 
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1 

1 

1 

1 

root 

Label each edge in the graph with an element from some  
flow domain (D, v, +, ¢, 0, 1) 

Requirements of flow domain: 
• (D, +, ¢, 0, 1) is a semiring 
• (D, v) is !-cpo with  

smallest element 0 
• + and ¢ are continuous 

 
 

Path counting flow domain: 
(ℕ [ {1}, ·, +, ¢, 0, 1) 
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Label each edge in the graph with an element from some  
flow domain (D, v, +, ¢, 0, 1) 

Flow graph G = (N, e) 
• N finite set of nodes 
• e: N £ N  D 
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Label each edge in the graph with an element from some  
flow domain (D, v, +, ¢, 0, 1) 

Flow graph G = (N, e) 
• N finite set of nodes 
• e: N £ N  D 

0 
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Flows 
Step 2: Define the Inflow 

1 1 1 1 

1 
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1 

1 

1 

root 

Label each node using an inflow in: N  D 

inroot(n) =  
1, n = root
0, n ≠ root
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Flows 
Step 3: Calculate the flow 
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root 

flow 𝑖𝑛, 𝐺 ∶ 𝑁 → 𝐷 

flow(𝑖𝑛, 𝐺) = lfp 𝜆𝐶. 𝜆𝑛 ∈ 𝑁. 𝑖𝑛 𝑛 + 𝐶 𝑛′ ⋅ 𝑒 𝑛′, 𝑛
𝑛′∈𝑁

  

Flow graph G = (N, e) 
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Flow graph G = (N, e) 

root 
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𝑛′∈𝑁

  

Flow graph G = (N, e) 

8 n 2 N. flow(inroot, G)(n) · 1 

"G contains a tree rooted at root" 



Data Constraints 
predicate tree(t: Node, C: Set<Int>) { 
  t == null Æ emp Æ C = ; Ç 

  9 v, x, y, Cx, Cy :: 
    t  (d:v, r:x, l:y) * tree(x, Cx) * tree(y, Cy) Æ 

    C = {v} [ Cx [ Cy Æ v > Cx Æ v < Cy 
} 

t 

tree(x,Cx) tree(y,Cy) 

l r 

v 
d 



Data Invariants 
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Data Invariants 
predicate tree(t: Node, C: Set<Int>) { 
  t == null Æ emp Æ C = ; Ç 

  9 v, x, y, Cx, Cy :: 
    t  (d:v, r:x, l:y) * tree(x, Cx) * tree(y, Cy) Æ 

    C = {v} [ Cx [ Cy Æ v > Cx Æ v < Cy 
} 

t 

tree(x,Cx) tree(y, Cy) 

l r 

v 
d implies Cx Å Cy = ; 

Data invariant piggybacks on inductive definition of the tree. 
) hard to entangle data invariants from data structure specifics. 



Inset Flows 

Label each edge with the set of keys that follow that edge in a search 
(edgeset). 

KS: the set of all search keys 
e.g. KS = ℤ 

 
Inset flow domain: 
(2KS, µ, [, \, ;, KS) 
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Label each edge with the set of keys that follow that edge in a search 
(edgeset). 

KS: the set of all search keys 
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Inset flow domain: 
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{k | k < 6} 

root 

9 

{k | k > 6} 

{k | k < 3} {k | k > 3} {k| k > 8} 



; ; ; 

; ; 

KS 

Inset Flows 

Set inflow in of root to KS and to ; for all other nodes. 

KS: the set of all search keys 
e.g. KS = ℤ 
 
Inset flow domain: 
(2KS, µ, [, \, ;, KS) 

{k | k < 6} 

root 

{k | k > 6} 

{k | k < 3} {k | k > 3} {k | k > 8} 



; ; ; 

; ; 

KS 

Inset Flows 

flow(in, G)(n) is the inset of node n, i.e., the set of keys k such that a 
search for k will traverse node n. 

I1 = {k | 3 < k} 
 
I2 = {k | 3 < k < 6} 
 
I3 = {k | 8 < k} 

I1 I2 

{k | k < 6} 

root 

I3 

{k | k > 6} 

{k | k < 3} {k | k > 3} {k | k > 8} 



From Insets to Keysets 

𝑜𝑢𝑡𝑠𝑒𝑡(𝐺) 𝑛 = 

 𝑒(𝑛, 𝑛′)

𝑛∈𝑁

 

 
𝑘𝑒𝑦𝑠𝑒𝑡(𝑖𝑛, 𝐺) 𝑛 = 
𝑖𝑛𝑠𝑒𝑡(𝑖𝑛, 𝐺) 𝑛 ∖ 𝑜𝑢𝑡𝑠𝑒𝑡(𝐺)(𝑛) 

 

keyset(in, G)(n) is the set of keys 
that could be in n 

5 

1 7 

3 

{5} 

{𝑘. 𝑘 > 5} 

{𝑘. 𝑘 < 5 ∧ 𝑘 > 1} 

{𝑘. 𝑘 < 5 ∧ 
      𝑘 ≤ 1} 



Verifying Concurrent Search Data Structures 

• Local data structure invariants 

– edgesets are disjoint for each n:  
{e(n,n')}n' 2 N are disjoint 

– keyset of each n covers n's contents:  
C(G)(n) µ keyset(in, G)(n) 

• Observation: disjoint inflows imply disjoint keysets 

– If {in(n)}n 2 N are disjoint (e.g. G has a single root) 

– then {keyset(in,G)(n)} n 2 N are disjoint 

 ) Can be used to prove linearizability of concurrent search  
       data structures in a data-structure-agnostic fashion 

 [Shasha and Goodman, 1988] 



Compositional Reasoning 

 

 

 

Can we reason compositionally about flows and 
flow graphs à la SL? 

 



Flow Graph Composition 

• Standard SL Composition (disjoint union) is too weak: 

x 

1 

root 

1 

y y 

x 

1 

* = x 

1 

root 

1 

y 

1 

a tree a tree not a tree 



Flow Interface Graph 

(in, G) is a flow interface graph iff 

• G = (N, No, ¸, e) is a partial graph with 

• N the set of internal nodes of the graph 

• No the set of external nodes of the graph 

•  ¸: N  A a node labeling function 

• e: N x (N [ No)  D is an edge function 

• in: N  D is an inflow 

 

Inflow in specifies rely of G on its context. 
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Flow Interface Graph Composition 

(in, G) = (in1, G1) ² (in2, G2) 
 

in1 = ?, in2 = ? 
1 

1 2 

1 1 

root 

2 

0 
0 

G1 
G2 



Flow Interface Graph Composition 

• H1 ² H2 is 

– commutative: H1 ² H2 = H2 ² H1 

– associative : (H1 ² H2) ² H3 = H1 ² (H2 ² H3)  

– cancelative: H ² H1 = H ² H2 ) H1 = H2 

 

 ) Flow interface graphs form a separation algebra. 

 ) We can use them to give semantics to SL assertions. 

 

• How do we abstract flow interface graphs? 



Flow Map of a Flow Interface Graph 

n 
no 

fm(G)(n, no) = ∑ { pathproduct(p) | p path from n to no in G} 
 
flow(in, G)(no) = ∑ { in(n) ¢ fm(G)(n, no) | n 2 G} 

G 
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fm(G)(n, no) = ∑ { pathproduct(p) | p path from n to no in G} 
 
flow(in, G)(no) = ∑ { in(n) ¢ fm(G)(n, no) | n 2 G} 

G 



Flow Map of a Flow Interface Graph 

n 
no in 

fm(G)(n, no) = ∑ { pathproduct(p) | p path from n to no in G} 
 
flow(in, G)(no) = ∑ { in(n) ¢ fm(G)(n, no) | n 2 G} 

G 

p 



Flow Map of a Flow Interface Graph 

n 
no in 

fm(G)(n, no) = ∑ { pathproduct(p) | p path from n to no in G} 
 
flow(in, G)(no) = ∑ { in(n) ¢ fm(G)(n, no) | n 2 G} 

fm(G) (n, no)  

G 

p 



Flow Map: Example 

1 1 1 1 

1 
1 

1 

1 

1 
1 
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Flow Map: Example 

1 1 

1 
1 

1 

1 

1 

1 

1 

Flow map abstracts from internal structure of the graph 
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Flow Map: Example 

1 1 

1 
1 

1 

1 

1 
1 

1 1 

Flow map abstracts from internal structure of the graph 



1 

1 1 

Flow Map: Example 

1 1 

1 
1 

1 

1 

1 0 0 

Flow map abstracts from internal structure of the graph 



Flow Interfaces 

• I = (in, f) is a flow interface if 

– in: N  D is an inflow 

– f: N £ No  D is a flow map 

 

• (in, f) good denotes all flow interface graphs (in, G) s.t. 

– fm(G) = f 

– for all n 2 N good(in(n), G|n) holds 

• where good is some good node condition 

– e.g. good(i, _) = i · 1 



Flow Interfaces with Node Abstraction 

• I = (in, ®, f) is a flow interface if 

– in: N  D is an inflow 

– f: N £ No  D is a flow map 

–  ® 2 A is a node label 
• (in, ®,  f) good denotes all flow interface graphs (in, G) s.t. 

– fm(G) = f 

– ® = t { ¸G(n) | n 2 N } 

– for all n 2 N good(in(n), G|n) holds 

• where good is some good node condition 
– e.g. good(i, _) = i · 1 



Flow Interface Composition 

Composition of flow interface graphs can be lifted to flow 
interfaces: 

• I 2 I1 © I2 iff 9 H, H1, H2 such that 

– H 2 I , H1 2 I1 , and H2 2 I2  

– H  = H1 ² H2 

 

Some nice properties of © 

• © is associative and commutative 

• I1  ² I2  µ I1 © I2  

• if I 2 I1 © I2, then for all H1 2 I1 , H2 2 I2 , H1 ² H2 defined 

• … 

 



Separation Logic with Flow Interfaces 

• Good graph predicate Gr°(I) 

– °: SL predicate that defines good node condition and  
   abstraction of heap onto nodes of flow graph 

– I: flow interface term 

• Good node predicate N°(x, I) 
– like Gr but denotes a single node 

– definable in terms of Gr 

• Dirty region predicate [P]°,I 

– P: SL predicate 

– denotes heap region that is expected to satisfy interface I 
but may currently not 

 



Graph Predicate: Linked List 

 

 

 

• Abstraction of linked list node 
 

°(x, in, C, f) = 9k, y. x  (data: k, next: y) Æ 
   C = {k} Æ k 2 in Æ 
   f = ITE(y = null, ², { (x,y)  {k'. k' > k} }) 
 

• Invariant 
 

9I :: Gr°(I) Æ Iin = {root  KS}.0 Æ If = ² 

3 6 8 ... ... 

y x 

{k', k' > 3} {k', k' > 6} {k', k' > 8} 

next next next 
root 



Graph Predicate: Binary Search Tree 

 

 

 

• Abstraction of BST node 
 

°(x, in, C, f) = 9k, y, z. x  (data: k, left: y, right: z) Æ 
      C = {k} Æ k 2 in Æ 
      f = ITE(y = null, ², { (x,y)  {k'. k' < k} }. 
     ITE(z = null, ², { (x,z)  {k'. k' > k} } 
 

• Invariant 
 

9I :: Gr°(I) Æ Iin = {root  KS}.0 Æ If = ² 

5 

1 7 

3 

{ k'. k' < 5 } { k'. k' > 5 } 

{ k'. k' > 1 } 

root 

left 
right 

right 



Graph Predicate: Binary Search Tree 

 

 

 

• Abstraction of BST node 
 

°(x, in, C, f) = 9k, y, z. x  (data: k, left: y, right: z) Æ 
      C = {k} Æ k 2 in Æ 
      f = ITE(y = null, ², { (x,y)  {k'. k' < k} }. 
     ITE(z = null, ², { (x,z)  {k'. k' > k} } 
 

• Invariant 
 

9I :: Gr°(I) Æ Iin = {root  KS}.0 Æ If = ² 

5 

1 7 

3 

{ k'. k' < 5 } { k'. k' > 5 } 

{ k'. k' > 1 } 

root 

left 
right 

right 

Need tree invariant? 



Graph Predicate: Binary Search Tree 

 

 

 

• Abstraction of BST node 
 

°(x, (in, pc), C, f) = 9k, y, z. x  (data: k, left: y, right: z) Æ 
      C = {k} Æ k 2 in Æ pc = 1 Æ 
      f = ITE(y = null, ², { (x,y)  ({k'. k' < k}, 1) }. 
     ITE(z = null, ², { (x,z)  ({k'. k' > k}, 1) } 
 

• Invariant 
 

9I :: Gr°(I) Æ Iin = {root  (KS, 1)}.0 Æ If = ² 

5 

1 7 

3 

({ k'. k' < 5} , 1)  ({ k'. k' > 5 } , 1) 

({ k'. k' > 1 }, 1) 

root 

left 
right 

right 

Need tree invariant? 
No problem! 



Data-Structure-Agnostic Proof Rules 

Decomposition 
              Gr(I) Æ x 2 Iin                     . 
                                                          . 

N(x, I1) * Gr(I2) Æ I 2 I1 © I2 

 

Abstraction 
 Gr(I1) * Gr(I2) Æ I 2 I1 © I2 
                                                                                         .    

 Gr(I) Æ I 2 I1 © I2 

 

Replacement 
I 2 I1 © I2 Æ I1 ≾ J1 
               . 

J 2 J1 © I2 Æ I ≾ J 

 

 



Generic R/G Actions 

• Lock node  N(x, (in, 0, f))  N(x, (in, T, f)) 

 

• Unlock node N(x, (in, T, f))  N(x, (in, 0, f)) 

 

• Dirty  [true]I Æ I® = t  [true]I 
 

• Sync  [true]I Æ I® = t  Gr(I') Æ I ≾ I' 



Conclusion 

• Radically new approach for building 
compositional abstractions of data structures. 

• Fits in existing (concurrent) separation logics. 

• Enables simple correctness proofs of 
concurrent data structure algorithms 

• Proofs abstract from the details of the specific 
data structure implementation. 


