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What is a Quantum Computer? 

Quantum Approach (QA) Tests on CPU Sampler and Spectral Gap Analysis (2D)

state preparation annealing + measurement choosing one solution unembedding

+ classical sampler
+ D-WAVE 2000Q
+ hybrid sampler

+ the bitstring corresponding to the 
measurement with the lowest energy

Experiments on D-WAVE 2000Q (2D)

entire Chimera graph
with [16 x 16] unit cells

the region with the 
embedded problem

distribution of solutions after 5k runs
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mapping of the problem

Minor-Embedding and Quantum Annealing

physical qubit chain of length 7

physical qubit chain of length 8
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The sequences of energy-decreasing transitions and the 
corresponding energy values observed in our sampler.

The metrics as the functions of A/: the size of the point 
interaction region parametrised by K; B/: the angle of 
initial misalignment θ; C/: the template noise ratio. 

Adiabatic Quantum Annealers 

+ Quantum computers take advantage of quantum mechanical effects, i.e., 
quantum superposition, entanglement and tunnelling [1, 2]. 
+ They can perform all operations which classical computers can perform, 
plus multiple algorithms which have lower complexity class compared to 
their classical counterparts (e.g., prime number factorisation [3]) 
+ Quantum computers can be classified into two models – gates model and 
quantum annealers [4]   
+ Quantum annealing machines relying on the adiabatic theorem of 
quantum mechanics [5] are called adiabatic quantum computers (AQC) 

Motivation and Contributions 
+ Quantum computers are already used to solve difficult combinatorial 
optimisation problems, and they can be useful in computer vision 
+ We show that the classical problem of finding optimal transformation 
and correspondences between two point sets can be efficiently solved on a 
quantum computer. The quantum annealing time is constant and does not 
depend on the size of the inputs in a given dimension. 
+ We show how to formulate point set alignment as a quadratic binary 
unconstrained optimisation problem (QUBOP) of the form 

and overcome the difficulty of rotation parametrisation. 

model of a qubit 
(Bloch sphere) D-WAVE 2000Q with ~2k qubits [6]

initialisation (initial 
default Hamiltonian)

annealing (20    s.)

the system evolves to the 
ground state of the 

problem Hamiltonian

measurement

classical bitstring 
(ready for unembedding)

qubits collapse to one 
of the basis states 
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State Preparation:: 
Transformation Estimation 

http://gvv.mpi-inf.mpg.de/projects/QA/

Cayley-Hamilton Theorem: 

Exponential map for     with power series: 

Power series of     ,                    : 

It leads to our basis for     :  

Template point set:  

Reference point set:  

(2D) 

(3D) 

(2D) 

(3D) 

(2D), 

(2D) 

(3D) 

State Preparation::
Point Set Alignment

Unembedding

Quantum notions and their classical counterparts. The accuracy of QA under random initial misalignments. Examples of                  in QA. 

Complexity of state preparation: 

(transformation estimation)  

(point set alignment)  

Error metrics: 

(alignment error)  
(transformation 

discrepancy)

The final QUBOP and     :  

(2D)

Minimise gravitational potential energy [7] of the system 
of particles (reference + template) with local point linking: 

For each template point: 

Unembedding is the decoding of the solution to QUBOP to the 
solution of the original alignment problem:   

where a classical bitstring     is the measurement of    . 

,

If required, the obtained 
approximate solution can be 
projected to the rotation group:

(2D)
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