

Motivation and Contributions

+ Quantum computers are already used to solve difficult combinatorial optimisation problems, and they can be useful in computer vision

+ We show that the classical problem of finding optimal transformation and correspondences between two point sets can be efficiently solved on a quantum computer. The quantum annealing time is constant and does not depend on the size of the inputs in a given dimension.

+ We show how to formulate point set alignment as a quadratic binary unconstrained optimisation problem (QUBOP) of the form

 $\arg\min_{\mathbf{q}\in\mathbf{B}^n}\mathbf{q}^{\mathsf{T}}\mathbf{P}\mathbf{q},$

and overcome the difficulty of rotation parametrisation.

What is a Quantum Computer?

+ Quantum computers take advantage of quantum mechanical effects, *i.e.*, quantum superposition, entanglement and tunnelling [1, 2]. + They can perform all operations which classical computers can perform, plus multiple algorithms which have lower complexity class compared to their classical counterparts (*e.g.*, prime number factorisation [3]) + Quantum computers can be classified into two models - gates model and quantum annealers [4]

+ Quantum annealing machines relying on the adiabatic theorem of quantum mechanics [5] are called adiabatic quantum computers (AQC)

Adiabatic Quantum Annealers

Starting at room temperature at the top, the temperatu ecreases at each level until it is close to absolute zero where the QPU itself is located. **/* * * * * * . . . $\frac{\alpha}{\beta}$ ***/******** **Qubits in red** Processor model of a qubit D-WAVE 2000Q with ~2k qubits [6] (Bloch sphere) $\left(\frac{|0
angle+|1
angle}{\sqrt{2^n}}
ight)$ initialisation (initial default Hamiltonian) $|+\rangle |+\rangle |+\rangle |+\rangle \cdots |+\rangle \langle \hat{\mathcal{H}} \rangle$ s = 0: $| \uparrow \rangle | \uparrow \rangle | \bullet \rangle | \uparrow \rangle \dots | \downarrow \rangle$ $\forall \mathbf{C}^3$ annealing (20 μ s.) $| \uparrow \rangle | \uparrow \rangle | \star \rangle | \uparrow \rangle \cdots | \downarrow \rangle$ the system evolves to the ground state of the problem Hamiltonian \mathbf{M} $\mathbf{s} = 1: \quad | \mathbf{\uparrow} \rangle | \mathbf{\uparrow} \rangle | \mathbf{\downarrow} \rangle | \mathbf{\uparrow} \rangle \cdots | \mathbf{\downarrow} \rangle \quad \langle \hat{\mathcal{H}}_{P} \rangle \quad \mathbf{\bullet}$ $1 \cdots 0$ measurement classical bitstring qubits collapse to one \mathbf{M}_{d} (ready for unembedding) of the basis states

quantum notion qubit (states $|0\rangle$ and $|1\rangle$) (time-dependent) Hamiltonian eigenstate ground state quantum system evolution quantum annealing

classical counterpart bit (states 0 and 1) energy functional some energy state globally optimal energy state optimisation process simulated annealing

	TE	K				
		10	20	30	40	50
e_{2D}	0.023	0.026	0.041	0.078	0.17	0.3
σ_{2D}	0.012	0.013	0.012	0.012	0.012	0.013
$e_{\mathbf{R}}$	0.058	0.062	0.083	0.22	0.47	0.764
$\sigma_{\mathbf{R}}$	0.041	0.044	0.041	0.036	0.031	0.03

Quantum notions and their classical counterparts.

The accuracy of QA under random initial misalignments.

A Quantum Computational Approach to Correspondence Problems on Point Sets Vladislav Golyanik Christian Theobalt

State Preparation:: **Transformation Estimation**

Reference point set: Template point set:

 $[\mathbf{x}_n] \in \mathbf{X} \in \mathbb{R}^{D imes N}$ $[\mathbf{y}_n] \in \mathbf{Y} \in \mathbb{R}^{D imes N}$

Power series of
$$\mathbf{R}$$
, $\mathbf{R}^{-1} = \mathbf{R}^{\top}$:
 $\mathbf{S} = \theta \mathbf{M}$, $\mathbf{M} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ (2D), $\begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$ (3D)

Cayley-Hamilton Theorem:

$$S^{2} + \theta^{2}I = 0$$
 (2D) $-S^{3} - \theta^{2}S = 0$ (3D)

Exponential map for \mathbf{R} with power series:

$$= \exp(\mathbf{S}) = \begin{cases} \cos(\theta) \mathbf{I} + \left(\frac{\sin(\theta)}{\theta}\right) \mathbf{S} \\ \mathbf{I} + \left(\frac{\sin\theta}{\theta}\right) \mathbf{S} + \left(\frac{1-\cos\theta}{\theta^2}\right) \mathbf{S}^2 \end{cases}$$
$$\begin{cases} \cos(\theta) \mathbf{I} + \sin(\theta) \mathbf{M} \\ \mathbf{I} + \sin\theta \mathbf{M} + (1-\cos\theta) \mathbf{M}^2 \quad (\mathbf{2D}) \end{cases}$$

It leads to our basis for \mathbf{R} :

$$\begin{split} _{k} &= \omega \, \mathbf{C} \in \mathbb{R}^{2 \times 2}, \forall \omega \in \{0.5, 0.2, 0.1, 0.1, 0.05\}, \\ &\forall \mathbf{C} \in \{\mathbf{I}, \mathbf{M}, -\mathbf{I}, -\mathbf{M}\}\}. \end{split}$$
(2D)
$$\begin{split} ^{3D}_{k} &= \omega \, \mathbf{C}^{3D} \in \mathbb{R}^{3 \times 3}, \forall \omega \in \{0.5, 0.2, 0.1, 0.1, 0.05\}, \\ ^{3D}_{k} &= \omega \, \mathbf{C}^{3D} \in \{\mathbf{I}, -\mathbf{I}, \, \, \mathbf{M}_{a}, -\mathbf{M}_{a}, \mathbf{M}_{b}, -\mathbf{M}_{b}, \mathbf{M}_{c}, -\mathbf{M}_{c}, \\ \mathbf{M}_{d}, -\mathbf{M}_{d}, \mathbf{M}_{e}, -\mathbf{M}_{e}, \mathbf{M}_{f}, -\mathbf{M}_{f}\}\}. \end{aligned}$$
(3D)
$$= u \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \end{aligned}$$
(Wigged)
$$= \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{M}_{e} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \mathbf{M}_{f} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
(Wigged)

$$\boldsymbol{\Phi} = \begin{bmatrix} \mathbf{x}_{1}^{\mathsf{T}} & \mathbf{x}_{2}^{\mathsf{T}} & \dots & \mathbf{x}_{N}^{\mathsf{T}} \\ -[\mathbf{Q}_{1}\mathbf{y}_{1}]^{\mathsf{T}} & -[\mathbf{Q}_{1}\mathbf{y}_{2}]^{\mathsf{T}} & \dots & -[\mathbf{Q}_{1}\mathbf{y}_{N}]^{\mathsf{T}} \\ -[\mathbf{Q}_{2}\mathbf{y}_{1}]^{\mathsf{T}} & -[\mathbf{Q}_{2}\mathbf{y}_{2}]^{\mathsf{T}} & \dots & -[\mathbf{Q}_{2}\mathbf{y}_{N}]^{\mathsf{T}} \\ \vdots & \vdots & \ddots & \vdots \\ -[\mathbf{Q}_{K}\mathbf{y}_{1}]^{\mathsf{T}} & -[\mathbf{Q}_{K}\mathbf{y}_{2}]^{\mathsf{T}} & \dots & -[\mathbf{Q}_{K}\mathbf{y}_{N}]^{\mathsf{T}} \end{bmatrix}$$

State Preparation:: Point Set Alignment

Minimise gravitational potential energy [7] of the system of particles (reference + template) with local point linking:

$$\mathbf{E}(\mathbf{R}, \mathbf{t}) = \sum_{m} \sum_{n} \mu_{\mathbf{y}_{m}} \mu_{\mathbf{x}_{n}} \| \mathbf{R} \mathbf{y}_{m} + \mathbf{t} - \mathbf{x}_{n} \|_{2}$$

arg min $\mathbf{q}^{\mathsf{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathsf{T}} \mathbf{q} \qquad \boldsymbol{\Phi} = \left[\boldsymbol{\Phi}_{1} \boldsymbol{\Phi}_{2} \dots \boldsymbol{\Phi}_{N} \right]$ (2D)

For each template point:

$$\boldsymbol{\Phi}_{n} = \begin{bmatrix} \mathbf{x}_{n}^{\mathsf{T}} & \mathbf{x}_{n}^{\mathsf{T}} & \dots & \mathbf{x}_{n}^{\mathsf{T}} \\ -[\mathbf{Q}_{1}\mathbf{y}_{1}^{n}]^{\mathsf{T}} & -[\mathbf{Q}_{1}\mathbf{y}_{2}^{n}]^{\mathsf{T}} & \dots & -[\mathbf{Q}_{1}\mathbf{y}_{L(n)}^{n}]^{\mathsf{T}} \\ -[\mathbf{Q}_{2}\mathbf{y}_{1}^{n}]^{\mathsf{T}} & -[\mathbf{Q}_{2}\mathbf{y}_{2}^{n}]^{\mathsf{T}} & \dots & -[\mathbf{Q}_{2}\mathbf{y}_{L(n)}^{n}]^{\mathsf{T}} \\ \vdots & \vdots & \ddots & \vdots \\ -[\mathbf{Q}_{K}\mathbf{y}_{1}^{n}]^{\mathsf{T}} & -[\mathbf{Q}_{K}\mathbf{y}_{2}^{n}]^{\mathsf{T}} & \dots & -[\mathbf{Q}_{K}\mathbf{y}_{L(n)}^{n}]^{\mathsf{T}} \end{bmatrix}$$

Unembedding

Unembedding is the decoding of the solution to QUBOP to the solution of the original alignment problem:

$\mathbf{R} =$

If required, the obtained approximate solution can be projected to the rotation group:

+ the bitstring corresponding to the measurement with the lowest energy

$$\mathbf{R} = \sum_{k=1} \hat{\mathbf{q}}_{k+1} \mathbf{Q}_k$$

unembedding

arg min $\mathbf{q}^{\mathsf{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathsf{T}} \mathbf{q} \quad \mathbf{P} = \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathsf{T}}$ (2D)

$$= \sum_{k=1}^{K} \hat{\mathbf{q}}_{k+1} \mathbf{Q}_k,$$

where a classical bitstring $\hat{\mathbf{q}}$ is the measurement of \mathbf{q} .

 $\min \|\mathbf{R}_{\mathbf{r}} - \mathbf{R}\|_{\mathcal{HS}}^2,$ s. t. $\mathbf{R}_r^{-1} = \mathbf{R}_r^{\mathsf{T}}$ and $\det(\mathbf{R}_r) = 1$.

Complexity of state preparation:

 $\mathcal{O}(K^2 DN)$ (transformation estimation) $\mathcal{O}(K^2 D N \overline{L})$ (point set alignment)

Error metrics:

 $\left\| \mathbf{R} \mathbf{Y} \!-\! \mathbf{X} \right\|_{\mathcal{HS}}$ $e_{2D} = \frac{\|\mathbf{x}\|_{\mathcal{HS}}}{\|\mathbf{x}\|_{\mathcal{HS}}}$ $e_{\mathbf{R}} = \left\| \mathbf{I} - \mathbf{R} \mathbf{R}^{\mathsf{T}} \right\|_{\mathcal{HS}}$

(alignment error) (transformation discrepancy)

Tests on CPU Sampler and Spectral Gap Analysis (2D)

The metrics as the functions of A/: the size of the point interaction region parametrised by K; B/: the angle of initial misalignment θ ; C/: the template noise ratio.

Experiments on D-WAVE 2000Q (2D)

K = 1

distribution of solutions after 5k runs

References

[1] Y. Manin. Computable and Noncomputable. *Sov. Radio*, 1980. [2] R. P. Feynman. Simulating Physics with Computers. *International Journal of Theoretical Physics*, 1982. [3] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Auantum Computer. SIAM J. Comput., 26(5), 1997.

[4] E. Farhi *et al.* A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. *Science*, 292(5516), 2001.

[5] M. Born and V. Fock. Beweis des Adiabatensatzes. *Zeitschrift für Physik*, 51(3), 1928. [6] D-Wave Systems, Inc. Practical Quantum Computing, D-Wave Technology Overview, 2020. [7] V. Golyanik et al. Accelerated Gravitational Point Set Alignment with Altered Physical Laws. In ICCV, 2019

http://gvv.mpi-inf.mpg.de/projects/QA/

The sequences of energy-decreasing transitions and the corresponding energy values observed in our sampler.

K = 20 (top row), 30 (bottom row)

K = 30, template noise

12 St. 1997 A.

Minor-Embedding and Quantum Annealing

mapping of the problem

