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Introduction and motivation J

-

The work tackles dense NRSfM in scenarios with large occlusions or
inaccurate point tracks. A new hybrid NRSfM framework is proposed. The
core method SPVA allows to regularize time-varying structure on the
per-pixel level, given an occlusion indicator and a shape prior. Shape
prior is estimated from several first non-occluded frames of the
sequence under non-rigid deformations.

NRSfM Template-based reconstruction hybrid NRSfM
Shape does not requires a template (obtained in generates a shape prior
prior require a an external procedure, often on the fly under non-
template under rigidity assumption) rigid deformations

Application scenarios: minimally invasive surgery, reconstruction and
tracking of long sequences under occlusions, specular effects, brightness
inconsistency. The framework also proposes a method to obtain a
template for template-based methods by relaxing the assumption of a
known accurate reconstruction.

Overview of the framework }

(@): the input to the pipeline is an image sequence of a non-rigidly deforming scene. (b)
first stage of the pipeline is point tracking with multi-frame optical flow [2]. (c) the
second stage is occlusion tensor estimation (shown in (d); brighter values indicate higher
occlusion probability of the pixel). Next, a shape prior is estimated relying on the total
intensity criterion. The correspondences, the occlusion tensor and the estimated shape
prior are inputs for the Shape Prior based Variational Approach (SPVA). (e) example of
a shape prior.
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Energy functional of SPVA
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SPVA: Variational NRSfM with a Shape Prior

Input: measurements W, S,,,.;,, parameters A, v, 7, 8, n = 01

Output: non-rigid shape S, camera poses R
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Initialisation: S and R under rigidity assumption [46]
STEP 1. Fix S, find an optimal R framewise:
svd(WS(SST)™ 1) =UxVv'

R =
= diag(1,1,...,1,sign(det(UV")))
STEP 2. Fix R; find an optimal S:
while not converge do

UCV', where

Primal-Dual: ﬁ;( S; find an intermediate S (Eq. (9))
Initialisation: ¢} (p) =0
while not converge do
Vi) - Vgh(N)
D, = : . :

Vigp(l) - Vigp(N)
S=(AR'R+~+3:I)"

(AR'W + 28 + 7Sprior — Dq)
forle,...,F;i—l 53 p=1,..., Ndo

; B qf (p)—i-chS}(P)
qyf (p) ~ max(1, ||qf(P)+)O'VS@ §211)

end while

Soft-Impute: fix S; find an intermediate S (Eq. (10))
svd(P(S)) = UDV', where D = diag(oy, ..., o)
S =UD, V', where

D, = dlag(max( o1 —n,0),...,max(c, —7n,0))

19: end while
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L Obtaining a shape prior

Total intensity (TI) criterion:
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Model evaluation
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Estimation of an occlusion tensor E(x) R e o o >
. - le+04 le+05 le+06 le+07 le+08 .‘&O\&J@ Q’eq-xv $4< ._9
Input: dense flow fields u(x;n), a reference frame I(x,r), - Y _ ¥ S 2
Gaussian kernel Gk <k (a) #, per pixel per frame prior (b) stripes, per pixel per frame prior (c) runtimes of different configurations
Output: occlusion maps E(z, n)
I: for every framen € {2,..., F'} do o initialisation obtained under rigidity
i W(n’ [g‘iffl(x, n)B—( ];(I; n)( (bagkpf(I’J(eC“O)nAto tee) assumption overlayed with a shape algorithmic combination mean RMS, # | mean RMS, stripes >
image difference B(x) = w(n,r) — I(z,r)= rior (cvan o
4 for every pixel z do prior (cyan) 0o.a. MFOF[3 ]+VA[T] [ 0.181(0.219) 0.195 (0.209) =
5 — H 2t (2 —ab)? + (@) — xp) H2 Pangaea tracker [ 5 | 0.172 (0.191) 0.172 (0.191) =
6: end for MESF [ 2 [ +AMP [ 6 ] 0.297 (0.381) 0.460 (0.523) =
7. E(z,n) =B(2) x G T A MFESF [ 2 |+ VA [ 1] 0.239(0.252) | 0.341(0.355)
2 dp;)stprocess E(x) €3D T lf=1 Hsref H MFESF [ 2 |4+SPVA, p. pix. | 0.143 (0.161) 0.167 (0.189) o rigid pre-alignment final non-rigid
: end for rollF MESF [ 2 |+-SPVA, p. seq. | 0.140 (0.160) | 0.160 (0.184) initial misalignment  (otation is resolved alignment
non-rigid alignment of the ground truth geometry with an exemplary
. . . reconstruction for correspondence establishment. Here, we use Extended CPD.
P aral Iel energy Op'“ m |Sat|on The point corrgspondences are eventually used in the quantitative evaluation
< (3D error metric).
D, and S updates as well as multiplications of large matrices are
implemented on GPU
~ global void kernel compute D q();
__global void kernel AB T();
__global  void kernel AA T();
frame 22, regulariser strength increases from the left to the right
configuration heart surgery face (new) ASL F5_.10_A_H17
360 x 288, 50 fr. | 241 x 285, 136 fr. | 720 x 480, 114 fr. Test platform:
MFSF [2] + VA [1] 481.0 +119.3 728.9 + 35.7 3114.0 + 400.0 - Xeon E5-1650 10 19 i ;
MEFSF [2] + AMP 6] 481.0 + 20.4 728.9 + 26.4 3114.0 + 98.0 - GK110 GPU "" ¥ —~F K!
occlusion-aware MFOF [3] + VA [1] | 1592.8 + 119.2 2693.6 4+ 35.7 11995.3 4+ 300.5
MFSF [2] + SPVA 481.0 + 846.2 7289 + 122.9 3114.0 + 1011.0 - 32 GBRAM —
Joint evaluation methodology:

- based on a dataset with a ground truth surface geometry and rendered
images with occlusions (we choose the mocap flag sequence [2] and

introduce large occlu

sions)

- two patterns are used: # and stripes

- correspondences are computed either with multi-frame subspace flow
[2] or occlusion-aware video registration (MFOF) [3]

- accuracy and runtime of different algorithmic pipelines are evaluated

result of the Pangea tracker [5] with the shape prior obtained under

occlusion-aware g :
SPVA non-rigid deformations used as a template

MFSF + VA MFOF + VA
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