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Objective: given two point sets, find displacements (or correspondences) between the 
point sets.

Non-rigid Point Set Registration (NRPSR)

2D point set registration 
[Myronenko and Song 2010] 2

3D face registration 
[Taetz et al. 2016]

3D pose registration 
[Golyanik et al. 2017]
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Related Works,  General-Purpose Methods



Iterative Closest Point (ICP) 
[Besl and McKay 1992] 

the image is taken from [Smistad et al. 2015]
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Related Works,  General-Purpose Methods



Iterative Closest Point (ICP) 
[Besl and McKay 1992] 

the image is taken from [Smistad et al. 2015]

Gaussian Mixture Model 
Registration (GMR) 

[Jian et al. 2005 ]

5

Related Works,  General-Purpose Methods



Iterative Closest Point (ICP) 
[Besl and McKay 1992] 

the image is taken from [Smistad et al. 2015]

Gaussian Mixture Model 
Registration (GMR) 

[Jian et al. 2005 ]

Coherent Point Drift (CPD)
[Myronenko and Song 2010 ]
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Related Works,  General-Purpose Methods
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Initialisation Iteration 25 Iteration 50 Iteration 75 Iteration 100

Gravitational Approach for NRPSR
[Ali et al. 2018] 

Green : reference
Blue   : template

Related Works,  General-Purpose Methods



Often fails with large deformations and articulated motions between the point sets. 8

Initialisation Iteration 25 Iteration 50 Iteration 75 Iteration 100

Gravitational Approach for NRPSR

Green : reference
Blue   : template

Related Works,  General-Purpose Methods

[Ali et al. 2018] 
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CPD GLTPTarget
[Ge et al. 2014 ]

Related Works,  General-Purpose Methods
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CPD GLTPTarget

Relatively accurate however sensitive to noises

[Ge et al. 2014 ]

Related Works,  General-Purpose Methods
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[Ge and Fan 2015 ]

Related Works,  Class-Specific Methods



Perform well with large deformations and articulated motions between the point sets.
However, the generalisability is limited. 12

[Ge and Fan 2015 ]

Related Works,  Class-Specific Methods
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Related Works,  Neural Network Based Approaches (Other Fields) 

...

3D-PhysNet DEMEA 
[Wang et al. 2018 ] [Tretschk et al. 2019 ]



Pipeline
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Pipeline

● Y: template point set,  X: reference point set
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● Y: template point set,  X: reference point set
● Assume M is not equal to N in general
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Pipeline

RefinementDisplacement Estimation (DE)

● Y: template point set,  X: reference point set
● Assume M is not equal to N in general
● DE stage regresses global displacements between Y and X
● Refinement stage improves the initial displacements
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Pipeline

P2V

P2V

Refinement

● Y and X are firstly converted into voxel representation (P2V)
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● Y and X are firstly converted into voxel representation (P2V)
● During the conversion, point-voxel correspondence information is stored in an affinity table
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Refinement

● Y and X are firstly converted into voxel representation (P2V)
● During the conversion, point-voxel correspondence information is stored in an affinity table
● DispVoxNet accepts two voxel grids and returns voxel displacements
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Pipeline

P2V

P2V

z

y

x

V2P

DispVoxNet

● Y and X are firstly converted into voxel representation (P2V)
● During the conversion, point-voxel correspondence information is stored in an affinity table
● DispVoxNet accepts two voxel grids and returns voxel displacements
● The displacements are applied using the affinity table at the end of DE stage

Refinement
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Pipeline

P2V

P2V

z

y

x

V2P P2V

DispVoxNet
DispVoxNet

● The outputs from the DE stage are further sent to the Refinement stage after P2V
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DispVoxNet

● The outputs from the DE stage are further sent to the Refinement stage after P2V
● The new instance of DispVoxNet returns small displacements for refinement
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DispVoxNet

V2P

● The outputs from the DE stage are further sent to the Refinement stage after P2V
● The new instance of DispVoxNet returns small displacements for refinement
● The inferred displacements are added to the template points
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● The network in the DE stage is trained in a supervised manner (displacement loss)
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DispVoxNet

● The network in the DE stage is trained in a supervised manner (displacement loss)
● The network in the Refinement stage is trained in an unsupervised manner (point projection loss)
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Loss Functions - Displacement Loss 
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d1

(II)

Loss Functions - Point Projection Loss
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DispVoxNet

Problem 1: Discretisation effect due to the nature of voxel grids

Problem 2: Indifferentiability problem
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Affinity
Table

: Inferred Displacement

: Template Point

: Forward

: Backward

: Trilinear Interpolation

I. Compute trilinear weights for each template point using its 8 nearest inferred displacements
II. Record the weights and indices of the 8 nearest displacements in the affinity table
III. Compute the point projection loss
IV. Distribute gradients following the IDs and weights information recorded in the affinity table in  II. 
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Solution for Discretisation and Indifferentiability Problems



Datasets
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Datasets

thin plate
[Golyanik et al. 2018]

FLAME
[Li et al. 2017]

DFAUST
[Bogo et al. 2017]

cloth
[Bednařík et al. 2018]
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Evaluation
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Quantitative Results - Baseline and Outliers
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Baseline Comparison

Outlier

Template Reference

Template Reference

Quantitative Results - Baseline and Outliers
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Quantitative Results - Uniform Noises
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Quantitative Results - Uniform Noises

Template Reference Template ReferenceTemplate ReferenceTemplate Reference
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Quantitative Results - Runtime
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Quantitative Results - Runtime

● With 10K points, our approach requires only a second per registration 
whereas others require around 2 hours - 15 seconds



Qualitative Results
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Baseline Comparison
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Baseline Comparison

Inputs

Template DispVoxNets
 (Ours)

Reference NR-ICP CPD CPD (FGT) GMR
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Outliers
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Inputs

Template DispVoxNets
 (Ours)

Reference NR-ICP CPD CPD (FGT) GMR

Outliers
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Uniform Noises
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Inputs

Template DispVoxNets
 (Ours)

Reference NR-ICP CPD CPD (FGT) GMR

Uniform Noises
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Real Face Dataset
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Real Face Dataset

52

Datasets: [Dai et al. 2017], [Li et al. 2017]
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- To the best of our knowledge, this is the first neural network based approach for 
NRPSR that is invariant to the number and order of points.
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Summary
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- To the best of our knowledge, this is the first neural network based approach for 
NRPSR that is invariant to the number and order of points.

- Our approach outperforms other existing general-purpose methods in the presence 
of large deformations, articulated motion, noise, outliers and missing data.

- Runs orders of magnitude faster than previous techniques.

- Limitation: topology preserving is not yet fully satisfying.

http://gvv.mpi-inf.mpg.de/projects/DispVoxNets/Project Page: 

http://gvv.mpi-inf.mpg.de/projects/DispVoxNets/
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Questions?
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Thank you
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