

## DispVoxNets: Non-Rigid Point Set Alignment with Supervised Learning Proxies

Soshi Shimada<sup>1,2</sup>Vladislav Golyanik<sup>3</sup>Edgar Tretschk<sup>3</sup>

Didier Stricker<sup>1,2</sup>Christian Theobalt<sup>3</sup>

<sup>1</sup>University of Kaiserslautern

<sup>2</sup>**DFKI** 

<sup>3</sup>MPI for Informatics, SIC



## Non-rigid Point Set Registration (NRPSR)

Objective: given two point sets, find displacements (or correspondences) between the point sets.



2D point set registration [Myronenko and Song 2010]





Iterative Closest Point (ICP)

[Besl and McKay 1992] the image is taken from [Smistad *et al.* 2015]



Iterative Closest Point (ICP) [Besl and McKay 1992] the image is taken from [Smistad *et al.* 2015]



Gaussian Mixture Model Registration (GMR) [Jian et al. 2005]



Iterative Closest Point (ICP) [Besl and McKay 1992] the image is taken from [Smistad *et al.* 2015]





Gaussian Mixture Model Registration (GMR) [Jian et al. 2005]

Coherent Point Drift (CPD) [Myronenko and Song 2010]



#### Gravitational Approach for NRPSR [Ali *et al.* 2018]



#### Gravitational Approach for NRPSR [Ali *et al.* 2018]

Often fails with large deformations and articulated motions between the point sets.





Relatively accurate however sensitive to noises

## Related Works, Class-Specific Methods



[Ge and Fan 2015]

## Related Works, Class-Specific Methods



[Ge and Fan 2015]

Perform well with large deformations and articulated motions between the point sets. However, the generalisability is limited.

## Related Works, Neural Network Based Approaches (Other Fields)





3D-PhysNet [Wang *et al.* 2018] DEMEA [Tretschk *et al.* 2019]





• Y: template point set, X: reference point set





- Y: template point set. X: reference point
  - Y: template point set, X: reference point setAssume M is not equal to N in general



- Y: template point set, X: reference point set
- Assume M is not equal to N in general



- Y: template point set, X: reference point set
- Assume M is not equal to N in general
- DE stage regresses global displacements between Y and X



- Y: template point set, X: reference point set
- Assume M is not equal to N in general
- DE stage regresses global displacements between Y and X
- Refinement stage improves the initial displacements



• Y and X are firstly converted into voxel representation (P2V)



- Y and X are firstly converted into voxel representation (P2V)
- During the conversion, point-voxel correspondence information is stored in an **affinity table**



- Y and X are firstly converted into voxel representation (P2V)
- During the conversion, point-voxel correspondence information is stored in an **affinity table**



- Y and X are firstly converted into voxel representation (P2V)
- During the conversion, point-voxel correspondence information is stored in an **affinity table**
- DispVoxNet accepts two voxel grids and returns voxel displacements



- Y and X are firstly converted into voxel representation (P2V)
- During the conversion, point-voxel correspondence information is stored in an **affinity table**
- DispVoxNet accepts two voxel grids and returns voxel displacements
- The displacements are applied using the affinity table at the end of DE stage



• The outputs from the DE stage are further sent to the Refinement stage after P2V



- The outputs from the DE stage are further sent to the Refinement stage after P2V
- The new instance of DispVoxNet returns small displacements for refinement



- The outputs from the DE stage are further sent to the Refinement stage after P2V
- The new instance of DispVoxNet returns small displacements for refinement
- The inferred displacements are added to the template points





• The network in the DE stage is trained in a supervised manner (displacement loss)



- The network in the DE stage is trained in a supervised manner (displacement loss)
- The network in the Refinement stage is trained in an unsupervised manner (point projection loss)

## Loss Functions - Displacement Loss



## Loss Functions - Point Projection Loss







Problem 1: Discretisation effect due to the nature of voxel grids

Problem 2: Indifferentiability problem

## Solution for Discretisation and Indifferentiability Problems



- I. Compute trilinear weights for each template point using its 8 nearest inferred displacements
- II. Record the weights and indices of the 8 nearest displacements in the affinity table
- III. Compute the point projection loss
- IV. Distribute gradients following the IDs and weights information recorded in the affinity table in II.

### Datasets

#### Datasets



#### *thin plate* [Golyanik *et al.* 2018]

*FLAME* [Li *et al.* 2017] DFAUST [Bogo et al. 2017] *cloth* [Bednařík *et al.* 2018]

# Evaluation

## Quantitative Results - Baseline and Outliers

## Quantitative Results - Baseline and Outliers



|                   |          | Ours   | NR-ICP [9] | <b>CPD</b> [38]        | GMR [29] |
|-------------------|----------|--------|------------|------------------------|----------|
| thin plate[17]    | e        | 0.0103 | 0.0402     | <b>0.0083</b> / 0.0192 | 0.2189   |
|                   | $\sigma$ | 0.0059 | 0.0273     | 0.0102 / 0.0083        | 1.0121   |
| <b>FLAME</b> [33] | e        | 0.0063 | 0.0588     | <b>0.0043</b> / 0.0094 | 0.0056   |
|                   | $\sigma$ | 0.0009 | 0.0454     | 0.0008 / <b>0.0005</b> | 0.0007   |
| DFAUST[5]         | e        | 0.0166 | 0.0585     | 0.0683 / 0.0721        | 0.2357   |
|                   | $\sigma$ | 0.0020 | 0.0215     | 0.0314 / 0.0258        | 0.8944   |
| cloth[2]          | e        | 0.0080 | 0.0225     | 0.0149 / 0.0138        | 0.2189   |
|                   | $\sigma$ | 0.0021 | 0.0075     | 0.0066 / 0.0033        | 1.0121   |

#### Baseline Comparison

|                   |       |          | Ours   | NR-ICP [9] | <b>CPD</b> [38]        | GMR [29] |
|-------------------|-------|----------|--------|------------|------------------------|----------|
| thin plate[17]    | ref.  | e        | 0.0107 | 0.0668     | 0.0218 / 0.0386        | 0.4415   |
|                   |       | $\sigma$ | 0.0061 | 0.0352     | 0.0148 / 0.0067        | 1.4632   |
|                   | temp. | e        | 0.0108 | 0.0334     | 0.0479 / 0.0471        | 0.4287   |
|                   |       | $\sigma$ | 0.0062 | 0.0281     | 0.0101 / <b>0.0038</b> | 1.3832   |
| <i>FLAME</i> [33] | ref.  | e        | 0.0084 | 0.0519     | <b>0.0046</b> / 0.0140 | 0.0193   |
|                   |       | $\sigma$ | 0.0010 | 0.0451     | 0.0009 / <b>0.0006</b> | 0.0008   |
|                   | temp. | e        | 0.0088 | 0.0215     | <b>0.0076</b> / 0.0201 | 0.0274   |
|                   |       | $\sigma$ | 0.0010 | 0.0219     | <b>0.0010</b> / 0.0016 | 0.0019   |
| DFAUST[5]         | ref.  | e        | 0.0167 | 0.0463     | 0.0562 / 0.0636        | 0.0714   |
|                   |       | $\sigma$ | 0.0029 | 0.0195     | 0.0308 / 0.0216        | 0.0282   |
|                   | temp. | e        | 0.0169 | 0.0426     | 0.0672/0.0710          | 0.0737   |
|                   |       | $\sigma$ | 0.0033 | 0.0194     | 0.0291 / 0.0229        | 0.0243   |
| cloth[2]          | ref.  | e        | 0.0090 | 0.0455     | 0.0248 / 0.0315        | 0.0288   |
|                   |       | $\sigma$ | 0.0018 | 0.0061     | 0.0056 / 0.0027        | 0.0087   |
|                   | temp. | e        | 0.0132 | 0.0208     | 0.0486 / 0.0347        | 0.0397   |
|                   |       | $\sigma$ | 0.0019 | 0.0087     | 0.0077 / <b>0.0014</b> | 0.0092   |



Reference

#### Outlier

## Quantitative Results - Uniform Noises

## Quantitative Results - Uniform Noises



## Quantitative Results - Runtime

## Quantitative Results - Runtime



• With 10K points, our approach requires only a second per registration whereas others require around 2 hours - 15 seconds

# Qualitative Results

## Baseline Comparison

## Baseline Comparison

Inputs



## Outliers

## Outliers

Inputs



## Uniform Noises

## Uniform Noises

Inputs



## Real Face Dataset

### Real Face Dataset



Datasets: [Dai et al. 2017], [Li et al. 2017]





- To the best of our knowledge, this is the first neural network based approach for NRPSR that is invariant to the number and order of points.

- To the best of our knowledge, this is the first neural network based approach for NRPSR that is invariant to the number and order of points.
- Our approach outperforms other existing general-purpose methods in the presence of large deformations, articulated motion, noise, outliers and missing data.

- To the best of our knowledge, this is the first neural network based approach for NRPSR that is invariant to the number and order of points.
- Our approach outperforms other existing general-purpose methods in the presence of large deformations, articulated motion, noise, outliers and missing data.
- Runs orders of magnitude faster than previous techniques.

- To the best of our knowledge, this is the first neural network based approach for NRPSR that is invariant to the number and order of points.
- Our approach outperforms other existing general-purpose methods in the presence of large deformations, articulated motion, noise, outliers and missing data.
- Runs orders of magnitude faster than previous techniques.
- Limitation: topology preserving is not yet fully satisfying.

- To the best of our knowledge, this is the first neural network based approach for NRPSR that is invariant to the number and order of points.
- Our approach outperforms other existing general-purpose methods in the presence of large deformations, articulated motion, noise, outliers and missing data.
- Runs orders of magnitude faster than previous techniques.
- Limitation: topology preserving is not yet fully satisfying.

Project Page: http://gvv.mpi-inf.mpg.de/projects/DispVoxNets/

### References

- 1. J. Bednařík, P. Fua, and M. Salzmann. Learning to reconstruct texture-less deformable surfaces from a single view. In International Conference on 3D Vision (3DV), 2018.
- 2. F. Bogo, J. Romero, G. Pons-Moll, and M. J. Black. Dynamic FAUST: Registering human bodies in motion. In Computer Vision and Pattern Recognition (CVPR), 2017.
- 3. Besl, Paul J., and Neil D. McKay. Method for registration of 3-D shapes. Sensor fusion IV: control paradigms and data structures. Vol. 1611. International Society for Optics and Photonics, 1992.
- 4. H. Chui and A. Rangarajan. A new point matching algorithm for non-rigid registration. In Computer Vision and Image Understanding (CVIU), 2003.
- 5. S. Ge, G. Fan, and M. Ding. Non-rigid point set registration with global-local topology preservation. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2014.
- 6. S. Ge, and G. Fan. Articulated non-rigid point set registration for human pose estimation from 3D sensors. Sensors, 15(7), 15218-15245.
- 7. V. Golyanik *et al.* Extended coherent point drift algorithm with correspondence priors and optimal subsampling. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2016.
- 8. V. Golyanik *et al.* A framework for an accurate point cloud based registration of full 3D human body scans. Fifteenth IAPR International Conference on Machine Vision Applications (MVA), 2017.
- 9. V. Golyanik, S. Shimada, K. Varanasi, and D. Stricker. Hdm-net: Monocular non-rigid 3d reconstruction with learned deformation model. In Virtual Reality and Augmented Reality (EuroVR), 2018.
- 10. B. Jian and B. C. Vemuri. A robust algorithm for point set registration using mixture of gaussians. In International Conference for Computer Vision (ICCV), 2005.
- 11. T. Li, T. Bolkart, M. J. Black, H. Li, and J. Romero. Learning a model of facial shape and expression from 4D scans. SIGGRAPH Asia, 2017.
- 12. A. Myronenko and X. Song. Point-set registration: Coherent point drift. Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2010.
- 13. E. Smistad, et al. Medical image segmentation on GPUs-A comprehensive review. In Medical image analysis, 2015.
- 14. Z. Wang, S. Rosa, and A. Markham. Learning the intuitive physics of non-rigid object deformations. In *Neural Information Processing Systems (NIPS) Workshops*, 2018.
- 15. E. Tretschk, A. Tewari, M. Zollhofer, V. Golyanik, and "C. Theobalt. DEMEA: Deep Mesh Autoencoders for NonRigidly Deforming Objects. *arXiv e-prints*, 2019.
- 16. H. Dai, N. Pears, W. A. P. Smith, and C. Duncan. A 3d morphable model of craniofacial shape and texture variation. In ICCV, 2017.





## DispVoxNets: Non-Rigid Point Set Alignment with Supervised Learning Proxies

Soshi Shimada<sup>1,2</sup>Vladislav Golyanik<sup>3</sup>Edgar Tretschk<sup>3</sup>

Didier Stricker<sup>1,2</sup>Christian Theobalt<sup>3</sup>

<sup>1</sup>University of Kaiserslautern

<sup>2</sup>DFKI

<sup>3</sup>MPI for Informatics, SIC



Thank you