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Abstract

The paper introduces an accurate solution to dense or-
thographic Non-Rigid Structure from Motion (NRSfM) in
scenarios with severe occlusions or, likewise, inaccurate
correspondences. We integrate a shape prior term into vari-
ational optimisation framework. It allows to penalize ir-
regularities of the time-varying structure on the per-pixel
level if correspondence quality indicator such as an occlu-
sion tensor is available. We make a realistic assumption
that several non-occluded views of the scene are sufficient
to estimate an initial shape prior, though the entire observed
scene may exhibit non-rigid deformations. Experiments on
synthetic and real image data show that the proposed frame-
work significantly outperforms state of the art methods for
correspondence establishment in combination with the state
of the art NRSfM methods. Together with the profound in-
sights into optimisation methods, implementation details for
heterogeneous platforms are provided.

1. Introduction

Recovering a time varying geometry of non-rigid scenes
from monocular image sequences is a fundamental, actively
researched, yet a still unsolved problem in computer vision.
Two main classes of approaches addressing it — template-
based reconstruction and Non-Rigid Structure from Mo-
tion (NRSfM) — proved to be most effective so far. In
the template-based reconstruction, scene geometry for at
least one frame is known in advance, whereas in NRSfM
no such information is given. Solely motion and deforma-
tion of a scene serve as reconstruction cues. Thereby, esti-
mation of point correspondences in a pre-processing step
is required. Measurement matrix combining correspon-
dences is either obtained through a sparse keypoint tracking
or a dense tracking of all visible points with optical flow.

*This work was supported by the project DYNAMICS (01IW15003) of
the German Federal Ministry of Education and Research (BMBF).

NRSfM methods made significant advances during recent
years in terms of the ability to reconstruct realistic non-
rigid motion, especially for image sequences and motion
capture data acquired in a controlled environment. Along
with methods supporting an orthographic camera model
[47, 29, 30, 7, 27, 15, 41, 31, 5], there are methods sup-
porting a full perspective (in most of the cases calibrated)
camera model [50, 21, 8, 23, 52, 49, 6, 12], dense recon-
structions [36, 15, 2], sequential processing [26, 43, 1, 4, 3]
and compound scenes [37]. At the same time, NRSfM is a
highly ill-posed inverse problem in the sense of Hadamard,
i.e., the condition on the uniqueness of the solution is vi-
olated. In practice, a prior knowledge is required to dis-
ambiguate the solution space such as metric constraints
[27], constraints on point trajectories [7, 53, 48, 4], tempo-
ral consistency assumption [15], local rigidity assumption
[44, 31], soft inextensibility constraint [49, 12, 3], shape
prior [14, 42, 41, 43] or the assumption on a compliance
with a physical deformation model [4, 6].

Nevertheless, support for real-world image sequences is
still limited due to the systematic violation of assumptions
on the degree as well as the type of motion and deformation
presented in a scene. Moreover, severe self- and external
occlusions occur frequently, which results in noisy and erro-
neous correspondences. Since methods for computing cor-
respondences are limited in compensating for occlusions,
NRSfM methods should be able to cope with missing data
and the associated disturbing effects robustly.

In this paper, a novel dense orthographic NRSfM ap-
proach is proposed which can cope with severe occlusions
— Shape Prior based Variational Approach (SPVA) —
along with a scheme for obtaining a shape prior from sev-
eral non-occluded frames. The latter relies on a realistic as-
sumption that a scene is not-occluded in a reference frame
and there are some non-occluded views. Influence of the
shape prior can be controlled by series of occlusion maps —
an occlusion tensor — obtained from a measurement matrix
and an input image sequence. In contrast to template-based
reconstruction, the shape prior is computed automatically in



our framework, and we do not rely on the rigidity assump-
tion. The proposed methods are combined into a joint cor-
respondence computation, occlusion detection, shape prior
estimation and surface recovery framework, and evaluated
against different state of the art non-rigid recovery pipeline
configurations. SPVA surpasses state of the art in real sce-
narios with large occlusions or noisy correspondences, both
in terms of the reconstruction accuracy and processing time.
To the best of our knowledge, our method is the first to
stably handle severe external occlusions in dense scenarios
without requiring an expensive correspondence correction
step.

2. Related work

The proposed method is based on factorizing the mea-
surement matrix into shapes and camera motion and oper-
ates on an image batch. The idea of factorisation was ini-
tially proposed for the rigid case [46] and adopted for the
non-rigid case in [ 1] where every shape is represented by
a linear combination of basis shapes. This statistical con-
straint can be interpreted as a basic form of a shape prior,
and reflects the assumption on the linearity of deformations.
This setting is known to perform well for moderate defor-
mations and many successor methods built upon the idea
of metric space constraints [47, 27, 36, 31]. In contrast,
SPVA determines optimal basis shapes implicitly by penal-
izing nuclear norm of the shape matrix as proposed in [13].

For robustness to occlusions and missing data, several
policies were proposed so far. One is to compensate for dis-
turbing effects in the preprocessing step. Associating im-
age points with their entire trajectories over an image se-
quence, Multi-Frame Optical Flow (MFOF) methods allow
to detect occlusions and robustly estimate correspondences
in occluded regions [16, 32, 33, 40]. These methods per-
form well if occlusions are rather small or of a short du-
ration. Support of longer occlusions is, however, limited
which results in reduced accuracy of NRSfM methods.

Another policy is to account for missing data and in-
correct correspondences during surface recovery. In [47],
Gaussian noise in measurements is explicitly modelled in
the motion model. Authors report accurate results on per-
turbed inputs with an additive normally distributed noise.
The shape manifold learning approach of [4 1] is withstand-
able against Gaussian noise (levels up to 12% result in re-
constructions of a decent accuracy). A method based on
the recently introduced low-rank force prior includes a term
accounting for a Gaussian noise in the measurements and
was shown to handle 11.5% of missing data caused by
short-time occlusions [4]. Due to a variational formulation,
the approach of Garg et al. [15] can compensate for small
amount of erroneous correspondences, provided an appro-
priate solution initialisation is given. Due to a mode shape
interpretation, the method of Agudo et al. [3] can perform

accurately when 40% of points are randomly removed from
the input. Some other methods can also handle noisy and
missing correspondences [27, 5], but in scenarios limited to
short and local occlusions. In contrast, our method can cope
with large and long occlusions.

Some NRSfM approaches allow integration of an ex-
plicit shape prior into the surface recovery procedure. Del
Bue [14] proposed to jointly factorize measurement matrix
and a pre-defined shape prior. The method showed en-
hanced performance under degenerate non-rigid deforma-
tions. The shape prior represented a single predefined static
shape acquired by an external procedure or pre-computed
basis shapes. Tao et al. [41] proposed to adopt a graph-
based manifold learning technique based on diffusion maps
where the shapes are constrained to lie on the pre-computed
non-linear shape prior manifold. In this scheme, the ba-
sis shapes can be different for every frame and hence the
method can reconstruct strong deformations. However, the
approach requires a representative training set with a com-
putationally expensive procedure (especially for the case of
dense reconstructions) for embedding of new shapes not
presented in the training set. Recent template-based recon-
struction methods employ a similar principle as us [51, 22].
Thus, Yu et al. proposed to estimate a template shape at
rest from several first frames provided sufficient cues for
a multi-view reconstruction [51]. This estimate is based on
rigidity assumption and the accuracy of the method depends
on this step; an external pre-aligned template can also be
used. Similarly, our approach estimates a shape prior from
several initial frames. We also assume the initial views to
be occlusion-free, but our method neither assumes rigidity
nor requires a known template.

In our core approach, an estimated shape prior is inte-
grated into a joint variational framework. It is most closely
related to [13] due to the nuclear norm, and Variational Ap-
proach (VA) [15] due to the spatial integrity, i.e., Total Vari-
ation (TV). Additionally, our energy functional includes a
soft shape prior term. Camera poses are recovered in a
closed-form through the projection of affine approximations
on the SO(3) manifold (which is up to two orders of mag-
nitude faster than non-linear optimisation). To detect oc-
clusions, we propose a novel lightweight scheme relying on
[16]. This approach differs from Taetz et al. [40] which cor-
rects measurements in the pre-processing step but requires
multiples of the computational time compared to [16].

3. Proposed core approach (SPVA)

Suppose NN points are tracked throughout an image se-
quence with F' frames and the input is assembled in the
measurement matrix W € R2F*N g0 that every pair of
rows contains x and y coordinates of a single frame respec-
tively. During scene acquisition, an orthographic camera
observes a non-rigidly deforming 3D scene S € R3FxV,



Similarly, every treble of rows contains z, y and 2z coordi-
nates of an instantaneous scene. W depends on a scene,
relative camera poses as well as a camera model as

W = PR3pS, D

where R3zp € R3F3F is a block-diagonal matrix with
camera poses for every frame and P € R2FX3F 5 a
combined camera projection matrix with entries (; 9 9).
Here, we additionally assume that the measurements are
registered to the origin of the coordinate system and transla-
tion is resolved. The objective is to reconstruct a time vary-
ing shape S and relative camera poses R3p. In other words,
we seek a realistic factorisation of W. Since the third di-
mension is lost during the projection, W will be factorised
in PR3p = R € R?"*3F and S. In a post-processing
step, Rsp can be estimated by imposing orthonormality
constraints on rotation matrices, i.e., entries of R.

If additional information about shape of a scene is avail-
able, it can be used to constrain the solution space. We for-
mulate NRSfM as a variational energy minimisation prob-
lem, and the most natural form of the shape prior is Spior €
R3FXN je., a matrix containing prior shapes for every
frame. In SPVA, S, influences the optimisation pro-
cedure in a flexible manner according to the required per
frame and per pixel control. Next, depending on the con-
trol granularity level, several energies are proposed, and for
each energy, an optimisation method is derived.

3.1. Per sequence shape prior

A per-sequence shape prior is the strongest prior, i.e.,
it allows to constrain the solution space for the whole se-
quence at once. Minimizer has the simplest form among
all types, and the shape prior term has only a single weight
parameter . The energy takes on the following form:

A
argmin §||W ~RS|% + gHS — Sprior|| 5+
R.S

+ 3 IVSi@)l + 7P, @
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where 3., HVS}(p) || denotes TV with the gradient
VS (p) of the shape Sy, f € {1,...,F} at the point
p € {1,..., N} in the direction ¢; || - || and || - ||z denote
nuclear and Frobenius norms respectively, and the operator
P(-) permutes S into the matrix of the dimensions F' x 3N
(the point coordinates are rearranged framewise into single
rows). The energy in Eq. (2) contains data, shape prior,
smoothness and linear subspace model terms respectively.
If R or S is fixed, the energy is convex in S and R vari-
ables respectively. Such kind of energies, also called bicon-
vex, can be optimised by Alternating Convex Search (ACS).
In ACS, optimisation is performed for R and S while S or
R is respectively fixed. Suppose S is fixed. In this case, the

only term which depends on R is the data term. We seek a
solution to the problem

A
argmin = |[W — RS|%. 3)
R 2

The idea is to find an unconstrained solution A minimizing
Eq. (3) and to project it blockwise into the SO(3) group in
a closed-form. The projection will yield an optimal rotation
matrix R [24]. First, we consider the sum of the separate
data terms for every frame f in the transposed form:

> W] -SRI @
f
Here, the property of invariance of Frobenius norm under
transposition is used. Now an optimal matrix Ay can be
found which minimizes the data term in Eq. (4) by project-
ing W} onto the column space of S} in a closed form:

A= (SsS)"'S;W]. )

Note that the matrix S S} has dimensions 3 x 3 which sup-
ports a low memory complexity of the optimisation. Next,
we decompose A} with singular value decomposition (svd)
and find R as follows:

svd(A}) = svd(W;S;(S;S})™") =UEVT  (6)

R; =UCV', @)

where C = diag(1,1,...,1,sign(det(UVT))). We favour

the least squares solution for the sake of computational ef-
ficiency (see Sec. 5 for implementation details).

Next, we consider the energy functional in Eq. (2) with
a fixed R. We seek a solution to the problem

A
argémn 5 (W — RSH?_— + % IS — Sprior”i— +

Y IVSi@) +7IPS)ll. ®
frip
This minimisation problem is convex, but it involves differ-
ent norms and therefore cannot be solved in the standard
way. After applying proximal splitting, we obtain two sub-
problems with an auxiliary variable S:

1 &
argémn %HS - S|% + % IS — Spri0r||_27: +

)‘ 7
§IIW—RSII§+Z IVS% ()l )
fiip

1 . -
argmin oS = S|z +7|[P(S)[. . (10)
S

The minimisation problem in Eq. (10) involves a squared
Frobenius norm and the nuclear norm. It is of the form

1
argmin 3B — Z[: +]1Z]. an



and can be solved by a soft-impute algorithm (in our case,
1 = 07). We rewrite the nuclear norm as

1

|Z||« == _ min
U,V: Z=UV 2

(i 1viz) . a2
The solution to this problem is given by Z = UD,V,
where svd(Z) = UDV, D = diag(oy, ..., 0,) and

D, = (max(al —n,0),...,max(o, — 7770)). (13)

The energy in Eq. (9) is convex, but — because of the TV
regularizer — not differentiable. Nevertheless, the prob-
lem can be dualised with Legendre-Fenchel transform. The
primal-dual form is then given by

1 - A
argénin max %HS -S|% + EHW — RS|%+

218 = Syl + 3 (850V'G50) -5 (450) ) . 19
frisp

where ¢ is the dual variable that contains the 2-dimensional
vectors q; (p) for each frame f, coordinate i and pixel p.
V* = —div(+) is the adjoint of the discrete gradient operator
V, and ¢ is the indicator of the unit ball. In the primal-dual
algorithm used to solve the problem, firstly the differential
D, of the dual part is initialised. Next, the gradient w.r.t. S
is computed and set to zero to obtain a temporal minimizer
S. Next, D, is updated. The algorithm alternates between
finding S and updating D, until convergence. The gradient
operator Vg applied to the energy in Eq. (14) yields
1 1

.
58— OR'W +

AR'R +~ + S + 7Spior — Dy). (15)

The minimizer S is obtained by imposing V() Z0as
1
0

An overview of the entire algorithm is given in Alg. 1. Note
that STEP 1 and STEP 2 are repeated until convergence.

11— _
()\RTR+7+§I) "ARTW + ~S 4+ 7Spier — D) . (16)

3.2. Per frame shape prior

In the case of an inhomogeneous shape prior, i.e., a shape
prior different for every frame, the data term reads

Edata = %HF(S - Sprior)||_27-‘a (17)

where I' is a diagonal matrix controlling the influence of
the shape prior for individual frames. Following the same
principles as in Sec. 3.1, we derive the minimizer S of the
primal-dual formulation of Eq. (9) as

(ARTR+AT'T + él)*l(,\RTW + %S + AT TSprior — Dy) -

(18)

Entries of I adjust the parameter -y framewise. If I" contains
zero and non-zero values, it can be interpreted as a binary
shape prior indicator for every frame'.

lin the case if I" contains only zeroes and ones, r'r=r.

Algorithm 1 SPVA: Variational NRSfM with a Shape Prior

Input: measurements W, S0, parameters A, vy, 7, 6,7 = 07
Output: non-rigid shape S, camera poses R

: Inmitialisation: S and R under rigidity assumption [40]

: STEP 1. Fix S, find an optimal R framewise:

s svd(WS(SST) ™) =Uuzv’

R =UCV", where

N N

C = diag(1,1,...,1,sign(det(UVT)))
5: STEP 2. Fix R; find an optimal S:
6: while not converge do
7: Primal-Dual: fix S; find an intermediate S (Eq. (9))
8: Initialisation: ¢}(p) =0
9: while not converge do
V*ai(1) V*qi(N)
10: D, = : :
Vg (1) Vg (N)
1: S=(R'R+7y+ 317"
12: ()\RTW + %S + ’}/Sprior - Dq)
13: forf=1,.,F;i=1,..,3; p=1,..,Ndo
i a5 (p)+oVS%(p)
14 4 (P) = e oS N

15: end while
16: Soft-Impute: fix S; find an intermediate S (Eq. (10))
17:  svd(P(S)) = UDV", where D = diag(o1, ..., ov)
188 S=1UD,V', where

D, = diag(max(o1 — ,0), ..., max(c, — 7,0))
19: end while

3.3. Per pixel per frame shape prior

Per pixel per frame shape prior is the most general form

of the proposed constraint; integration of it is more chal-
lenging. Firstly, we obtain the matrices S € R3¥N S ¢
R3FN Sprior € R3N and D, € R¥*N from S, S, Sprior
and D, respectively, by applying the permutation operator
P(+) and stacking point coordinates of all frames into a vec-
tor (e.g., S = vec(P(S)), and analogously for the remaining
matrices). Similarly, we obtain matrix W e R2FN ag

(W11 Wai - WinWapn -+ - Wiar_1)1Weap) - - ')T' (19)

all points of frame 1

all points of frame F’

Accordingly, the rotation matrix is adjusted. The re-
sulting matrix R € R2NX3EN g 3 quasi-block di-
agonal. It contains F'N blocks of size 2 x 3, i.e.,

R = diag{. . .. ..}. We introduce a diagonal

matrix I' € R3FN*3FN containing weights per frame per
point coordinate. After applying proximal splitting, P(-)
and vec(-) operators, the minimisation problem in Eq. (9)
alters to

A< . 1,4 =
argmin = |W —RS|% + —|IS — S||%+
<2 20

DS = Span) I3+ X IVSER). 20)

fiip



The gradient of the function in Eq. (20) reads

. 1 e .
Vs=(OR'R+ §I3FN +ATTT)S—
. 1= . -

OR™W + a5+ AT TTSpior — Dg) = 0. (21)

Finally, the minimizer of Eq. (21) is obtained as

- R 1 .
S=( AR'R +513FN+7FT1“)*1

block-diagonal ~ “~—~~—"" gizg0nal
diagonal
L~ 1= ~ T ~
(/\RTW + gs + ’YFTFSprior - Dq)' (22)

Note that the factor on the left side of Eq. (22) represents
a block-diagonal matrix. Its inverse can be found by sepa-
rately inverting F'N blocks of size 3 x 3. After S is com-
puted, we obtain S by an inverse permutation.

4. Obtaining shape prior

In this section, we revise the method for occlusion tensor
estimation, and formulate a criterion for a set of views to
be suitable for the shape prior estimation; more details are
placed in the supplementary material.

Occlusion tensor estimation. An occlusion tensor is
a probabilistic space-time occlusion indicator. We refer
to occlusion maps as slices of the occlusion tensor cor-
responding to individual frames. If occlusion tensor is
available, it is possible to control a shape prior with the
per pixel per frame granularity (see Sec. 3.3). Occlusion
tensor is computed from W and a reference image. For
every frame, a corresponding occlusion map equals to a
Gaussian-weighted difference between a backprojection of
the frame to the reference frame and the reference frame
itself. Thus, the occlusion indicator triggers a higher re-
sponse for areas which cannot be backprojected accurately
due to occlusions, specularities, illumination inconstancy,
large displacements, highly non-rigid deformations, or a
combination of those. As a result, the occlusion tensor
accounts for multiple reasons of inaccuracies in corre-
spondences. A similar scheme was applied in [32, 40].
The complexity of the occlusion tensor estimation is
O(FwhJ?) with w, h and J being width and height of a
frame and a size of a square Gaussian kernel respectively.
For few dozens of frames of common resolutions as they
occur in NRSfM problems, the whole computation can be
performed on a GPU in less than a second. Examples of
occlusion maps are given in Figs. 1, 4.

Total intensity criterion. Given an occlusion ten-
sor, we determine the set of frames suitable for the shape
prior estimation using the accumulative fotal intensity

(a) #- sequence

(b) stripes sequence

Figure 1: Exemplary frames from the modified flag sequences [16] with
the computed occlusion maps: (a) #-sequence; (b) stripes sequence.

criterion:.

Fsp
> / dudv|| <e. (23)
f=1117Q 2

In Eq. (23), €2 denotes an image domain of a single frame,
F, denotes length of the sequence suitable for shape prior
estimation, and e is a non-negative scalar value. In other
words, as far as the frames are not significantly occluded
(regardless in which image region occlusions happen), they
can be used for the estimate. The obtained shape prior
is rigidly aligned with an initialisation obtained with [46],
since a different number of frames significantly affect ini-
tial alignment of the reconstructions. Therefore, we employ
Procrustes analysis on 3D points corresponding to unoc-
cluded image pixels (15— 20 points are uniformly selected).

5. Experiments

The proposed approach is implemented in C++/CUDA C
[25] for a heterogeneous platform with a multi-core CPU
and a single GPU. We run experiments on a machine with
Intel Xeon E5-1650 CPU, NVIDIA GK110 GPU and 32 GB
RAM. While finding an optimal R (Egs. (4)-(6)), the most
computationally expensive operation is the product SST.
This operation can be accomplished by six vector dot prod-
ucts and only S needs to be stored in memory. It is im-
plemented as a dedicated GPU function, together with the
computation of D, (Alg. 1, rows 10, 13, 14). Compared to
the C++ version, 12 — 15x speedup is achieved. To com-
pute dense correspondences, Multi-Frame Subspace Flow
(MFSF) [16] is used, and to estimate a shape prior, we run
[15] on several initial frames of the sequence as described
in Sec. 4. If not available for a respective sequence, seg-
mentations of the reference frames are computed with [34].
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Figure 2: Results of the quantitative evaluation of the proposed method in the configuration MFSF[

(b) stripes, per pixel per frame prior

Y

(<) per sequence prior

] + SPVA: (a) per pixel per frame mode on the

#£-sequence; (b) per pixel per frame mode on the stripes sequence; (c) per sequence mode on both sequences. “whole”: mean RMS is computed on all
frames of the respective sequence, occluded’”: mean RMS is computed only on the occluded frames; “whole with sp”: the algorithm is initialised with the
shape prior in the non-occluded frames. Bold font (mean RMS) highlights parameter values which outperform occlusion-aware MFOF[40] + VA[15].
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(c) runtimes of different configurations

Figure 3: Results of the quantitative evaluation on the flag sequence with the dense segmentation mask. In (a) and (b), the notation is the same as in Fig. 2.
Reconstructions obtained on the unoccluded ground truth optical flow are used as a reference for comparison; (c) runtimes of different pipeline configurations
on the dense flag dataset (blue color marks correspondence computation, orange marks NRSfM, except for Pangaea which is a template-based method). The
fastest configuration MFSF[16] + AMP[17] is only ca. 4% faster than the proposed configuration with SPVA which is the most accurate.

As our objective is to jointly evaluate correspondence
establishment under severe occlusions and non-rigid recon-
struction, we perform joint evaluation of different pipeline
configurations. We compare occlusion-aware MFOF[40]
+ VA[15], MFSF[16] + AMP?[17], MFSF + VA, MFSF
+ SPVA (the proposed method). For every configuration,
we report mean Root-Mean-Square (RMS) error metric

s -84
‘ S7‘ef

. U F
ground truth surface in 3D. Subsequently, we show results

on real image sequences and compare results qualitatively.

defined as esp = +>f_, , where S}ef is a

Evaluation Methodology. For the joint evaluation,
a dataset with a ground truth geometry and corresponding
images is required. There is one dataset known to the
authors which partially fulfils the requirements — the
synthetic flag sequence initially introduced in [16]. This
dataset originates from mocap measurements and contains
images of a waving flag rendered by a virtual orthographic

2 AMP is a highly optimised extension of Metric Projections [27].

camera. The flag dataset was already used for evaluation of
NRSfM [, 3] and MFOF algorithms [16, 40], but not for a
joint evaluation, to the best of our knowledge. To generate
orthographic views, the mocap flag data was projected onto
an image plane (with an angle of approx. 30° around the
x axis) and a texture was applied on it (here the texture
does not reflect distortion effects associated with the view
which is different from the frontal one). More details on the
dataset can be found in [35]. Using the rendered images,
we evaluate MFOF and NRSfM methods jointly.

First, we extend the flag dataset with several data struc-
tures. The ground truth surfaces contain 9622 points,
whereas the rendered images are of the resolution 500 x 500.
If the corresponding segmentation mask for the reference
frame is applied, 8.2 - 10* points are fetched. To overcome
this circumstance, we create a segmentation mask which
fetches the required number of points as in the ground truth.
Therefore, we project the ground truth surface correspond-
ing to the reference frame onto the image plane and obtain
a sparse segmentation mask. When applied to the dense



‘W, the sparse mask fetches 9622 points. To establish point
correspondences between the ground truth and reconstruc-
tions, we apply non-rigid point set registration with cor-
respondence priors [18]. This procedure needs to be pre-
formed only once on a single ground truth surface and a
single flag reconstruction with 9622 points, and the corre-
spondence index table is used during computation of the
mean RMS. Non-rigid registration does not alter any recon-
struction which is evaluated for mean RMS.

Second, we introduce severe occlusions into the flag im-
age sequence which go beyond those added for evaluation
in [40] in terms of the occlusion duration and size of the
occluded regions. We overlay two different patterns with
the clean flag sequence — a grid # and stripes patterns.
The resulting sequences contain 20 and 29 occluded frames
respectively (see Fig. 1 for exemplary frames and the
corresponding occlusion maps).

Experiments on synthetic data. We compare sev-
eral framework configurations on the synthetic flag
sequence and report mean RMS and runtimes. We also
evaluate the influence of the shape prior term through
varying the  parameter in several shape prior modes.

Results of the experiment are summarised in Fig. 2.
Occlusion-aware MFOF+VA achieves the mean RMS error
of 0.18(0.219) (in brackets, mean RMS only on occluded
frames is reported) for the #-sequence and 0.195(0.209)
on the stripes. MFSF+VA achieves 0.239(0.256) and
0.341(0.355) for the #- and stripes sequences respectively.
MFSF+SPVA achieves 0.143(0.161) and 0.167(0.187) for
the #- and stripes sequence respectively in the per pixel
per frame mode, and 0.140(0.160) and 0.160(0.183) in
the per sequence mode. At the same time, runtime of the
MFSF+SPVA in the per frame mode is almost equal to the
runtime of MFSF+VA — the difference is less than 1% —
whereas the configuration MFSF+SPVA in the per pixel per
frame mode takes only 3% more time.

The configuration with the fastest MFSF and the pro-
posed SPVA achieves the lowest mean RMS; it is compara-
ble in the runtime to the fastest configuration with AMP. We
are 3.4 times faster than the second best NRSfM based con-
figuration with the computationally expensive occlusion-
aware MFOF+VA. As can be seen in Fig. 2, performance
of SPVA depends on . As expected, mean RMS is the
lowest for a particular finite v value and grows as < in-
creases. The drop in the accuracy happens because the
shape prior term becomes so dominant that even less prob-
ably occluded areas are regularised out. If v is infinite, all
frames (all pixels with non-zero occlusion map) are set to
the shape prior which leads to a suboptimal solution. In
the per sequence mode (Fig. 2-(c)) v € [0; 10°], whereas in
per pixel per frame mode v € [0;10°] (v is split between
all pixels weighted with the occlusion map values). Experi-

algorithmic combination [ mean RMS, # [ mean RMS, stripes ]

o.a. MFOF [40]4VA [15] 0.181 (0.219) 0.195 (0.209)
Pangaea tracker [51] 0.172 (0.191) 0.172 (0.191)
MEFSF [16]+AMP [17] 0.297 (0.381) 0.460 (0.523)
MESF [16]4+VA [15] 0.239 (0.252) 0.341 (0.355)
MESF [16]+SPVA, p. pix. | 0.143 (0.161) 0.167 (0.189)
MESF [16]+SPVA, p. seq. | 0.140 (0.160) 0.160 (0.184)

Table 1: Mean RMS errors of different algorithmic combinations for the
#£- and stripes sequences.

ment shows that the transitions are gradual with the gradual
changes of ~.

Besides, we perform a comparison of our method with
the recent template-based method of Yu et al. [51] — Pan-
gaea tracker. SPVA can be classified as a hybrid method
for monocular non-rigid reconstruction. Firstly, the as-
sumption of a template-based technique — an exact 3D
shape is known for at least a single frame — is not fulfilled
in our case (a shape prior is not an exact reconstruction).
Secondly, we obtain shape prior automatically, whereas in
template-based methods [38, 28, 9, 45, 51], a template is
assumed to be known in advance. Nevertheless, the com-
parison with such a method as [51] is valuable. Ultimately,
research in the area of template-based reconstruction shifts
in the direction of hybrid methods, i.e., there is an endeav-
our to find a way to obtain a template automatically and un-
der non-rigid deformations. The SPVA framework is per-
haps the first attempt in this direction, and in this exper-
iment, we demonstrate that a template-based method can
work with a shape prior obtained with the proposed ap-
proach (see Sec. 4) and produce accurate results. Pangaea
tracker achieves almost equal mean RMS of 0.172 (0.191)
for both #- and stripes sequences. We discovered that this
template-based method is stable against textureless occlu-
sions, but an error may accumulate if occlusions are perma-
nent and large. Still, Pangaea tracker achieves the second
best result after the combination MFSF+SPVA and outper-
forms the more recent occlusion-aware MFOF+VA pipeline
on the sparse flag sequence. Table | summarizes the lowest
achieved mean RMS errors for all tested combinations.

The experiment with the varying + is also repeated
on the flag sequence with the dense segmentation mask.
Here, we obtain reference reconstructions for comparison
on the ground truth optical flow available for the unoccluded
views. In this manner, it is possible to see how good the
proposed pipeline alleviates side effects associated with oc-
clusions and how close the reconstructions reach the refer-
ence. Moreover, the TV term is enabled, since the measure-
ments are dense. Results are summarised in Fig. 3. The
mean RMS relative to the reference reconstruction follows
the similar pattern as in the case of the comparison with the
sparse ground truth. In Fig. 3-(c), runtimes for all tested
pipeline configurations are summarised.

In both experiments, a relatively high mean RMS
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Figure 4: Qualitative results of the proposed SPVA framework and other pipeline combinations on several challenging real image sequences.

is explained by two effects. As above mentioned, the
reference frame is not a frontal projection of the ground
truth, and no frontal views are occurring in the image
sequence. Moreover, the flag sequence exhibits rather large
non-rigid deformations. All evaluated methods including
the proposed approach perform best if deformations are
moderate deviations from some mean shape.

Experiments on real data. We tested SPVA on
several challenging real-world image sequences: American
Sign Language (ASL) [10], heart surgery [39], and a new
face. Results are visualised in Fig. 4. ASL sequence depicts
a face with permanent occlusions due to hand gesticulation.
Only sparse reconstructions were previously shown on
it [19, 20]. On this sequence, occlusion-aware MFOF
performs poorly and marks whole frames starting from
frame 20 as occluded. Consequently, the combination
MFOF[40]+VA fails to reflect realistic head shapes, and
it is seen distinctly in the side view. The proposed ap-
proach, using the shape prior obtained on first 17 frames
provides realistic reconstructions. The heart sequence is a
recording of a heart bypass surgery. 40 out of 60 frames
are significantly occluded by a robotic arm. For the first
time, dense reconstructions on this sequence were shown in
[40]. The proposed SPVA achieves similar appearance, but
the runtime is 30% lower. The new face sequence depicts
a speaking person. No external occlusions are happening,
but MFSF produces noisy correspondences due to large
head movements. Thus, MFSF+VA outputs reconstructions

with a bent structure in the nose area, whereas the shape
prior in SPVA suppresses unrealistic twisting. More details
on the experiments with the real data can be found in our
supplementary material.

6. Conclusions

In this paper, we proposed the SPVA framework — a
new approach for dense NRSfM which is able to handle
severe occlusions. Thanks to the shape prior term, SPVA
penalizes deviations from a meaningful prior shape. The
highest supported granularity is per frame per pixel. The
shape prior is automatically obtained on the fly from sev-
eral non-occluded frames under non-rigidity using the total
intensity criterion. The new approach does not require any
predefined template or a deformation model. Along with
that, we analysed relation to the template-based monocu-
lar reconstruction and came to the conclusion that SPVA
can be considered as a hybrid method. A new evaluation
methodology was introduced allowing to jointly evaluate
correspondence computation and non-rigid reconstruction.
Experiments showed that the proposed framework can effi-
ciently handle scenarios with large permanent occlusions.
The SPVA pipeline outperformed the baseline occlusion-
aware MFOF+VA in terms of accuracy and runtime. A lim-
itation of the proposed method lies in its pipeline nature —
it can recover from inaccuracies in the pre-processing steps
only up to a certain degree. Future work considers an ex-
tension to handle perspective distortions and a search for an
optimal operation scheme for interactive processing.
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