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Abstract

To give additional insight into our proposed method we
present the optimization methods that we used to minimize
the proposed energies of the occlsion-aware multi-frame
optical flow (MFOF) as well as the global denoising of the
occlusion probability maps. Furthermore, we added fur-
ther examples, including dense NRSfM reconstructions, to
demonstrate the capabilities of the proposed method.

1. Introduction
We first describe the minimization methods that are used

to minimize the energies of the proposed occlusion-aware
MFOF method. In order to obtain a MFOF method that
is highly accurate and well parallelizable we cast the en-
ergy minimizations into the framework of the efficient pri-
mal dual method of [3]. Thereafter further examples follow.

2. Used primal dual algorithms
This section gives details about the different primal dual

algorithms used for the minimization tasks of the proposed
approach. These minimization algorithms are similar to dif-
ferent parts of [5], [1] and [7]. In the following we often use
algorithms of [3] that are applicable to saddle-point prob-
lems of the from

min
x∈X

max
y∈Y
〈Kx, y〉 − F ∗(y) +G(x). (1)

This is a primal-dual formulation of the nonlinear mini-
mization problem

min
x∈X

F (Kx) +G(x). (2)
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Here we assume the following: X,Y be finite-dimensional
real vector spaces with an inner product 〈·, ·〉. The map K :
X → Y is a continuous linear operator, G : X → [0,∞),
and F ∗ : Y → [0,∞), being proper, convex, lower semi-
continuous with F ∗ being the convex conjugate of a convex
lower semicontinuous function F .
The original form of the MFOF [5] is

E[u(x, n),L(x)] = αEdata + βElink + Ereg, (3)

with

Edata =

∫
Ω

F∑
n=1

Φ(I(x + u(x, n), n)− I(x, n0)) dx (4)

Elink =

∫
Ω

F∑
n=1

|u(x, n)−
R∑
i=1

qi(n)Li(x)|2 dx (5)

Ereg =

∫
Ω

R∑
r=1

g(x)Φ(∇Lr(x)) dx. (6)

We now focus on the minimization of the modified form

Eξ(x,n)[u(x, n),L(x)] =

(1− ξ(x, n))[αEdata] + βElink + Ereg, (7)

with

u(x, n) =

{∑R
i=1 qi(n)Li(x) if ξ(x, n) = 1

u(x, n) if ξ(x, n) = 0
. (8)

2.1. Primal dual algorithm of proposed MFOF for
minimization with respect to u

In this section we describe the minimization method
for the energy of the occlusion aware MFOF, namely
Eξ(x,n)[u(x, n),L(x)] with respect to u(x, n), given the
occlusion maps ξ(x, n).



Thus, we keep L(x) fixed and observe that Edata and Elink
depend on u(x, n) and therefore we need to minimize

(1− ξ(x, n))[αEdata] + βElink = (9)

α

∫
Ω

F∑
n=1

(1− ξ(x, n)Φ(I((x + u), n)− I(x, n0)) dx

+β

∫
Ω

F∑
n=1

∣∣∣∣∣u(x, n)−
R∑
i=1

qi(n)Li(x)

∣∣∣∣∣
2

dx

with respect to u(x, n). Note that due to the definition
of u(x, n) we have (1 − ξ(x, n))[αEdata] + βElink =
(1 − ξ(x, n))[αEdata + βElink]. For this minimization step
we modified the dual formulation of [5] as follows. We
take the L1-norm Φ(v) = |v| and linearize the data term
Edata around x + u0(x, n). Moreover, we substitute u′ =∑R
i=1 qi(n)Li(x), thus (9) can be rewritten as

Eaux(u) = α(1− ξ)|Au + b|+ β|u− u′|2 (10)

with b = I(x + u0, n) − I(x), n0) − Au0 and A =
∂I(x+u0,n)

∂x being the Nc × 2 Jacobian of the n-th frame,
evaluated at x + u0. We also introduced the short notation
ξ = ξ(x, n). Therefore, we have to solve the minimization
problem

min
u
α(1− ξ)|Au + b|+ β|u− u′|2 (11)

The convex conjugate (Legendre-Fenchel transform) of
Φ(v) = |v| is Φ∗(v) = δ(v) with

δ(v) =

{
0 if |v| ≤ 1

∞ if |v| ≥ 1
.

Moreover, |v| is a proper convex and lower semi-continuous
function. For dualization we intepret F (α(Au + b)) =
|α(Au + b)| leading to the convex conjugate F ∗(I) =
δ(I/α) − 〈b, I〉. Thus, the dualized energy, including the
bi-conjugate and the coupling term, reads

Eaux(u) =

(1− ξ) max
I
{〈Au, I〉+ 〈b, I〉 − δ

(
I
α

)
}

+β|u− u′|2. (12)

We can now write the minimization (11) as saddle-point
problem

min
u

max
I

{
(1− ξ)[〈Au, I〉+ 〈b, I〉]− δ

(
I
α

)
+β|u− u′|2

}
. (13)

Taking K = Au and realizing that the function G(u) =
β|u − u′|2 is a convex function with convexity parameter

2β, we can cast (13) into the form (1) and are able to apply
the primal dual algorithm 2 of [3]. We obtain the follow-
ing iteration method for the optimization of (13) inside the
alternation approach:

• Choose σ0 = τ0 = 1
LA

• Initialize u0 and I from previous alternation iteration

• Initialize ū0 = u0

• Iterate for k = 0, 1, 2, . . . until a convergence criterion
is satisfied

Ik+1 = Γα
(
Ik + τk(1− ξ)(Aūk + b)

)
uk+1 = 1

1+2σkβ

(
2σkβu

′ + uk − σk(1− ξ)ATIk+1
)

θk = 1√
1+4βσk

, σk+1 = θkσk, τk+1 = τk
θk

ūk+1 = uk+1 + θk(uk+1 − uk).

Note that we initialize u0 = 0 and I0 = 0 at the begin-
ning of the pyramid approach and prolongate the updated
variables through the pyramids as described in [9]. Further-
more, we choose

LA = max
n=1,...,F

( max
i,j∈Img

( max
r=1,...,Nc

2∑
c=1

|arc|︸ ︷︷ ︸
maxnorm of Jacobian Ai,j

). (14)

The projection Γ is here defined as:

Γα(s) =
s

max(1, |s|α )
.

We declare convergence, if the relative update uk+1−uk
uk

is
negligible with respect to some threshold (e.g. 10−3).

2.2. Primal dual algorithm of proposed MFOF for
minimization with respect to L(x)

In this section we describe the minimization method
for the energy Eξ(x,n)[u(x, n),L(x)] with respect to L(x),
given ξ(x, n). We keep u(x, n) fixed and observe that Elink
and Ereg depend on L(x). Therefore we have to minimize

Ereg + βElink = (15)∫
Ω

F∑
n=1

∣∣∣∣∣u(x, n)−
R∑
i=1

qi(n)Li(x)

∣∣∣∣∣
2

dx (16)

+

∫
Ω

R∑
i=1

g(x)Φ(∇Li(x)) dx (17)



In contrast to the minimization above, we choose Φ to be
the Huber-norm with parameter ε, i.e.

Φ(v) = Φ(v)ε =

{
|v|2
2 if|v| ≤ ε
|v| − ε

2 if|v| > ε.
(18)

We decompose the vector of all displacements
[u(x, 1), . . . ,u(x, F )]T into two orthonormal parts. One is
the projection of the displacements onto the trajectory sub-
space spanned by the basis trajectories qi(n), . . . ,qR(n)
and the other one is its orthogonal complement. Similar
to [5] we can argue that the orthogonal complement is
constant with respect to L(x) and can thus be left out of
the minimization. Therefore it is equivalent to penalize
deviations of u(x, n) to

∑R
i=1 qiLi(x), which lies on the

subspace, or penalizing the distance of
∑R
i=1 qiLi(x) with

respect to the projection of u(x, n) to the subspace. The
coefficients M(x) define the projection onto the trajectory
subspace and can be obtained from the trajectories and the
displacements as follows

M(x) =

 [
∑F
n=1 q

Tu(x, n)]1
...

[
∑F
n=1 q

Tu(x, n)]R

 . (19)

The linking term Elink can thus be rewritten as

∫
Ω

F∑
n=1

∣∣∣∣∣u(x, n)−
R∑
i=1

qi(n)Li(x)

∣∣∣∣∣
2

(20)

=

∫
Ω

R∑
i=1

(Mi(x)− Li(x))2. (21)

This leads to a decoupling of the coefficients L(x)i which
allows us to optimize for each Li(x) separately. Subse-
quently, the minimization of (15) boils down to the mini-
mization of

R∑
i=1

∫
Ω

g(x)|∇Li(x)|ε + β(Mi(x))− Li(x))2 dx, (22)

which can be optimized separately for each i = 1, . . . , R.
Dropping the index i for simplicity, we are left with the
minimization problem

min
L

∫
Ω

g(x)|∇L(x)|ε + β(M(x))− L(x))2 dx. (23)

In a similar manner as described before, we can obtain a
saddle point problem that reads

min
L

max
L

{
〈∇L(x),L(x)〉 − δ

(
L(x)

g(x)

)
− ε |L|

2

2g(x)

+β(M(x)− L(x))2
}

(24)

This fits in to the form (1) by taking K = ∇, which is
bounded by

√
8. G(x) = β(M(x) − L(x))2 with convex-

ity parameter 2β and F ∗ = δ
(
L(x)
g(x)

)
− ε |L|

2

2g(x) with con-
vexity parameter ε. We can now use a variant of algorithm
3 proposed in [3] and obtain the following algorithm

• Initialize L0(x) = L̄0(x) = M(x), L0 from previous
alternation iteration

• Iterate for k = 0, 1, 2, . . . until a convergence criterion
is satisfied

Lk+1 = Γg(x)

(
Lk+τ∇L̄k(x)

1+ τε
g(x)

)
Lk+1 = 1

1+2σβ

(
2σβM(x) + Lk(x) + σdiv(Lk+1)

)
L̄k+1 = 2Lk+1(x)− Lk(x))

We initialize L0 = 0 and L0 = 0 on the highest pyramid
level and prologate the values as in [9]. Here div(·) is the
divergence operator which is the negative dual operator to
the gradient operator ∇. Both operators are discrete and
implemented as detailed in [3]. The stepsizes are chosen to
be

σ =

√
ε

16β
, τ =

√
β

4ε
, (25)

which guarantees convergence in the sense of [3].

2.3. Primal Dual Algorithm for occlusion map de-
noising

In this section we describe the minimization method for the
energy Eoccl[ξ(x, n)] and thus the algorithm for Step 3 in
the proposed occlusion aware MFOF approach.
This energy can be optimized seperately from the energy
(3), since it only denoises the pre-estimates ξ̃(x, n) of the
occlusion map. The methods proposed here are related to
[1] and the general form of the problem is inspired by [7]. In
the following we write down a general form of the algorithm
that we used with the parameters γ = 1, εoccl = 1 and
W = diag(1, 1, 0.01) in our experiments. We minimize

γEoccl = (26)

γ

∫
Ω

F∑
n=1

(ξ(x, n)− ξ̃(x, n))2 + Φ(∇3ξ(x, n)) dx,

where Φ is the Huber-norm with parameter εoccl. We de-
fine∇3ξ(x, n) = W∇ξ(x, n) as weighted spatial-temporal
gradient, with the diagonal matrix W as given above. In a
similar way as before, we can derive a saddle-point problem
for this energy

min
ξ

max
η

{
〈W∇ξ, η〉 − δ

(
η

γ

)
− εoccl

2γ
‖η‖2 (27)

+γ(ξ − ξ̃)2
}

(28)



We left out the explicit space and time dependencies (x, n)
for reasons of better readability. This problem can be cast
into the form of problem (1), by taking K = ∇ and conse-
quently F ∗(η) = δ( ηγ ), as well as G(ξ) = γ(ξ − ξ̃)2 with
convexity parameter 2γ. Therefore we can apply algorithm
3 of [3], which yields the following.
Initialize ξ0 = ξ0 (e.g. ξ0 = 0, or a given initial occlusion
map) and η0 = 0 at the highest pyramid level. In each alter-
nation iteration along the image space and image sequence
(time) (x, n) do the following iteration

• Initialize ξ0 = ξ̄0, η0 from previous alternation itera-
tion

• Iterate for k = 0, 1, 2, . . . until a convergence criterion
is satisfied

ηk+1 = Γγ

(
ηk+τ∇ξ̄k
1+

τεoccl
γ

)
ξk+1 = 1

1+2σγ

(
ξk + σ(div(Wηk+1) + 2γξ̃)

)
ξ̄k+1 = 2ξk+1 − ξk

ξk+1 = max(min(ξk+1, 1), 0)

ξ̄k+1 = max(min(ξ̄k+1, 1), 0).

Note that taking ξ̄k+1 = ξk+1 gives slightly better conver-
gence rates, but might have numberical stability issues in
special cases, see [3]. By restricting the matrix entries of
the diagonal matrix W to 0 ≤ wi,j ≤ 1 the discrete version
of ‖div(Wη)‖2 is bounded by

√
12. This can be shown in

an analogous way as the bound of
√

8 for the discrete ver-
sion of ‖div(Wη)‖2 in the case W = diag(1, 1, 0) as was
previously proofed in [2]. Therefore, we use the step size
σ =

√
εoccl
24γ and τ =

√
γ

6εoccl
, which guarantees convergence

as previously mentioned in the sense of [3].

3. Further tests on real data
3.1. Dense NRSfM of waving flag

In this section we show dense NRSfM reconstructions of
the waving flag sequence with large occlusions, applied to
the correspondences computed from the base scheme and
the proposed method (MFOF Prop.-3).
We base the NRSfM reconstruction on [6] for the flag se-
quence with respect to frame 26, using the base scheme as
well as the proposed scheme, textured with the reference
frame. It is clearly visable that the reconstruction based on
the corrected correspondences of the proposed scheme is
less distored, in the occluded regions, than the reconstruc-
tion based on the base scheme. Note, that we used the non-
occluded texture here to better visualize the effect of the
wrong correspondences.

(a) Reference frame (b) Frame 26

(c) Base scheme (d) MFOF proposed

Figure 1: NRSfM reconstructions of the waving flag based on
MFOF correspondences, from the base scheme (left) and the pro-
posed method (right).

3.2. Turning head scenario

We also tested the proposed method on a sequence ob-
tained from a consumer camera. It shows a turning head of
a man. The sequence contains 38 RGB-images (480× 470
pixels). Due to some low texture regions, we computed the
optical flow based on the gradients of the color images (a
6 dimensional vector for each pixel), like in the heart se-
quence example (in the paper). In Figure 2 we illustrate the
different components used for the occlusion probability es-
timation in this scenario. The reference frame and frame 32
of the sequence are shown in the top row. Below the opera-
tion of our algorithm is illustrated on the rather large occlu-
sions caused by the turning head. Shown are the occlusion
indicators as well as the initial and the denoised occlusion
probability maps. It can be observed that the counter in-
dicator (Figure 2(c)) captures mostly self-occlusions, while
the divergence indicator (Figure 2(d)) captures both self-
occlusions and newly incoming parts of the head. The re-
sult of the proposed Bayesian smoother shows already rea-
sonably well defined local regions (Figure 2(e)), which are
thereafter globally refined via variational denoising (Fig-
ure 2(f)). This test case demonstrates that the occlusion
estimation framework can not only be used to improve the
flow fields, as shown before, but also for providing a general
visibility measure with respect to the given reference frame
or template. This information can be useful, e.g. for auto-



(a) Reference image (b) 32th image

(c) Counter indicator (d) Divergence indicator

(e) Pre-estimate (f) Final probability map

(g) Final backwarp (occlusions marked black)

Figure 2: Illustration of our proposed method on a real-world se-
quence.

matic video segmentation as well as for automatic selection
of new reference images in long video sequences. Note the
good correspondences of the visible part of the head using
the proposed MFOF method, as indicated by the backward

(a) Reference (b) Corr. 10

(c) Corr. 89 (d) Corr. 139

(e) Occl. prob. 10 (f) Occl. prob. 89 (g) Occl. prob. 139

(h) Frame 10 (i) Frame 89 (j) Frame 139

Figure 3: Correspondences, occlusion probabilities and some
NRSfM reconstructions of the back sequence.

warp shown in Figure 2(g). Here, regions with high proba-
bility of occlusion (> 0.5) have been colored black.



3.3. Deforming Back Sequence

The back sequence [8] is a 150 frame long sequence
showing a person deforming sideways and stretching. This
sequence has already been reconstructed with rather high
precision using the correspondences of the base scheme to-
gether with the NRSfM method of [4]. We show results of
our algorithm on this sequence, to demonstrate additional
insight that can be gained through the flow uncertatinty map
and to demonstrate that the quality of the final NRSfM re-
construction will not be harmed through the proposed ap-
proach. Figure 3 shows correspondences from frame 10,
89, 139 of the backsequence, with occlussion / flow uncer-
tainty probabilities shown in 3(e), 3(f) and 3(g). These maps
clearly indicate regions with uncertain flow estimates. This
is useful information for correspondence selection, correc-
tion as well as video segmentation for NRSfM reconstruc-
tions.
We present NRSfM results based on the correspondences
of the proposed method in 3, using again the method [4],
to confirm the high quality reconstructions that can be ob-
tained with the computed correspondences. Note that, al-
though the person is moving and considerably deforming
the back, our method works reliably and does not spuriously
mark the parts of non-rigid deformations.

4. Conclusion
We presented the algorithms behind the variational op-

timization steps of the MFOF method and the denoising of
the occlusion pre-estimate in space and time. Moreover,
several additional examples demonstrate the methods po-
tential in different scenarios.
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