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Abstract
We give a new decision procedure for the guarded fragment
with equality. The procedure is based on resolution with su-
perposition. We argue that this method will be more useful
in practice than methods based on the enumeration of cer-
tain finite structures. It is surprising to see that one does
not need any sophisticated simplification and redundancy
elimination method to make superposition terminate on the
class of clauses that is obtained from the clausification of
guarded formulas. Yet the decision procedure obtained is
optimal with regard to time complexity. We also show that
the method can be extended to the loosely guarded fragment
with equality.

1 Introduction
The loosely guarded fragment was introduced in

(Andréka, van Benthem & N´emeti 1996) as ’the modal frag-
ment of classical logic’. It is obtained essentially by restrict-
ing quantification to the following forms:

∀y[ R(x, y) → A(x, y)] and∃y[ R(x, y) ∧ A(x, y)].

These forms naturally arise when modal formulae are trans-
lated into classical logic using the standard translation based
on the Kripke frames. The authors showed there that the
guarded fragment has many of the nice properties of modal
logics. In particular it is decidable. Any decision proce-
dure for this fragment, hence, is a decision procedure for
those modal logics that can be embedded into it, for exam-
ple K , D, S3, andB. It has been shown by Gr¨adel (1997)
that equality can be admitted in the guarded fragment with-
out affecting decidability. In the fragment with equality ad-
ditional logics such as difference logic can be expressed
(where3A meansA holds in a world different from the
present).

De Nivelle (1998) has given a resolution decision pro-
cedure for the guarded fragment without equality. In his
procedure, a non-liftable ordering is employed, and, hence,
some additional and non-trivial argument is required for
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proving refutational completeness. In this paper we de-
scribe in detail a decision procedure for the guarded frag-
ment with equality which is based on resolution and super-
position. Despite the fact that it applies to a larger fragment
of first-order logic, our new procedure is simpler than the
one in (de Nivelle 1998) in that we employ a liftable or-
dering (plus selection) so that we are able to re-use stan-
dard results about refutational completeness. Our method
is also interesting as there are not so many saturation-based
decision procedures for fragments with equality described
in the literature. Notable exceptions include (Ferm¨uller &
Salzer 1993), where a resolution decision procedure is given
for the Ackermann class with equality, and (Bachmair,
Ganzinger & Waldmann 1993), where it is shown that a cer-
tain superposition strategy decides the monadic class with
equality. Nieuwenhuis (1996) proves the decidability of
certain shallow equational theories by basic paramodula-
tion.

The advantage of resolution or superposition decision
procedures over theoretical procedures based on collapsing
models is that the former use syntactic, unification-based in-
ferences to enumerate candidate witnesses of inconsistency.
There is experimental evidence (Hustadt & Schmidt 1997)
that such procedures perform well in practice, in particu-
lar they often will not exhibit the usually exponential or
double-exponential worst-case complexity of the respective
fragments. Also, when having a flexible saturation theo-
rem prover at hand, such as SPASS (Weidenbach 1997), it
suffices to appropriately adjust its parameters in order to ef-
ficiently implement the procedure.

The results of this paper can be summarized as follows.
(i) Ordered paramodulation with selection is a decision pro-
cedure for theGF with equality. No sophisticated redun-
dancy elimination methods are required, and a straightfor-
ward (liftable) ordering and selection strategy suffice. (ii)
The procedure decides the class of guarded clauses which
is a proper superclass of theGF with equality. (iii) The
worst-case time complexity of the decision procedure is
doubly-exponential, which is optimal, given that the logic is
2EXPTIME-complete (Gr¨adel 1997). (iv) Guarded clauses
with deep terms, although decidable in the case without
equality, become undecidable in the equational case. (v)
The superposition-based decision method can be extended



to the loosely guarded fragment with equality, but is much
more involved there. For the extension, hyper-inferences
which simultaneously resolve a set of guards are needed.
Some non-trivial results are required about the existence of
suitable partial inferences to avoid the generation of clauses
which are not loosely guarded, together with meta-theorems
about the refutational completeness of these partial infer-
ences.

2 The Guarded Fragment
Definition 2.1 The formulas of theguarded fragmentGF
of function-freefirst order logic are inductively defined as
follows:
1. > and⊥ are inGF.

2. If A is an atom thenA is in GF.

3. GF is closed under boolean combinations.
4. If F ∈ GF andG is an atom, for which every free vari-

able ofF is among the arguments ofG, then∀x(G →
F) ∈ GF (or, equivalently,∀x(¬G ∨ F) ∈ GF) and
∃x(G ∧ F) ∈ GF, for every sequencex of variables.

The atomsG which appear as constraints for quantified
variables are calledguards. Equations can also be used as
guards. These are examples of guarded formulae:

∀x (x ≈ x → p(x)), ∃x (p(x) ∧ q(x))

∀yz (r(y, y, z) → ⊥), ∀xy (r(x, y) → r(y, x))

∀xy (r(x, y) → ∃z r(y, z))

∃x [ R(w, x) ∧ ∀y (R(x, y) → p(y)) ∧ q(x)]

The last formula is the translation of the modal formula
3(2p ∧ q) with respect to a worldw. These are formu-
lae which are not guarded:

∀xy p(x, y)

∀x1x2x3 [ p(x1, x2) → p(x2, x3) → p(x1, x3)].

The last formula states the transitivity ofp. As this is not
guarded, for modal logics such asS4 which are based on
transitive frames the standard embedding methods lead out-
side the guarded fragment.

3 The Superposition Calculus
For the decision procedure to be described below we

only need a rather weak form of the superposition calculus
of Bachmair & Ganzinger (1990), called ordered paramod-
ulation, for which Hsiang & Rusinowitch (1991) have also
given a completeness proof. Here (ordered) paramodulation
into the larger side of an equation is permitted. We use the
symbol≈ to denote formal equality and do not distinguish
between equationss ≈ t and t ≈ s. Disequations¬(s ≈ t)
will also be written ass 6≈ t. The calculus is clausal, where
clauses are multisets of literalsL1, . . . , Lk , k ≥ 0, which
we write as disjunctionsL1 ∨ . . . ∨ Lk . A clause is called
positiveif it does not contain any negative literals. A clause
is calledgroundor propositionalif it contains no variables.

The calculus is parameterized by admissible orderings
� and selection functions6 for negative literals. For each
setting of the two parameters it is refutationally complete.
For dealing with the orderings it is useful to view non-
equational atoms of the formp(t1, . . . , tk), with p a pred-
icate symbol different from equality, as a shorthand nota-
tion for an equationp(t1, . . . , tk) ≈ tt. In this encoding, the
atom is considered a term (in a two-sorted signature with
sorts i and o), with tt a distinguished constant of sorto,
and where predicates are viewed as functions of sorto, tak-
ing arguments of sorti . An admissible ordering� is any
total reduction ordering on ground terms (including non-
equational ground atoms) in whichtt is minimal. The mul-
tiset extension of�, again denoted�, is used to compare
literals by identifying any positive equations ≈ t (including
the equational encodings of non-equational atoms) with the
multiset{s, t}, and any negative equations 6≈ t with the mul-
tiset{s, t, tt}, respectively. The ordering is extended to non-
ground expressions by definingE � E ′ iff, for all ground
substitutionsσ , Eσ � E ′σ . Although admissible orderings
are total and well-founded on ground terms and literals, they
are only partial on non-ground expressions. Whenever a lit-
eralL contains a unique maximal term we will denote it by
max(L). A selection function6 selects, in each clause, at
most one (occurrence of a) negative literal. This occurrence
is calledselected.

Inferences involve eligible literals. A literal is calledel-
igible in a clauseC if either it is selected inC (by 6), or
else nothing is selected inC, and it is a maximal literal in
C with respect to�. In particular, a positive literal, since it
cannot be selected, is eligible only if the respective clause
contains no selected (negative) literal. The inference rules
are as follows:

Ordered Factoring. From A1 ∨ A2 ∨ R deriveA1σ ∨ Rσ

providedA1 is eligible andσ is the mgu ofA1 andA2.

Equality Factoring. From t1 ≈ u ∨ t2 ≈ v ∨ R derive
uσ 6≈ vσ ∨ t1σ ≈ vσ ∨ Rσ providedt1 ≈ u is eligi-
ble andσ is the mgu oft1 andt2.

Reflexivity Resolution. From t1 6≈ t2 ∨ R derive Rσ pro-
vided thatt1 6≈ t2 is eligible andσ is the mgu oft1 and
t2.

Resolution. FromA1∨R1 and¬A2∨R2 deriveR1σ ∨R2σ

provided that bothA1 and¬A2 are eligible andσ is the
mgu of A1 andA2.

Ordered Paramodulation. Fromt1 ≈ u ∨ R1 andL[t2] ∨
R2, wheret2 is not a variable, deriveL[u]σ ∨ R1σ ∨
R2σ provided that botht1 ≈ u and the literalL[t2] are
eligible,σ is the mgu oft1 andt2, andu 6� t1.

The way in which the order restrictions are applied here isa
priori , i.e. before the unifier is computed. Superposition is
complete also if the order restrictions are checked after the



substitution is applied to the premises (a posterioricheck-
ing), or even if they are attached to the clauses and inherited
throughout inferences. A priori checking has the advantage
that the eligible literals in a clause can be precomputed, be-
fore any inference is attempted. On the other hand, a poste-
riori application is generally more restrictive. For obtaining
the theoretical results in the present paper a priori ordering
constraints turn out to be sufficiently powerful.

The calculus is refutationally complete for any choice
of admissible ordering and selection function. Moreover,
the calculus is compatible with a rather powerful notion of
redundancy by which don’t-care non-deterministic simplifi-
cation and redundancy elimination can be justified. In par-
ticular, tautologies can be eliminated and multiple occur-
rences of literals in clauses can be deleted. The notion of
redundancy allows for much more sophisticated simplifica-
tion methods which, however, will not be required here, al-
though for achieving good practical performance they have
to be implemented. The fact that non-naive implementa-
tions of superposition, such as in the SPASS system, spend
most of their execution time on simplification rather than
search is what makes them useful in the end. We call a set
of clausesN saturated up to redundancy(with respect to or-
dered paramodulation) if any inference from non-redundant
premises inN is redundant inN . The definition of redun-
dancy, in particular, implies that an inference is redundant
in N if the conclusion of the inference is contained inN or
else is redundant inN .

Theorem 3.1 (Bachmair & Ganzinger, 1990)Let N be a
set of clauses that is saturated up to redundancy with respect
to the above derivation rules. ThenN is unsatisfiable if and
only if N contains the empty clause.

4 The Decision Procedure
We will now describe the decision procedure. We de-

fine a notion of guarded clauses, and show that guarded for-
mulae can be translated into guarded clause sets. We will
obtain a resolution decision procedure by defining a reduc-
tion order� and a selection function6 that force an upper
bound on the complexity of the derivable clauses.

4.1 Clausal Normal Form Translation
We rely on a specific clausal normal-form transforma-

tion for the guarded fragment. We may assume that the
given formula is in negation normal form, that is, negation
is only applied to atoms. We also assume that implications
and equivalences have been eliminated by replacing them
by equivalent formulas involving conjunction, disjunction,
and negation. These standard transformations do not take a
formula outside the guarded fragment.

The next step is to replace certain sub-formulae by fresh
names, together with a definition of the name.1 We abstract

1Such transformations are called structural and are, for instance,
studied in (Baaz, Ferm¨uller & Leitsch 1994). They are called structural

universally quantified sub-formulae to reduce the number
of quantifier alternations. LetF = {F1, . . . , Fn} be a set of
formulae in negation normal form. Thestructural transfor-
mationof GF is obtained by iterating the following trans-
formations: IfF is a formula inF containing a proper sub-
formula of the form∀x(¬G ∨ H ), with G the guard, then
(i) add adefinition∀x y(¬G ∨ ¬ α(y) ∨ H ) to F , and (ii)
replace the indicated sub-formula inF by α(y). Hereby it
is assumed thaty is the set of variables that occur inG,
but not inx , and thatα is a new predicate name that does
not occur inF . Observe that the structural transformation,
when applied to a set of guarded formulas also yields a set
of guarded formulas as result. Moreover, all remaining uni-
versal quantifiers are outermost, so that any inner existen-
tial quantifier occurs in the scope of all universally quanti-
fied variables. This method of eliminating embedded quan-
tifiers is standard and has also been used in the context of
the guarded fragment by Gr¨adel (1997).

For the purposes of this paper, the standard skolemiza-
tion technique is the one which is appropriate. One re-
places any applied occurrence of an existentially quantified
variabley by a term f (x1, . . . , xn), with f a newSkolem
function symbol, ifx1, . . . , xn are the universally quanti-
fied variables, in the scope of whichy occurs. After that
replacement, all existential quantifiers have been removed,
and Skolem function applications contain all the variables
of a formula. Finally, to obtain a set of clauses, distribute
disjunctions over conjunctions, omit the universal quanti-
fiers (which are all outermost) and consider any conjunction
of disjunctions as a set (of clauses).

Example 4.1 Consider the guarded formula
∃x (n(x) ∧ ∀y [¬a(x, y) ∨
∀z {¬p(x, z) ∨ ∃x (a(x, z) ∧ (¬b(z, z) ∨ ¬c(x, x)))}]).

The structural transformation gives the set of formulas
∃x [n(x) ∧ α(x)],
∀x, y [¬a(x, y) ∨ ¬α(x) ∨ β(x)],
∀x, z [¬p(x, z) ∨ ¬β(x) ∨

∃x (a(x, z) ∧ (¬b(z, z) ∨ ¬c(x, x)))].
Skolemization yields

n(c) ∧ α(c),
∀x, y [¬a(x, y) ∨ ¬α(x) ∨ β(x)],
∀x, z [¬p(x, z) ∨ ¬β(x) ∨

(a( f xz, z) ∧ (¬b(z, z) ∨ ¬c( f xz, f xz)))].
Clausification, finally, produces this set of clauses:

n(c)
α(c)
¬a(x, y) ∨¬α(x) ∨ β(x)

¬p(x, z) ∨¬β(x) ∨ a( f (x, z), z)
¬p(x, z) ∨¬β(x) ∨¬b(z, z) ∨¬c( f xz, f xz).

since more of the structure of a formula is preserved when the formula
is factored.



4.2 Guarded Clauses
The result of the transformation are sets of guarded

clauses which, in particular, consist of a specific kind of lit-
erals. A term is calledshallowif either it is a variable or else
a functional termf (u1, . . . , um), m ≥ 0, in which eachu j
is a variable or a constant. A literalL is calledsimpleif each
term in L is shallow. Hencep(x, c, f (x)) and f (x, c) 6≈ y
are simple while¬p(s( f (0), x)) and f (x, s(x)) ≈ g(x) are
not. A clause is calledsimpleif all literals are simple. A lit-
eral is calledcoveringif each non-ground and non-variable
subterm in the literal contains all the variables of the literal.
An expression is calledfunctionalif it contains a constant
or a function symbol, andnon-functional, otherwise.

Definition 4.2 A simple clauseC is calledguardedif it sat-
isfies the following conditions:
(i) C is a positive, non-functional, single-variable clause;

or
(ii) every functional subterm inC contains all the variables
of C, and, ifC is non-ground,C contains a non-functional
negative literal, called aguard, which contains all the vari-
ables ofC.
Clauses of the form (ii) are calledproperly guarded, while
the concept of guards is void for the other types of guarded
clauses. A set of clauses is calledguardedif all its clauses
are guarded.

Note that if a guarded clause contains a constant it must be a
ground clause in which terms are shallow. Also, any literal
in a guarded clause is covering.

These are some examples of guarded clauses where suit-
able guards have been underlined.

p(0, s(0)) ∨ c 6≈ d ∨ q(s(0), f (0, 0))

p(x, x) ∨ q(x)

¬p(y, x) ∨ ¬q(x, y, y) ∨ r(x + y, x − y, x)

¬p(y, x) ∨ ¬q(x, y, y)

x 6≈ y ∨ x ≈(x + y)

The following clauses are not guarded:
¬e(x) ∨ e(s(s(x))) (not simple)
¬p(x) ∨ ¬q(y) ∨ r(x, y) (no guard)
¬p( f (x, y)) ∨ p(x, y) (no guard)
¬p(x, y) ∨ p( f (x), y) (not covering)
¬p(x, y) ∨ p(0, g(x, y)) (constant, but non-ground)

Definition 4.2 is more restrictive than the corresponding
definition in (de Nivelle 1998). The last two clauses in the
previous example are guarded in the sense of (de Nivelle
1998). In the section 5 we will discuss this issue in more
detail.

Theorem 4.3 The number of different (up to variable re-
naming) guarded clauses (without duplicate occurrences of
literals) over a finite signature has a double exponential up-
per bound in the size of the signature.

Proof. Let a finite signature be given. Define the following
parameters:

a1 the maximal arity of function symbols
a2 the maximal arity of predicate symbols
a the maximum ofa1 anda2
n1 a2 + the number of constant and function symbols
n2 the number of predicate symbols
n the maximum ofn1 andn2.

The maximal sizes of a simple atom isa2 + a + 1.
Therefore, the number of simple atoms (modulo variable
renaming) that may appear in a guarded clause over the
given signature is bounded by

ns = na2+a+1.

Then the number of simple literals (modulo variable renam-
ing) is at most

l = 2na2+a+1.

This is also an upper bound for the maximal number of lit-
erals in a clause, since a clause contains at most all possi-
ble literals over at mosta2 variables. Then the number of
guarded clauses that can be constructed from non-repeated
literals is bounded by

c = 2l = 22na2+a+1
.

2

4.3 Preservation of Guardedness
We now show that guarded clauses are closed under the

paramodulation inferences so that, using the theorem 4.3,
saturating a given set of clauses under these inferences,
combined with eager elimination of duplicate literals in
clauses, yields a decision procedure for satisfiability. To
that end we need to define an appropriate ordering and se-
lection function. For the ordering� we may use any lexi-
cographic path ordering on terms and non-equational atoms
based on a precedence� such that f � c � p � tt for
any non-constant function symbolf , constantc, and pred-
icate symbolp, respectively. For the selection function6

we assume that (i) if a clause is non-functional and con-
tains a guard then one of its guards is selected by6; (ii) if
a clause contains a functional negative literal, one of these
is selected; and (iii) if a clause contains a positive func-
tional literal, but no negative functional literal, no literal is
selected, so that the maximality principle applies for a lit-
eral to be eligible for an inference.

Lemma 4.4 Let L1, L2 be two literals of a guarded clause.
Assume thatL2 contains a non-ground functional term,
while L1 does not. ThenL2 � L1.

Proof. First observe that with the given assumptions the
clause does not contain any constants. LetL1 be a literal,
and lett be a functional term inL2. First suppose thatL1 is
a non-equational literal of the form [¬] p(u1, . . . , un) with



variablesui . Then, any of theui also occurs int. With re-
gard to the ordering, non-equational literals such asL1 are
identified with equations [¬](p(u1, . . . , un) ≈ tt). Let f be
the leading function symbol int. Then f has a precedence
greater that any of the symbols inL2, and ast contains all
variables ofL1, we conclude thatp(u1, . . . , un) ≺ t �
max(L2) which implies thatL1 ≺ L2.

If L1 is an equational atomu ≈ v, by a similar reasoning
we infer thatt � u andt � v, from which againL1 ≺ L2
is inferred.2

Lemma 4.5 With � and6 as defined above, a literal in a
clause is eligible for an inference only if it contains all the
variables of the clause.

Lemma 4.6 Let σ be the most general unifier of two sim-
ple non-equational atomsp(t1, . . . , tn) and p(u1, . . . , un).

Then p(t1, . . . , tn)σ is also simple.

Lemma 4.7 Let A andB be simple atoms such that (i) ev-
ery variable occurring inB also occurs inA; (ii) every vari-
able that occurs in a functional term ofB also occurs in a
functional term ofA; and (iii) every functional term ofB
contains all the variables ofA. Then for any substitutionσ ,
(i) if Aσ is simple, thenBσ is simple,

(ii) every variable ofBσ occurs inAσ,

(iii) every variable occurring in a functional term ofBσ

occurs in a functional term ofAσ.

(iv) Every functional term ofBσ contains all the variables
of Aσ.

As a consequence of the lemma 4.4, if a clause is non-
ground, any eligible literal either contains a (non-ground)
functional term or else there is no functional term in the en-
tire clause. The preceding lemma can therefore be applied
to any eligible literalA and any other literalB in a guarded
clause.

Lemma 4.8 A factor of a guarded clause is guarded.

Lemma 4.9 An equality factor of a guarded clause is
guarded.

Lemma 4.10 A clause obtained by reflexivity resolution
from a guarded clause, is guarded.

Proof. The propositional case the lemma is trivial. For re-
flexivity resolution to be applicable to a non-propositional
clause, the clause must be of the formD = x 6≈ y ∨ C,
with guardx 6≈ y and with C not containing a functional
term. Clearly, the resolvent has only simple literals and is
either the empty clause or has just one variable. In the latter
case the resolvent either has a guard or is a positive clause.
2

Lemma 4.11 A resolvent of two guarded clauses is
guarded.

Proof. Let C1 = A1 ∨ D1 andC2 = ¬A2 ∨ D2 be the
clauses resolved upon, withσ the mgu ofA1 andA2. Then
the conclusion is the clauseD = D1σ ∨ D2σ . Notice that
with A = Ai and B any literal in Di , the premises of the
lemma 4.7 are satisfied, both fori = 1 andi = 2. As both
A1 andA2 are simple, the literalA1σ is also simple. Apply-
ing the lemma 4.7, part (i), we may infer that all literals in
D are simple. If there are functional terms inD then these
contain the same set of variables, and all the variables ofD,
cf. Theorem 4.7, parts (iii) and (iv). In order to show that
there is a guard inD when one is needed, we distinguish as
to whether or not the clauses are ground.

Suppose that one of theCi is ground. In that caseD
is ground since literals which are eligible for an inference
contain all the variables of a clause.

Let us now assume that bothC1 andC2 are non-ground.
Suppose thatC1 is not a positive clause over one variable.
Then C1 must have a guard¬G, and¬Gσ occurs inD.

Moreover, A1 must have a functional term containing all
the variables ofC1. (Otherwise¬G or some other guard of
C1 would be selected and the inference would not be possi-
ble). AsA1σ is simple,σ assigns a variable to each variable
in C1. Therefore, the literal¬Gσ has only variables as ar-
guments. Since¬Gσ contains all the variables ofA1σ, it
contains all variables ofD, and, hence, is a guard. In case
thatC1 is a positive, single-variable clause, thenD contains
at most one variable. If there is no guard inD then the re-
solvent must be a single-variable, positive, possibly empty
clause.

Finally, the resolvent does not contain a constant unless
one of the premises does. In that case both the premise and
the resolvent are ground.2

Lemma 4.12 Any clause obtained by a superposition infer-
ence from two guarded clauses is guarded.

Proof. Let C1 = L[u] ∨ D1 be the main premise,C2 =
t1 ≈ t2 ∨ D2 the side premise, andD = L[t2]σ ∨ D1σ ∨
D2σ be the conclusion, respectively, of the inference, with
σ the mgu oft1 andu.

We first consider the case whereC2 is ground. If t2 is
not a constant then alsot1 is not a constant, as otherwise
the ordering constraints would block the inference. Su-
perposition inferences into variables are excluded so that
u must be a functional term containing all the variables of
the clause. Hence, all variables inu become grounded by
σ , D is ground, and contains simple literals only.

If C2 is non-ground, thent1 ≈ t2 has to contain all its
variables, and at least one of thet1 or t2 is a functional term.
(Otherwise the guard inC2 would be selected and the clause
cannot appear as the side premise of the inference.) The
ordering restrictions, therefore, imply thatt1 is functional,
containing all the variables of the clause, whereast2 can be



a variable, or a functional term. The possible forms ofu are
also restricted.u cannot be a variable.u can be a functional
term containing all the variables ofC2, or a ground term.
Suppose thatu is ground and unifiable witht1. Thenu is
not a constant,C2 is ground, andu occurs as an argument
to a predicate inC2. Then,D is a ground clause and is sim-
ple sincet2σ is either a constant or a functional term with
constant arguments. Ifu is not groundσ is a variable re-
naming and, in particular, bothD1σ andD2σ are guarded.
Moreover,L[t2]σ is simple. It is easily checked that the
guards ofC1σ andC2σ can both serve as guards ofD. 2

Theorem 4.13 Let 6 and � be as specified. For all the
inferences of the ordered paramodulation calculus, if the
premises are guarded, so is the conclusion.

Theorem 4.14 The fragment of guarded clauses is decid-
able by ordered paramodulation.

Proof. By the theorem 4.13 all derivable clauses are
guarded, and the number of such clauses is finite, cf. The-
orem 4.3. As each inference rule is a decidable relation on
guarded clauses, the theorem follows.2

2

The theorem can also be extended to guarded clauses
combined with unrestricted ground clauses. There one re-
places in the initial clause set any ground (sub-) terms
which is not shallow by a new constantas , together with
the defining equationas ≈ s. This preserves satisfiability
and produces a clause set which is guarded.

4.4 Complexity
The complexity of our decision procedure is double ex-

ponential. Gr¨adel (1997) has shown that the decision prob-
lem for the guarded fragment with equality is 2EXPTIME-
complete, hence our procedure is theoretically optimal. We
use the fact, cf. Theorem 4.3, that the number of guarded
clauses has a doubly exponential bound and show that the
saturation process has no primitive operation that has more
than exponential complexity.

Theorem 4.15 The superposition decision procedure can
be implemented in 2EXPTIME (in the size of the signa-
ture).

Proof. We reuse the notation defined in the proof of the the-
orem 4.3. It is clear that the space complexity of the pro-
cedure is dominated by the space that is needed to store the
clauses. Hence, we obtain a space complexity ofs ∗ l ∗ c.

2The inferences are equipped with constraints which specify which
literals are eligible for an inference. Depending on the signature, the
term ordering, and the selection function such constraints are in gen-
eral undecidable and have to be approximated. This is not the case
here. But even if the constraints were undecidable, by Theorem 4.13 a
safe approximation would be to consider any unrestricted inference the
conclusion of which is a guarded clause.

For the time complexity, observe that suitable abstractions
of the ordering and selection constraints for the inferences
can be checked in polynomial time, cf. the proof of Theo-
rem 4.14. Then one may show that the time needed to do a
subsumption check is inO(l3s). In fact, one first matches
the guard with at mostl literals. After that one has to try
to match each of thel remaining literals with one of thel
literals of the other clause. This gives a total ofl3 attempted
matches. Since each matching can take up tos time, this
number has to be multiplied bys. Knowing the time com-
plexity for subsumption for guarded clauses, we can esti-
mate the time complexity of our method as a whole. The
algorithm has to try all pairs of literals, and in the case that
a resolvent is possible, it has to check that the resolvent is
not subsumed by one of the existing clauses. This takes time
in O((cl)2c(l3s)). This iteration has to be repeated at most
c times, resulting in a bound inO((cl)2c2l3s). This num-
ber is roughly equal toc4 which gives the desired double
exponential time complexity.
Finally we should also consider the time and space com-
plexity of the clausal normal form translation. It is well-
known that the transformation to normal form can take at
most single exponential time, which is negligible compared
to the double exponential time obtained above. The (struc-
tural) elimination of equivalences is slightly more tricky
here as the result has to be a guarded formula.2

5 Weakly Guarded Clauses
The notion of guarded clause as given in the Defini-

tion 4.2 is more restrictive than the one given in (de Nivelle
1998). There, terms of arbitrary depth are allowed provided
that they are either ground, or contain all variables of the
clause. We repeat the formal definition:

Definition 5.1 A clauseC is calledweakly guarded, if (i)
every non-ground functional term inC contains all the vari-
ables ofC; and (ii) if C is non-ground it contains a negative
literal, all of which arguments are constants or variables,
and which contains all the variables of the clause.

This notion was inspired by theE+-class. Every clause
which is guarded is also weakly guarded, but the converse
is not true in general.

Theorem 5.2 Satisfiability is undecidable for finite sets of
weakly guarded clauses if equational atoms are admitted.
The fragment remains undecidable if all ground terms are
constants.

The Post Correspondence Problem can be reduced to this
decision problem. This is essentially due to the fact
that projection functions defined by equations of the form
f (x, y) ≈ x can make a non-shallow term equal to a
term that violates the covering condition. For example
from the guarded clauses¬p(x, y) ∨ p(s( f (x, y))) and
¬p(x, y) ∨ f (x, y) ≈ x we may deduce the non-guarded



clause¬p(x, y)∨ p(s(x))}, wheres is not applied to all the
variables of the clause. This shows that variables in nested
functional terms cannot be combined with equality.

6 The Loosely Guarded Fragment
Our method can be generalized to the so calledloosely

guarded fragment. This fragment obtained by weakening
the condition (4) in the Definition 2.1 as follows: IfF is
loosely guarded andG1, . . . , Gn are atoms, with variables
as arguments, then the formulae∀x(G1 ∧ · · · ∧ Gn → F)

and∃x(G1 ∧ · · · ∧ Gn ∧ F) are loosely guarded, provided
that (i) every free variable ofF occurs in aGi , and (ii) every
pair of variablesy1, y2, which are free inF, and of which
at least one is among thex, occur together in one of theGi .

We call the entire conjunctionG1 ∧ · · · ∧ Gn theguardof
the formula, and any conjunct aguard atom.

In the loosely guarded fragment the until operator can be
expressed, which cannot be expressed in the guarded frag-
ment. P until Q can be translated as:

∃y (Rxy ∧ Qy ∧ ∀z (Rxz ∧ Rzy → Pz)).

Transitivity of R, though, cannot be expressed in the loosely
guarded fragment. In the formula

∀x, y, z (Rxy ∧ Ryz → Rxz)

there is no atom in the guard in which the variablesx andz
co-occur. In fact, Ganzinger, Meyer & Veanes (1999) have
shown that allowing for a single transitive relation makes
the LGF undecidable in general.

A CNF transformation similar to the one described in the
section 4.1 leads to what we call loosely guarded clauses:

Definition 6.1 A simple clauseC is calledloosely guarded
if it satisfies the following conditions:
(i) C is a positive, non-functional, single-variable clause;

or
(ii) C contains no constants, every functional subterm inC
contains all the variables ofC, andC contains a set of neg-
ative, non-functional literals¬A1, . . . ,¬An, n ≥ 0, called
a (loose) guardof C, such that every pair of variables that
occurs inC occurs together in one of the atomsAi .

Propositional simple clauses are admitted. They have an
empty guard.

The main modification of the decision procedure is that
in cases where previously a guard atom needed to be se-
lected in a clause now a set of literals may constitute a
guard, and some of these have to be resolved simultane-
ously. Therefore, resolution needs to be generalized to (or-
dered) hyper-resolution. The basis for this are more gen-
eral selection functions6 which now may select an entire,
possibly empty set of occurrences of negative literals in a
clause. Now a literal is calledselectedif it occurs in the set
of selected literals of a clause.

Ordered Hyper-Resolution with Selection

A1 ∨ R1 . . . Ak ∨ Rn ¬B1 ∨ . . . ∨ ¬Bn ∨ R
R1σ ∨ . . . ∨ Rnσ ∨ Rσ

where (i) either the¬B j are the literals selected by6
in themain premise, or elsen = 1, nothing is selected
in ¬B1∨R, and¬B1 is maximal in¬B1∨R, (ii) the Ai
are eligible in theside premisesAi ∨ Ri , and (iii) σ is
the mgu of the tuples(A1, . . . , An) and(B1, . . . , Bn).

Given a hyper-resolution inference of this form, we speak of
apartial inferenceproducing apartial conclusionD when-
ever there exists a non-empty subsetj1, . . . , jk of the in-
dices 1≤ j ≤ n and

D =
∨

1≤i≤k

R ji τ ∨
∨

i 6∈{ j1,..., jk}
¬Biτ ∨ Rτ,

with τ the mgu of(A j1, . . . , A jk ) and(B j1, . . . , B jk ).
The extended calculus is refutationally complete and

compatible with a notion of redundancy by which the usual
simplification mechanisms (tautology elimination, con-
densement, subsumption) can be justified. There is no pub-
lished result that exactly covers this calculus, but it is easy
to generalize the results in (Bachmair & Ganzinger 1990)
appropriately.

The orderings which we may use for the decision proce-
dure are the same as for the non-loose case. The selection
function6 should satisfy these restrictions:
(i) If a clauseC is non-functional and contains a guard

L1 ∨ . . . ∨ Lk thenall the literals of one of the guards ofC
are selected by6;
(ii) if a clause contains a functional negative literal,oneof
these is selected; and
(iii) if a clause contains a positive functional literal but no
negative functional literal, then no literal is selected, so that
the maximality principle applies for a literal to be eligible
for an inference.

In order to prove that with this ordering and selection
strategy, ordered paramodulation becomes a decision pro-
cedure for theLGF, two problems have to be solved. The
first problem is that conclusions of inferences might become
too deep.

Example 6.2 (de Nivelle & de Rijke, 1999)The follow-
ing clauseD is loosely guarded:

¬a1(x, y) ∨ ¬a2(y, z) ∨ ¬a3(z, x)

∨ b1(x, y) ∨ b2(y, z) ∨ b3(z, x)

There are no functional terms, therefore the three guard lit-
erals are selected. The following three clauses are candi-
dates for a hyperresolution inference:

C1 = ¬p1(u) ∨ a1( f u, f u),

C2 = ¬p2(v) ∨ a2(v, gv),

C3 = ¬p3(w) ∨ a3(gw,w),



From these one may derive the hyper-resolvent

¬p1(u) ∨ ¬p2( f u) ∨ ¬p3( f u) ∨
b1( f u, f u) ∨ b2( f u, g f u) ∨ b3(g f u, f u),

with an mguσ = [x, y, v,w := f u, z := g f u]. This
resolvent has a non-shallow term which is not admitted for
a loosely guarded clause.

A remedy to this problem is to resolveD only with a suit-
able subset of the side premisesCi . In the example, if we
only resolve the second and third guard literal ofD with C2
andC3, respectively, we obtain the partial conclusion

¬a1(w,w) ∨ ¬p2(w) ∨ ¬p3(w)

∨ b1(w,w) ∨ b2(w, gw) ∨ b3(gw,w).

The mgu of the partial inference is [y, v, x := w, z :=
gw]. This clause is loosely guarded, in particular, not too
deep. It turns out that if an inference is possible then one of
its partial conclusions will be a guarded clause. The proof
makes use of the subsequent lemma which is a special case
of a theorem in (de Nivelle & de Rijke 1999).

Lemma 6.3 Let A1, . . . , An and B1, . . . , Bn be 2n ≥ 2
simple literals such that
(i) the Bi are non-functional;
(ii) for all x, y in Var(B1, . . . , Bn) there is aBi such that

x, y is in Var(Bi );
(iii) the A j are covering and functional;
(iv) Ai andA j , for i 6= j , have no common variables;
(v) the Ai and theB j have no common variables;
(vi) the tuples(A1, . . . , An) and (B1, . . . , Bn) are unifi-
able.
Then there exists a non-empty subsetj1, . . . , jk of the in-
dices 1≤ j ≤ n such that the tuples(A j1, . . . , A jk ) and
(B j1, . . . , B jk ) are unifiable with an mguτ and
(i) any of theA ji τ ( = B ji τ ) is simple and covering;
(ii) if x is a variable in any of theBi or A ji and if y is a
variable inyτ theny also occurs inA j1τ .

The proof which is given in full detail for the more general
theorem in (de Nivelle & de Rijke 1999) is based on this
observation: Let us assume, for simplicity, that theAi are
non-ground and that all non-constant symbols are binary.
Then any of theAi is of the formp(u, f uv), p( f uv, v), or
p( f uv, guv), with more variants arising from exchangingu
andv in one of the arguments ofp, f , andg. If we disregard
the trivial one-variable case, any of the guard atoms is of the
form p(x, y), with different variablesx andy. The problem
of unifying all theAi with the correspondingBi , therefore,
induces at least one unification problem of the formx =
f x y, y = f x y, x = y, f x y = f x y, or f x y = f yx
on any pairx, y of variables in Var(B1, . . . , Bn). This is a
consequence of the co-occurrence requirement (ii). If the
unification problem is solvable with an mguσ then if x is

in Var(B1, . . . , Bn), eitherxσ is of maximal depthd among
all theyσ , for y in Var(B1, . . . , Bn), or elsexσ is a subterm
of someyσ , with y in Var(B1, . . . , Bn). Picking for the
ji those atoms in which a variablex with xσ of depthd
appears, solves the problem. Any other variable in one of
the B ji will be instantiated either by a term of the same
depth and containing the same variables, or else by a direct
subterm of a term of depthd.

The lemma covers exactly those unification problems
which arise from hyper-resolution inferences with guard
atomsBi and corresponding positive atomsAi . For the lat-
ter to be eligible for an inference they all have to contain
a functional term. In other words, with the class of order-
ings� and selection functions6 which we consider for the
LGF, we obtain this theorem:

Theorem 6.4 Suppose there is an inference by hyperreso-
lution with respect to� and6. Then one of the partial in-
ferences produces a (partial) conclusion which is a guarded
clause.

The existence of suitable partial inferences solves our prob-
lem as the calculus remains complete if, for any potential
hyper-inference from side premisesC1, . . . , Ck and main
premiseD, rather than deriving the full conclusion, we
derive any don’t-care non-deterministically chosen partial
conclusion. A proof of this fact in the non-equational case
has been given in (Bachmair & Ganzinger 1997), and the
proof does not dependent on any properties that are critical
when adding equality. The criterion for which partial con-
clusion to choose is simply that the conclusion should be a
guarded clause. With this modification of the calculus, the
class of guarded clauses is closed under its inferences.

A second, simpler problem arises from the fact that
loosely guarded clauses over any given finite signature may
be arbitrarily long. Fortunately it is not difficult to see that
the set of guarded clauses that can be derived with our in-
ference system from an initially given finite set of guarded
clauses is finite. This is an immediate consequence of the
fact that the number of variables does not increase during
an inference: The point here is that the loose guard of any
generated clause is an instantiation of the loose guard of one
of the parent clauses. Therefore, the number of variables in
any derived clause is bound by the number of variables in
one of the parent clauses.

Lemma 6.5 If D is the [partial] conclusion of an inference
from premisesCi then|Var(D)| ≤ max(|Var(Ci )|).

Altogether we obtain:

Theorem 6.6 Ordered Paramodulation with hyperresolu-
tion based on selection is a decision procedure for theLGF.



7 Conclusions
We have shown that it is possible to effectively decide the

[loosely] guarded fragment with equality by superposition-
based saturation provers. There is hope that usable deci-
sion procedures can be obtained from these results with
existing standard theorem provers. This hope is supported
by our theoretical optimality result (in the non-loose case)
and by experimental evidence that has been obtained in
using these theorem proving techniques in related appli-
cation domains (Hustadt & Schmidt 1997). TheGF has
turned out to be a fragment of first-order logic with equal-
ity for which it is especially easy to configure superposition
into an optimal decision procedure. Although the complex-
ity issue has been neglected by and large in the literature
on resolution-based decision procedures, we believe that in
most cases of fragments which are complete for a particular
time complexity class, the resolution-based methods can be
implemented it this time bound. (Things are different for
space complexity classes such as PSPACE and local theo-
rem proving methods based on resolution and superposition
where the reuse of space, as is standard with tableau meth-
ods, is not so straightforward.) The loosely guarded case is
more tricky. However this paper also demonstrates that the
theory of saturation-based theorem proving is sufficiently
developed to be able to solve the problems without having
to deal with technically difficult proof-theoretic arguments.
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Grädel, E. (1997), On the restraining power of guards,
Manuscript. To appear in the Journal of Symbolic Logic.

Hsiang, J. & Rusinowitch, M. (1991), ‘Proving refutational com-
pleteness of theorem proving strategies: The transfinite se-
mantic tree method’,J. Association for Computing Machin-
ery38(3), 559–587.

Hustadt, U. & Schmidt, R. A. (1997), On evaluating decision
procedures for modal logics,in M. E. Pollack, ed., ‘Pro-
ceedings of the Fifteenth International Joint Conference
on Artificial Intelligence (IJCAI-97)’, International Joint
Conferences on Artificial Intelligence, Inc. (IJCAII) and
Japanese Society for Artificial Intelligence (JSAI), Morgan
Kaufmann, Nagoya, Japan, pp. 202–207.

Nieuwenhuis, R. (1996), Basic paramodulation and decidable
theories, in ‘Proceedings of the Eleventh Annual IEEE
Symposium On Logic In Computer Science (LICS’96)’,
IEEE Computer Society Press, pp. 473–483.

Weidenbach, C. (1997), ‘Spass version 0.49’,J. Automated Rea-
soning18(2), 247–252.


