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Introduction

e PTIME decidable uniform word problems for quasi-varieties

e CS applications: type inference systems, program analysis,
decision procedures in ATP

e fundamental effective methods for establishing PTIME
upper bounds

e local theories (Givan, McAllester 92) capture PTIME

e algebraic criteria by Skolem (1920), Evans (1951), and
Burris (1995)

e relation between these criteria



Example: Theories of Data Structures

Natural numbers with inequality

s(n)=s(m) — n=m
— (0<s(n)=T
(s(n) <0)=T —
m<m)=T — (s(n)<s(m))=T
(s(n) <s(m))=T — (n<m)=T

Lists

car(cons(z,y)) =x
cdr(cons(z,y)) =y

length(nil) =0
length(cons(z,vy)) = s(length(y))

L



Terminology

logic

algebra

universal Horn theory K

quasi-variety KC—alg

entailment problem K = C
for universal /ground Horn clauses C

uniform word problem

query C' =1 — s=t

defining relations I', and
word problem s=t

var(C)

(= Skolem constants of —(C')

generators
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Skolem and Datalog (1920)

? ?
Given K = C, consider the relational approximation K* = C*:

e flatten clauses by term abstraction Ct] = z#tV Clx]

e replace functions [ by relations ry

e replace equations y = f(Z) by atoms r¢(Z, y)

e require relations to be unambiguous by adding clauses
ri(Z,y),re(Z,2) > y==2

e add the congruence axioms for =

e soundness: K* = C* implies K = C

e completeness (I): K* /= C* implies the existence of a finite
JC*-structure in which C'* is false

e completeness (II): if every finite KC*-structure can be
embedded into a K*-structure in which all relations are

total, then K* &= C* implies K = C



Evans’ Embeddability Criterion

THEOREM |[Evans 51, Burris 95| Let K be a finite set of Horn
clauses. If every finite partial K-algebra weakly embeds into K,
then the uniform word problem for K is decidable in polynomial

time.
Examples [Skolem 1920]: lattices, fragments of geometry

Note: embeddability is a property of a presentation, not of a

quasi-variety



Partial Algebras from Relational Structures

e functions may be partial



Partial Algebras from Relational Structures

e weak homomorphisms h : A — B:

if f4(a) defined then fg(h(d)) defined (but not vice-versa)



Partial Algebras from Relational Structures

e Evans’ definition of (strong) truth:
A,ﬁ ’: S1 ﬁtl,...,Skﬁtk — Sﬁt,

if whenever the ((s;) and ((t;) are defined and equal, then
(i) if B(s) and B(t) are defined then they are equal

(ii) if s = f(u1,...,uy), and if the B(u;) and B(t) are

defined, then ((s) is also defined.



Partial Algebras from Relational Structures

e in the relational encoding (i) is automatic, (ii) can be
enforced



Example s

Ad (i)
C=y=a — f(z,y)=9(f(y,2),y)
becomes
C* = Ta(z),in,Tf(:L‘,y,:vy),?“f(y,x,yx),?“g(ya;‘,y,U) — xy:u
Therefore, A ‘:(i) Ciff A* = C*.



Example s

Ad (i)
C=y=a — flz,y)=9(f(y,z),y)
becomes
C" = ra(2),y=2,71(2,9,29), 17 (Y, ,y2), 79 (y2, y,u) — TYy="u
Therefore, A ‘:(i) Ciff A* = C*.
Ad (ii) this can be expressed in Datalog by adding

ro(2),y=2,1¢(x,y,2y), 7 (Y, T, yx) — T4(YT, Y, TY)
ro(2),y=2,r¢(y,x,yx),re(yx,y,u) — re(z,y,u)



Example s

Ad (i)
C=y=a — f(zr,y)=9(f(y,7),y)

becomes

C* = ra(z),yiz,?“f(a:,y,:vy),frf(y,x,yx),frg(yas,y,u) — :Cy:u
Therefore, A ‘:(i) Ciff A* = C*.

Ad (ii) this can be expressed in Datalog by adding
ra(2),y =2,18(x,y,2y),rf(y, T, yx) = re(yz, Y, 1Y)
ra(2),y =2,75(y, T, yx), 74 (yz, Yy, u) — 75(2,Y, u)

AN

Conclusion: Evans’ “strong truth” is the canonical concept of

truth from the Datalog point of view.
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Local Theories |Givan, McAllester 92] 9

Definition: K is local, if for ground Horn clauses C
K |: ¢ iff ]Cst(C) |: C,
where K (o) the set of ground instances of K were each term

is a subterm of C.

Results: - locality captures PTIME
- co-recursively enumerable but undecidable

- related to saturation by ordered resolution

Examples: congruence closure, lattices, atomic set constraints,

embeddability of terms, joinability in ground rewrite systems

Previously: only non-equational case considered
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Specifics of Local Equational Theories

10

Definition: same (work with equational logic)

Results: basically the same

Example:
p(z)=y — s(y)==x
s(x)=y — ply)==x
px)=ply) — z=y
s(z)=s(y) — z=y
Counterexample:
s(p(x)) = p(s(z)) ==

Observation: irredundant local theories have flat clauses only
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Specifics of Local Equational Theories (I1) 11

THEOREM K is local in equational logic

iff U E() is local in non-equational logic.
So what? better complexity if equality is internal

Stable locality: allow theory variables to be instantiated by

arbitrary query subterms

Example:

Locality vs stable locality: I local = IC stably local = K’ local
(K’ obtained from massaging )
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Embeddability vs Locality 12

THEOREM K is local = K weakly embeds = I is stably local

Proof ideas:
- consider the subterms of queries C' as the elements of a
partial K-algebra F
- if C is entailed, but not locally entailed, then F' cannot be
weakly embedded into /C

Conversely if some F' cannot be embedded, the function table of
F' gives us the defining relations of a word problem that is

solvable, but not locally entailed

Technicalities are a bit messy, hence the two notions of locality



Burris’ Axiomatizability Criterion

13

Let K be a class of relational structures.
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Full substructures of K are denoted by S(

K).
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Arbitrary substructures of K are denoted by S(K).



Burris’ Axiomatizability Criterion

13

Observe:

S(K*) ={P* | P weakly embeds into an algebra A € K}.



Burris’ Axiomatizability Criterion 13

THEOREM (Burris 95) Let K be a quasi-variety over 3 such that

there is a finite set of Horn clauses H over X* with
S(K*) C H C S(K*). Then the uniform word problem for X

is decidable in polynomial time.



Burris’ Axiomatizability Criterion

13

(Call IC (finitely) relationally axiomatizable in this case.)



Relational Axiomatizability vs Locality

14

THEOREM
IC is local
= JC has presentation with the embeddability property
= IC relationally axiomatizable

= JC has a stably local presentation



Relational Axiomatizability vs Locality 14

THEOREM
C is local
= JC has presentation with the embeddability property
= K relationally axiomatizable

= JC has a stably local presentation

Proof ideas:
- obtain a relational axiomatization from a local presentation
by its relational approximation
- construct a local presentation from any relational

axiomatization by turning relations back into functions



Conclusions
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e seemingly different criteria are essentially equivalent



Conclusions iz

e work about locality has more to say about how to find local

representations



Conclusions
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e subterm property (4+ Horn case) essential for PTIME



Conclusions iz

e climination of the congruence axioms x =y — f(x)= f(y) by
flattening



Conclusions

15

e finite partial algebras from relational approximation



Conclusions iz

e potential applications: combination results by amalgamation



