Meta-Complexity Theorems for Bottom-up
Logic Programs

Harald Ganzinger

Max-Planck-Institut fur Informatik

David McAllester
ATT Bell-Labs Research

Introduction

e logic programming of efficient algorithms

e complexity analysis through general meta-complexity
theorems

e guaranteed execution time

e logical aspects of fundamental algorithmic paradigms
(dynamic programming, union-find, congruence closure,
priority queues)

e application to program analysis:
type inference system = algorithm

e recent papers:
McAllester |[SAS99|, Ganzinger /McAllester [IJCARO1]

e related work: efficient fixpoint iteration by Nielson/Seidl
12001]

Introduction

e complexity analysis through general meta-complexity

theorems

Introduction

e logic programming of efficient algorithms

e complexity analysis through general meta-complexity
theorems

e guaranteed execution time

e logical aspects of fundamental algorithmic paradigms
(dynamic programming, union-find, congruence closure,
priority queues)

e application to program analysis:
type inference system = algorithm

e recent papers:
McAllester |[SAS99|, Ganzinger /McAllester [IJCARO1]

e related work: efficient fixpoint iteration by Nielson/Seidl
12001]

Introduction

e logical aspects of fundamental algorithmic paradigms
(dynamic programming, union-find, congruence closure,

priority queues)

Introduction

e application to program analysis:
type inference system = algorithm

Introduction

e recent papers:
McAllester [SAS99|, Ganzinger /McAllester [I[JCARO1]

Introduction

e related work: efficient fixpoint iteration by Nielson/Seidl
2001]

Contents

1st meta-complexity theorem
Language: bottom-up logic programs

Algorithmic ingredients: dynamic programming, indexing

Examples: (interprocedural) reachability

Contents 3

2nd meta-complexity theorem
Language: logic programs with deletion and priorities

Logical basis: saturation up to redundancy

Examples: union-find, congruence closure, Henglein’s subtype

analysis

Contents

3rd meta-complexity theorem
Language: logic programs with deletion and instance

priorities
Algorithmic ingredients: priority queues

Examples: shortest paths, minimal spanning trees

Paradigm

database of facts D . this talk
inference system R

closure R*(D)

Paradigm

input

pre-processor

post-processor

output

Paradigm 4

pre-processor <]‘:)a,ige7 Ya,ng 1997

Reachability in Graphs

Database:

D ={e(u,v) | (u,v) € £} U{s(u) | u a source node}

Reachability in Graphs

Database:

D ={e(u,v) | (u,v) € B} U{s(u) | u a source node}

Inference system:

Reachability in Graphs

Database:

D ={e(u,v) | (u,v) € B} U{s(u) | u a source node}

Inference system:

r(u)
w e(u,v)
r(u) r(v)

Clause notation: s(u) D r(u) r(u), e(u,v) D r(v)

Reachability in Graphs

Database:

D ={e(u,v) | (u,v) € B} U{s(u) | u a source node}

Inference system:

Clause notation: s(u) D r(u) r(u), e(u,v) D r(v)

Closure:

R*(D) = D U{r(u) | u reachable from a source}

Example

Example

Database
s(1), e(1,3), e(1,4), e(2,3), e(3,4), e(4,3)

Example

Database
s(1), e(1,3), e(1,4), e(2,3), e(3,4), e(4,3), r(1)

Example

Database
s(1), e(1,3), e(1,4), e(2,3), e(3,4), e(4,3), r(1), r(3)

Example

Database
s(1), e(1,3), e(1,4), e(2,3), e(3,4), e(4,3), r(1), (3), r(4)

Example

Database
s(1), (1,3), e(1,4), €(2,3), e(3,4), e(4,3), (1), 7(3), r(4)
= saturated.

First Meta-Complexity Theorem

Bottom-up computation: match prefixes of antecedents against
database and fire conclusions

First Meta-Complexity Theorem

Bottom-up computation: match prefixes of antecedents against
database and fire conclusions

prefix firings:

mr(D) =|{(ro,i) |r=A1A...NA; A...NA, D Ay €ER
Ajoce D, for1 <j <}

First Meta-Complexity Theorem

Bottom-up computation: match prefixes of antecedents against
database and fire conclusions

prefix firings:
mr(D) =|{(ro,i) |r=A1A...NA; A...NA, D Ay €ER
Aice D, for1 <j <}
THEOREM |[McAllester 1999] Let R be an inference system such

that R*(D) is finite. Then R*(D) can be computed in time
O(|D| + mr(R*(D)))-

First Meta-Complexity Theorem

Bottom-up computation: match prefixes of antecedents against
database and fire conclusions

prefix firings:
mr(D) =|{(ro,i) |r=A1A...NA; A...NA, D Ay €ER
Aice D, for1 <j <}
THEOREM |[McAllester 1999] Let R be an inference system such

that R*(D) is finite. Then R*(D) can be computed in time
O(|D| + mr(R*(D))).

COROLLARY [Dowling, Gallier 1984] If R is ground, R*(D) can
be computed in time O(|D| + |R]).

First Meta-Complexity Theorem

Bottom-up computation: match prefixes of antecedents against
database and fire conclusions

prefix firings:
mr(D) =|{(ro,i) |r=A1A...NA; A...NA, D Ay €ER
Aijoce D, forl1 <j <}
THEOREM |[McAllester 1999] Let R be an inference system such

that R*(D) is finite. Then R*(D) can be computed in time
O(|D| + mr(R*(D))).

COROLLARY |[Dowling, Gallier 1984] If R is ground, R*(D) can
be computed in time O(|D| + |R]).

Extension: constraints for which each solution can be computed
in time O(1)

Reachability in Graphs

r(u)

s(u) e(u,v)

r(u) r(v)

Reachability in Graphs

Reachability in Graphs

r(u) o(IV1)
s(u) O(|V]) e(u,v) +O(|E])
r(u) r(v)

THEOREM Reachability can be decided in linear time.

Interprocedural Reachability: Database

program

12

14
15

procedure main
begin
declare x: int
read(x)
call p(x)

end

procedure p(a:int)
begin
if a>0 then
read(g)
a:=a-g
call p(a)
print(a)
fi

end

facts

proc(main,2,6)
next(main,2,5)

call(main,p,5,6)

proc(p,8,15)
next(p,8,12)
call(p,p,12,13)
next(p,13,15)
next(p,8,15)

Interprocedural Reachability: Rules 10

Read “P = L” as “in procedure P label L can be reached”.

proc(P, Bp, Ep)
P = Bp

call(Q, P, L., R,)
proc(P, Bp, Ep)
next(Q, L, L") P = Ep
Q=1L Q = L

Q=1L Q= L,

Interprocedural Reachability: Rules 10

Read “P = L” as “in procedure P label L can be reached”.

proc(P,Bp,Ep) O(n)
P = Bp

call(Q, P, L., R,)
proc(P, Bp, Ep)
next(Q, L, L") P = Ep
Q=1L Q= L

Q=1L Q= L,

Interprocedural Reachability: Rules 10

Read “P = L” as “in procedure P label L can be reached”.

proc(P,Bp, Ep) O(n)
P = Bp

call(Q, P, L., R,)
proc(P, Bp, Ep)
next(@,L,L") O(n) P = Ep
Q=1L Q= L

Q=1L Q= L,

Interprocedural Reachability: Rules 10

Read “P = L” as “in procedure P label L can be reached”.

proc(P,Bp, Ep) O(n)
P = Bp

call(Q, P, L., R,)
proc(P, Bp, Ep)
next(Q, L, L") O(n) P= FEp
Q=1L * O(1) Q= L.

Q=1L Q= L,

Interprocedural Reachability: Rules 10

Read “P = L” as “in procedure P label L can be reached”.

proc(P,Bp, Ep) O(n)
P = Bp

call(Q, P, Lc, R:) O(n)
proc(P, Bp, Ep)
next(Q,L,L") O(n) P = Ep
Q=1L * O(1) Q = L.

Q=1L Q= L,

Interprocedural Reachability: Rules 10

Read “P = L” as “in procedure P label L can be reached”.

proc(P,Bp, Ep) O(n)
P = Bp

call(Q, P,Lc,R:) O(n)
proc(P,Bp,Ep) xO(1)
next(Q, L, L") O(n) P= FEp
Q=1L * O(1) Q = L.

Q=1L Q= L,

Interprocedural Reachability: Rules

10

Read “P = L” as “in procedure P label L can be reached”.

proc(P,Bp, Ep) O(n)
P = Bp

call(Q, P,Le, Rr) O(n

)
proc(P, Bp, Ep) * O(1)
next(Q,L,L") O(n) P= FEp x O(1)
Q=1L * O(1) Q) = L. * O(1)

Q=1L Q= L,

Interprocedural Reachability: Rules 10

Read “P = L” as “in procedure P label L can be reached”.

proc(P, Bp,Ep) O(n)
P = Bp

call(Q, P,Le, Rr) O(n

)
proc(P, Bp, Ep) * O(1)
next(Q,L,L") O(n) P= FEp x O(1)
Q=1L * O(1) Q) = L. * O(1)
Q = L' Q = L,

THEOREM IPR*(D) can be computed in time O(n), with
n=|D].

Proof of the Meta-Complexity Theorem I

11

Assumption: all terms in fully shared form

Proof of the Meta-Complexity Theorem I

11

Matching: in O(1) (for atoms in rules against atoms in D)

Proof of the Meta-Complexity Theorem I 11

Unary Rules A D B: matching of A against each atom in R(D),
plus construction of B, costs total time O(|R(D)|)

Proof of the Meta-Complexity Theorem I

11

Note: programs not cons-free

Proof of the Meta-Complexity Theorem I

11

Problem: avoiding O(|R(D)|*) for rules of length k

Proof of the Meta-Complexity Theorem II 12

Data structure for rules p of the form p(X,Y)Aq(Y,Z) D r(X,Y,Z2)

Proof of the Meta-Complexity Theorem II

12

Data structure for rules p of the form p(X,Y)Aq(Y,Z) D r(X,Y, Z)

p-list of p[t]

p(a,t)
{
p(b,t)
{

p(c,t)

plY]

SIS

g-list of p[t]

¢

q(t,u)

q(t,v)

q(t,w)

q(t,s)

Proof of the Meta-Complexity Theorem II

12

Data structure for rules p of the form p(X,Y)Aq(Y,Z) D r(X,Y, 2)

p-list of p[t]

p(a,t)
{
p(b,t)
{

p(c,t)

plY]

PR

g-list of p[t]

¢

q(t,u)

q(t,v)

q(t,w)

q(t,s)

Upon adding a fact p(e,t), fire all (e, t, z), for z on the ¢-list of A[t].

Proof of the Meta-Complexity Theorem II 12

Data structure for rules p of the form p(X,Y)Aq(Y,Z) D r(X,Y, 2)

plY]
p-list of p[t] g-list of p[t]
p(a,t) |=—1—

; '
p(b,t) q(t,u)
| |
p(c,t) q(t,v)
| f
p(d,t) q(t,w)

f
 plest) a(t.s)

Upon adding a fact p(e,t), fire all r(e,t, z), for z on the ¢-list of A[t].
The inference system can be transformed (maintaining 7) so that it

contains only unary rules and binary rules of the form p.

Remarks

13

e memory consumption often much smaller

Remarks 15

e if R*(D) infinite, consider R*(D) N atoms(subterms(D))
= concept of local inference systems (Givan, McAllester
1993)

Remarks

13

e in the presence of transitivity laws, complexity is in Q(n?)

II. Redundancy, Deletion, and Priorities

Removal of Redundant Information

15

e redundant information causes inefficiency
D =/{..., dist(z) <d, dist(x) < d', d <d, ...}

= delete dist(x) < d

Removal of Redundant Information

15

e Notation: antecedents to be deleted in parenthesis |..

LAl AL [AT,... > B

|

Removal of Redundant Information

15

e in the presence of deletion, computations are

nondeterministic:

P> Q Q>S5 QI >W

= either S or W can be derived, but not both

Removal of Redundant Information

15

e non-determinism don’t-care and/or restricted by priorities

Logic Programs with Priorities and Deletion

16

e rules can have antecedents to be deleted after firing

Logic Programs with Priorities and Deletion

16

e priorities assigned to rule schemes

Logic Programs with Priorities and Deletion 16

e computation states S contain positive and negative (deleted)

atoms

Logic Programs with Priorities and Deletion 16

e Avisiblein Sif A € § and -A ¢ S (deletions are permanent)

Logic Programs with Priorities and Deletion

16

e I' O B applicable in § if
— each atom in I' is visible in .S, and
— rule application changes S (by adding B or some —A)

Logic Programs with Priorities and Deletion 16

e S visible to a rule if no higher-priority rule is applicable in S

Logic Programs with Priorities and Deletion

16

e computations are maximal sequences of applications of

visible rules

Logic Programs with Priorities and Deletion 16

e the final state of a computation starting with D is called an
(R-) saturation of D

Second Meta-Complexity Theorem

17

Let C = Sy, S1, ..., ST be a computation.

Prefix firing in C: pair (ro,t) such that for some 0 <t < T
—r=A1N.. NA;N...NA,, D Ay € R
— S; visible to r
— Ao visible in S, for 1 < 5 <1

Second Meta-Complexity Theorem

17

Let C = Sy, S1, ..., ST be a computation.

Prefix count: mr(D) = max{|p.f.(C)| | C a computation from D}

Second Meta-Complexity Theorem

17

Let C = Sy, S1, ..., ST be a computation.

THEOREM |Ganzinger/McAllester 2001] Let R be an inference
system such that R(D) is finite. Then some R(D) can be
computed in time O(|D| + 7wr(D)).

Second Meta-Complexity Theorem

17

Let C = Sy, S1, ..., ST be a computation.

Proof as before, but also using constant-length priority queues

Second Meta-Complexity Theorem

17

Let C = Sy, S1, ..., ST be a computation.

Note: again prefix firings count only once; priorities are for free

Union-Find

18

find(x)
(Refl)

r =

(N)

x =y
Yy = z

r =z

(Comm)

r =1y
r = Zz

union(y, z)

Union-Find

18

find(x) x =y

(Refl) Yy = z
r=!x (N)

x =! z

union(z, y)
(Init)

find(x),
find(y)

We are interested in « = y defined as dz(x =! 2 Ay =! 2)

r =1y
r = z
(Comm)

union(y, z)

union(x, vy)
r =! 21
y =! 2o

(Orient)

Z1 = 22

Union-Find 18

find(x) x =y O(n?) r=1y O(n?)
(Refl) Yy = z x O(n) T = z * O(n)
x =z (N) (Comm)
r =!z union(y, z)

union(x, vy)

r =! 2z
Y =! 29
union(z, y)
(Init) (Orient)
find(x), 21 = 22

find(y)

Naive Knuth/Bendix completion

Union-Find 18

find(x) [« =!'y] O(n?) x=vy O(n)
(Refl) y=2z *x0(1) x=2z *x0(1)
x =!x (N) (Comm)
r =!z union(y, z)

[union(z, y)]

[union(z, y)] r =! 21
x =z y =! 22
union(z, y) y =>!z
(Init) (Triv) (Orient)
find(x), T zZ1 = 29

find(y)

Naive Knuth/Bendix completion
+ normalization (eager path compression)

Union-Find

18

find(x)

(Refl)
r =z
weight(x, 1)

union(z, y)

(Init)
find(x),
find(y)

[x =!'y] O(nlogn)
Y=z x O(1)
(N)

r =z

[union(x, y)]
r=!z
y =!z

(Triv)
-

(Orient)

r =1y
r = z
(Comm)

union(y, z)

[union(z, y)]

x =12z, weight(z1,w1)
y =! 29, [[WGight(ZQ, wg)]]
w1 < wa

21 = 22
Weight(ZQ, w1 + wg)

+ symmetric variant of (Orient)

Naive Knuth/Bendix completion
+ normalization (eager path compression) -+ logarithmic merge

Congruence Closure for Ground Horn Clauses

19

Extension to congruence closure: 7 more rules, guaranteed
optimal complexity O(m + nlogn), where

m = |union assertions|, n = |(sub)terms|

Congruence Closure for Ground Horn Clauses

19

Extension to ground Horn clauses with equality: 13 more rules

Congruence Closure for Ground Horn Clauses 10

THEOREM |Ganzinger/McAllester 01] Satisfiability of a set D of
ground Horn clauses with equality can be decided in time
O(|D| + nlogn + min(mlogn, n?)) where m is the number
of antecedents and input clauses and n is the number of

terms. This is optimal (= O(| D)) whenever m is in Q(n?).

Congruence Closure for Ground Horn Clauses

19

Logic View: We can (partly) deal with logic programs with
equality

Congruence Closure for Ground Horn Clauses

19

Applications: several program analysis algorithms (Steensgaard,

Henglein)

Formal Notion of Redundancy

20

Let > a well-founded ordering on ground atoms.

Definition A is redundant in S (denoted A € Red(S)) whenever
Aq,..., A, Er A, with A; in S such that A; < A.

Formal Notion of Redundancy

20

Let > a well-founded ordering on ground atoms.

Properties stable under enrichments and under deletion of

redundant atoms

Formal Notion of Redundancy

20

Let > a well-founded ordering on ground atoms.

Definition S is saturated up to redundancy wrt R if
R(S\ Red(S)) C SU Red(S).

Formal Notion of Redundancy 20

Let > a well-founded ordering on ground atoms.

THEOREM If deletion is based on redundancy then the result of
every computation is saturated wrt R up to redundancy.

Formal Notion of Redundancy

20

Let > a well-founded ordering on ground atoms.

Corollary Priorities are irrelevant logically =

so as to minimize prefix firings

choose them

Deletions based on Redundancy 21

Criterion: If
T = [A1]7~°-7[Ak']7Bla°°'7Bm D B

and if SU{Ay0,...,Aro, Bio,..., B0} is visible to r then

Ao € Red(SU{Bo,...,B,0,Bo}).

Deletions based on Redundancy 21

Union-find example: not so easy to check, need proof orderings a

la Bachmair and Dershowitz

Deletions based on Redundancy

21

Note: redundancy should also be efficiently decidable

I1I. Instance-based Priorities

Shortest Paths

23

(Init)

dist(src) < 0

(Upd)

[dist(x) < d]
dist(z) < d’
d <d

-

(Add)

dist(x) < d

r —y

dist(y) < c—+d

Shortest Paths

23

[dist(z) < d]

dist(z) < d’ dist(x) < d
d < d T — Y
(Init) (Upd) (Add)
dist(src) <0 T dist(y) < c+d

Correctness: obvious; deletion is based on redundancy

Shortest Paths 23

[dist(z) < d]

dist(z) < d’ dist(x) < d
d < d T — Y
(Init) (Upd) (Add)
dist(src) <0 T dist(y) < c+d

Correctness: obvious; deletion is based on redundancy

Priorities (Dijkstra): always choose an instance of (Add) where d
is minimal = allow for instance-based rule priorities
(Init) > (Upd) > (Add)[n/d] > (Add)[m/d|, for m > n

Shortest Paths 23

[dist(z) < d]

dist(z) < d’ dist(x) < d
d < d T — Y
(Init) (Upd) (Add)
dist(src) <0 T dist(y) < c+d

Correctness: obvious; deletion is based on redundancy

Priorities (Dijkstra): always choose an instance of (Add) where d

is minimal = allow for instance-based rule priorities
(Init) > (Upd) > (Add)[n/d] > (Add)[m/d|, for m > n

Prefix firing count: O(|F|), but Dijkstra’s algorithm runs in time
O(|E|+ |V]log|V|) = one cannot expect a linear-time

meta-complexity theorem for instance-based priorities

Minimum Spanning Tree

24

Basis: Union-find module

Minimum Spanning Tree

24

Basis: Union-find module

[z < y]
x =z
y =z
(Del)

T

(Add)

[z < Y]

mst(z, ¢, y)

union(z, y)

Minimum Spanning Tree 24

Basis: Union-find module

[z < 9]
r =z [z < 9]
y =z (Add)
(Del) mst(z, ¢, y)
T union(x, y)

Priorities: (here needed for correctness)

union—find > (Del) > (Add)[n/c| > (Add)[m/c], for m > n

Minimum Spanning Tree 24

Basis: Union-find module

[z < 9]
r =z [z < 9]
y =z (Add)
(Del) mst(z, ¢, y)
T union(x, y)

Priorities: (here needed for correctness)
union—find > (Del) > (Add)[n/c| > (Add)[m/c], for m > n

Prefix firing count: O(|E|+ |V|log|V|)

3rd Meta-Complexity Theorem 25

Programs: as before but priorities of rule instances depend on
first atom in antecedent and can be computed from the atom

In constant time

3rd Meta-Complexity Theorem 25

THEOREM [in preparation| Let R be an inference system such
that R*(D) is finite. Then some R(D) can be computed in
time O(|D| + mr(D)log p) where p is the number of different

priorities assigned to atoms in R*(D).

3rd Meta-Complexity Theorem

25

COROLLARY 2nd meta-complexity theorem is a special case

3rd Meta-Complexity Theorem

25

Proof technically involved; uses priority queues with log time

operations; memory usage worse

Further Issues and Questions

26

e a concept for modules needed (cf. [JCAR paper)

Further Issues and Questions

26

e deletion not always based on redundancy

Further Issues and Questions

26

e “real equality” (on the meta-level)

Further Issues and Questions

26

e how far do we get?

Further Issues and Questions

26

e is deduction without deletion inherently less efficient?

Further Issues and Questions

26

e implementation of instance-based priorities with schematic

priorities?

Further Issues and Questions

26

e bounds for memory consumption

Further Issues and Questions

26

e improved meta-complexity theorems

