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Paradigm

database of facts D . this talk
inference system R

closure R*(D)



Paradigm

input

pre-processor

post-processor

output
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pre-processor < ]‘:)a,ige7 Ya,ng 1997
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Reachability in Graphs

Database:

D ={e(u,v) | (u,v) € B} U{s(u) | u a source node}

Inference system:

Clause notation: s(u) D r(u) r(u), e(u,v) D r(v)

Closure:

R*(D) = D U{r(u) | u reachable from a source}
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Example

Database
s(1), (1,3), e(1,4), €(2,3), e(3,4), e(4,3), (1), 7(3), r(4)
=  saturated.
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First Meta-Complexity Theorem

Bottom-up computation: match prefixes of antecedents against
database and fire conclusions

prefix firings:
mr(D) =|{(ro,i) |r=A1A...NA; A...NA, D Ay €ER
Aijoce D, forl1 <j <}
THEOREM |[McAllester 1999] Let R be an inference system such

that R*(D) is finite. Then R*(D) can be computed in time
O(|D| + mr(R*(D))).

COROLLARY |[Dowling, Gallier 1984] If R is ground, R*(D) can
be computed in time O(|D| + |R]).

Extension: constraints for which each solution can be computed
in time O(1)
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Reachability in Graphs

r(u) o(IV1)
s(u) O(|V]) e(u,v)  +O(|E])
r(u) r(v)

THEOREM Reachability can be decided in linear time.



Interprocedural Reachability: Database

program

12

14
15

procedure main
begin
declare x: int
read(x)
call p(x)

end

procedure p(a:int)
begin
if a>0 then
read(g)
a:=a-g
call p(a)
print(a)
fi

end

facts

proc(main,2,6)
next(main,2,5)

call(main,p,5,6)

proc(p,8,15)
next(p,8,12)
call(p,p,12,13)
next(p,13,15)
next(p,8,15)
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proc(P, Bp, Ep)
P = Bp

call(Q, P, L., R,)
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Read “P = L” as “in procedure P label L can be reached”.
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Interprocedural Reachability: Rules 10

Read “P = L” as “in procedure P label L can be reached”.

proc(P, Bp,Ep) O(n)
P = Bp

call(Q, P,Le, Rr)  O(n

)
proc(P, Bp, Ep) * O(1)
next(Q,L,L") O(n) P= FEp x O(1)
Q=1L * O(1) Q) = L. * O(1)
Q = L' Q = L,

THEOREM IPR*(D) can be computed in time O(n), with
n=|D].



Proof of the Meta-Complexity Theorem I

11

Assumption: all terms in fully shared form



Proof of the Meta-Complexity Theorem I

11

Matching: in O(1) (for atoms in rules against atoms in D)



Proof of the Meta-Complexity Theorem I 11

Unary Rules A D B: matching of A against each atom in R(D),
plus construction of B, costs total time O(|R(D)|)



Proof of the Meta-Complexity Theorem I

11

Note: programs not cons-free



Proof of the Meta-Complexity Theorem I

11

Problem: avoiding O(|R(D)|*) for rules of length k
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Proof of the Meta-Complexity Theorem II

12

Data structure for rules p of the form p(X,Y)Aq(Y,Z) D r(X,Y, Z)

p-list of p[t]

p(a,t)
{
p(b,t)
{

p(c,t)

plY]

SIS

g-list of p[t]

¢

q(t,u)

q(t,v)

q(t,w)

q(t,s)




Proof of the Meta-Complexity Theorem II
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Data structure for rules p of the form p(X,Y)Aq(Y,Z) D r(X,Y, 2)

p-list of p[t]

p(a,t)
{
p(b,t)
{

p(c,t)

plY]

PR

g-list of p[t]

¢

q(t,u)

q(t,v)

q(t,w)

q(t,s)

Upon adding a fact p(e,t), fire all (e, t, z), for z on the ¢-list of A[t].



Proof of the Meta-Complexity Theorem II 12

Data structure for rules p of the form p(X,Y)Aq(Y,Z) D r(X,Y, 2)

plY]
p-list of p[t] g-list of p[t]
p(a,t) |=—1—

; '
p(b,t) q(t,u)
| |
p(c,t) q(t,v)
| f
p(d,t) q(t,w)

f
 plest) a(t.s)

Upon adding a fact p(e,t), fire all r(e,t, z), for z on the ¢-list of A[t].
The inference system can be transformed (maintaining 7) so that it

contains only unary rules and binary rules of the form p.



Remarks

13

e memory consumption often much smaller



Remarks 15

e if R*(D) infinite, consider R*(D) N atoms(subterms(D))
= concept of local inference systems (Givan, McAllester
1993)



Remarks

13

e in the presence of transitivity laws, complexity is in Q(n?)



II. Redundancy, Deletion, and Priorities



Removal of Redundant Information

15

e redundant information causes inefficiency
D =/{..., dist(z) <d, dist(x) < d', d <d, ...}

= delete dist(x) < d



Removal of Redundant Information

15

e Notation: antecedents to be deleted in parenthesis |..

LAl AL [AT,... > B

|



Removal of Redundant Information

15

e in the presence of deletion, computations are

nondeterministic:

P> Q Q>S5 QI >W

= either S or W can be derived, but not both



Removal of Redundant Information

15

e non-determinism don’t-care and/or restricted by priorities



Logic Programs with Priorities and Deletion

16

e rules can have antecedents to be deleted after firing



Logic Programs with Priorities and Deletion

16

e priorities assigned to rule schemes



Logic Programs with Priorities and Deletion 16

e computation states S contain positive and negative (deleted)

atoms



Logic Programs with Priorities and Deletion 16

e Avisiblein Sif A € § and -A ¢ S (deletions are permanent)



Logic Programs with Priorities and Deletion

16

e I' O B applicable in § if
— each atom in I' is visible in .S, and
— rule application changes S (by adding B or some —A)



Logic Programs with Priorities and Deletion 16

e S visible to a rule if no higher-priority rule is applicable in S



Logic Programs with Priorities and Deletion

16

e computations are maximal sequences of applications of

visible rules



Logic Programs with Priorities and Deletion 16

e the final state of a computation starting with D is called an
(R-) saturation of D



Second Meta-Complexity Theorem

17

Let C = Sy, S1, ..., ST be a computation.

Prefix firing in C: pair (ro,t) such that for some 0 <t < T
—r=A1N.. NA;N...NA,, D Ay € R
— S; visible to r
— Ao visible in S, for 1 < 5 <1



Second Meta-Complexity Theorem

17

Let C = Sy, S1, ..., ST be a computation.

Prefix count: mr(D) = max{|p.f.(C)| | C a computation from D}



Second Meta-Complexity Theorem

17

Let C = Sy, S1, ..., ST be a computation.

THEOREM |Ganzinger/McAllester 2001] Let R be an inference
system such that R(D) is finite. Then some R(D) can be
computed in time O(|D| + 7wr(D)).



Second Meta-Complexity Theorem

17

Let C = Sy, S1, ..., ST be a computation.

Proof as before, but also using constant-length priority queues



Second Meta-Complexity Theorem

17

Let C = Sy, S1, ..., ST be a computation.

Note: again prefix firings count only once; priorities are for free



Union-Find

18

find(x)
(Refl)

r =

(N)

x =y
Yy = z

r =z

(Comm)

r =1y
r = Zz

union(y, z)



Union-Find

18

find(x) x =y

(Refl) Yy = z
r=!x (N)

x =! z

union(z, y)
(Init)

find(x),
find(y)

We are interested in « = y defined as dz(x =! 2 Ay =! 2)

r =1y
r = z
(Comm)

union(y, z)

union(x, vy)
r =! 21
y =! 2o

(Orient)

Z1 = 22



Union-Find 18

find(x) x =y O(n?) r=1y O(n?)
(Refl) Yy = z x O(n) T = z * O(n)
x =z (N) (Comm)
r =!z union(y, z)

union(x, vy)

r =! 2z
Y =! 29
union(z, y)
(Init) (Orient)
find(x), 21 = 22

find(y)

Naive Knuth/Bendix completion



Union-Find 18

find(x) [« =!'y] O(n?) x=vy O(n)
(Refl) y=2z *x0(1) x=2z *x0(1)
x =!x (N) (Comm)
r =!z union(y, z)

[union(z, y)]

[union(z, y)] r =! 21
x =z y =! 22
union(z, y) y =>!z
(Init) (Triv) (Orient)
find(x), T zZ1 = 29

find(y)

Naive Knuth/Bendix completion
+ normalization (eager path compression)



Union-Find

18

find(x)

(Refl)
r =z
weight(x, 1)

union(z, y)

(Init)
find(x),
find(y)

[x =!'y] O(nlogn)
Y=z x O(1)
(N)

r =z

[union(x, y)]
r=!z
y =!z

(Triv)
-

(Orient)

r =1y
r = z
(Comm)

union(y, z)

[union(z, y)]

x =12z, weight(z1,w1)
y =! 29, [[WGight(ZQ, wg)]]
w1 < wa

21 = 22
Weight(ZQ, w1 + wg)

+ symmetric variant of (Orient)

Naive Knuth/Bendix completion
+ normalization (eager path compression) -+ logarithmic merge



Congruence Closure for Ground Horn Clauses

19

Extension to congruence closure: 7 more rules, guaranteed
optimal complexity O(m + nlogn), where

m = |union assertions|, n = |(sub)terms|



Congruence Closure for Ground Horn Clauses

19

Extension to ground Horn clauses with equality: 13 more rules



Congruence Closure for Ground Horn Clauses 10

THEOREM |Ganzinger/McAllester 01] Satisfiability of a set D of
ground Horn clauses with equality can be decided in time
O(|D| + nlogn + min(mlogn, n?)) where m is the number
of antecedents and input clauses and n is the number of

terms. This is optimal ( = O(| D)) whenever m is in Q(n?).



Congruence Closure for Ground Horn Clauses

19

Logic View: We can (partly) deal with logic programs with
equality



Congruence Closure for Ground Horn Clauses

19

Applications: several program analysis algorithms (Steensgaard,

Henglein)



Formal Notion of Redundancy

20

Let > a well-founded ordering on ground atoms.

Definition A is redundant in S (denoted A € Red(S)) whenever
Aq,..., A, Er A, with A; in S such that A; < A.



Formal Notion of Redundancy

20

Let > a well-founded ordering on ground atoms.

Properties stable under enrichments and under deletion of

redundant atoms



Formal Notion of Redundancy

20

Let > a well-founded ordering on ground atoms.

Definition S is saturated up to redundancy wrt R if
R(S\ Red(S)) C SU Red(S).



Formal Notion of Redundancy 20

Let > a well-founded ordering on ground atoms.

THEOREM If deletion is based on redundancy then the result of
every computation is saturated wrt R up to redundancy.



Formal Notion of Redundancy

20

Let > a well-founded ordering on ground atoms.

Corollary Priorities are irrelevant logically =

so as to minimize prefix firings

choose them



Deletions based on Redundancy 21

Criterion: If
T = [A1]7~°-7[Ak']7Bla°°'7Bm D B

and if SU{Ay0,...,Aro, Bio,..., B0} is visible to r then

Ao € Red(SU{Bo,...,B,0,Bo}).



Deletions based on Redundancy 21

Union-find example: not so easy to check, need proof orderings a

la Bachmair and Dershowitz



Deletions based on Redundancy

21

Note: redundancy should also be efficiently decidable



I1I. Instance-based Priorities



Shortest Paths

23

(Init)

dist(src) < 0

(Upd)

[dist(x) < d]
dist(z) < d’
d <d

-

(Add)

dist(x) < d

r —y

dist(y) < c—+d



Shortest Paths

23

[dist(z) < d]

dist(z) < d’ dist(x) < d
d < d T — Y
(Init) (Upd) (Add)
dist(src) <0 T dist(y) < c+d

Correctness: obvious; deletion is based on redundancy



Shortest Paths 23

[dist(z) < d]

dist(z) < d’ dist(x) < d
d < d T — Y
(Init) (Upd) (Add)
dist(src) <0 T dist(y) < c+d

Correctness: obvious; deletion is based on redundancy

Priorities (Dijkstra): always choose an instance of (Add) where d
is minimal = allow for instance-based rule priorities
(Init) > (Upd) > (Add)[n/d] > (Add)[m/d|, for m > n



Shortest Paths 23

[dist(z) < d]

dist(z) < d’ dist(x) < d
d < d T — Y
(Init) (Upd) (Add)
dist(src) <0 T dist(y) < c+d

Correctness: obvious; deletion is based on redundancy

Priorities (Dijkstra): always choose an instance of (Add) where d

is minimal = allow for instance-based rule priorities
(Init) > (Upd) > (Add)[n/d] > (Add)[m/d|, for m > n

Prefix firing count: O(|F|), but Dijkstra’s algorithm runs in time
O(|E|+ |V]log|V|) = one cannot expect a linear-time

meta-complexity theorem for instance-based priorities



Minimum Spanning Tree

24

Basis: Union-find module



Minimum Spanning Tree

24

Basis: Union-find module

[z < y]
x =z
y =z
(Del)

T

(Add)

[z < Y]

mst(z, ¢, y)

union(z, y)



Minimum Spanning Tree 24

Basis: Union-find module

[z < 9]
r =z [z < 9]
y =z (Add)
(Del) mst(z, ¢, y)
T union(x, y)

Priorities: (here needed for correctness)

union—find > (Del) > (Add)[n/c| > (Add)[m/c], for m > n



Minimum Spanning Tree 24

Basis: Union-find module

[z < 9]
r =z [z < 9]
y =z (Add)
(Del) mst(z, ¢, y)
T union(x, y)

Priorities: (here needed for correctness)
union—find > (Del) > (Add)[n/c| > (Add)[m/c], for m > n

Prefix firing count: O(|E|+ |V|log|V|)



3rd Meta-Complexity Theorem 25

Programs: as before but priorities of rule instances depend on
first atom in antecedent and can be computed from the atom

In constant time



3rd Meta-Complexity Theorem 25

THEOREM [in preparation| Let R be an inference system such
that R*(D) is finite. Then some R(D) can be computed in
time O(|D| + mr(D)log p) where p is the number of different

priorities assigned to atoms in R*(D).



3rd Meta-Complexity Theorem

25

COROLLARY 2nd meta-complexity theorem is a special case



3rd Meta-Complexity Theorem

25

Proof technically involved; uses priority queues with log time

operations; memory usage worse



Further Issues and Questions

26

e a concept for modules needed (cf. [JCAR paper)



Further Issues and Questions

26

e deletion not always based on redundancy



Further Issues and Questions

26

e “real equality” (on the meta-level)



Further Issues and Questions

26

e how far do we get?



Further Issues and Questions

26

e is deduction without deletion inherently less efficient?



Further Issues and Questions

26

e implementation of instance-based priorities with schematic

priorities?



Further Issues and Questions

26

e bounds for memory consumption



Further Issues and Questions

26

e improved meta-complexity theorems



