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Introduction

e program analysis from high-level inference rules

e complexity analysis through general meta-complexity theorems

e logical aspects of fundamental algorithmic paradigms (dynamic
programming, union-find, congruence closure)

e treatment of transitive relations: implication, equivalence,
congruence, quasi-orderings

e avoiding the cubic-time bottleneck

e variable-free specializations of fundamental first-order methods:
resolution, Knuth/Bendix-completion, ordered chaining

e closely related to McAllester’s SAS’99 talk and paper
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I. Linear-Time Analyses
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!
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post-processor

result of analysis



Example

program

©

11
12
13
14
15

procedure main
begin
declare x: int
read(x)
call p(x)

end

procedure p(a:int)
begin
if a>0 then
read(g)
a:=a-g
call p(a)
print(a)
fi

end

facts

proc(main,2,6)
next(main,2,5)

call(main,p,5,6)

proc(p,8,15)
next (p,8,12)
call(p,p,12,13)
next (p,13,15)
next(p,8,15)



Interprocedural Reachability I PR

Read “L = L’ in P” as “L’ can be reached from L in procedure P”.

call(Q, P, L., L)
pTOC(Pa LO) Lf)

next(Q, L, L") Lo= LfinP
A= Lind X=Lein@  proc(P, Lo, Ly)
X=LinQ X=L,.inQ Lo= Loin P

THEOREM 1.1 IPR(D) can be computed in time O(|D|).

| |D| = size of D = number of nodes in tree representation |



First Meta-Complexity Theorem

THEOREM 1.2 (MCALLESTER 1999) Let R be an inference system
such that R(D) is finite. Then R(D) can be computed in time

O(IR(D)| + pfp(R(D))).

pf p(R(D)) is the number of prefix firings of R on R(D):

of n(D) = [{(r,i,0) |r=A1 A...NA; A...NAy D Ay € R
Ajce D, for1 <j <1}

COROLLARY 1.3 (DOWLING, GALLIER 1984) If R is ground, R(D)
can be computed in time O(|D| + |R]).



Prefix Firings in /PR

Let n = |D|.
pTOC(Pa LOaLf)
Lo= LoinP

has O(n) (prefix) firings.?

call(@Q, P, L., R,) O(n) x

proc(P, Lo, L)  O(1)

next(Q,L,L") O(n) Lo= LsinP O(1) *
X=LinQ O(1) X = LcinQ O(1)

X=L'inQ X=L,inQ

THEOREM 1.4 IPR(D) can be computed in time O(|D|).

Beweis. Both |[IPR(D)| and pf; pr(IPR(D)) are in O(|D|). O

20nly facts X = Y in P where X is the start label in P can be derived.




Proot of the Meta-Complexity Theorem
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Data structure for rules p of the form p(X,Y) A q(Y,Z) D r(X,Y, Z)

plY]
p-list of p[t] g-list of p[t]
p(a,t) |[=——

+ !
p(b,t) q(t,u)
| '
p(c,t) q(t,v)
| '
p(d,t) q(t,w)
I '
:_pie_’tl: a(t,s)

Upon adding a fact p(e,t), fire all r(e, t, z), for z on the g-list of A[t].

The inference system can be transformed (maintaining pf) so that it

contains unary rules and binary rules of the form p.



Problems

11

e if R(D) infinite, consider R(D) N atoms(subterms(D))
= concept of local inferences (Givan, McAllester 1993)

e in the presence of transitive relations, complexity is in Q(n?)



II. Equivalence and Congruence



Steensgaard’s (1996) Pointer Analysis 13

program shape graph
a = &x a e X
b = &y 4
if ... then I
|
y = &x; b o - ) identified
else ]
|
y = &z |
fi Y
C
c = &y £

THEOREM 2.5 (STEENSGAARD 1996) Shape graphs can be computed

in time O(na(n,n)).



Formalization: Inference System SPA
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assignments
input(X = &Y)
X :ref(1y)
Y : T,
T, =T,
subtyping rules
ref(T) < T’

input(X =Y)
X :ref(Ty)
Y :ref(Ty)

type equality

T, <Ts

ref (T) = ref (T")
T=T'

T/ T/ < T// T// .

T// i T/

T < T///



In the Example

15

facts from the program

a:ref(r,) b:ref(m) c:ref(7.)

z:ref(ry) y:ref(r,) =z:ref(ry)
derived equations from the assignments

T, =ref(ry) 7 =ref(r,) 7, =ref(r,)

Ty = ref(1,) 7. = ref(7,)

additionally, after computing the closure

ref(7,) =ref(r,) 7. =7y



Meta-Complexity Theorem for Horn Clauses with Equalityis

THEOREM 2.6 (DOWNEY, SETHI, TARJAN 1980) Let &£ be a set of
ground equations over terms in 7. Then 7 /€ is computable in time
O(n + mlogm), with n = |€] and m = |7|.

THEOREM 2.7 (G, MCALLESTER 2001) Let £ be a set of ground
Horn clauses with equality® over terms in 7. Then 7 /& is computable

in time O(n + min(nlog m, m?)), with n = || and m = |T]|.
COROLLARY 2.8 SPA(D) can be computed in time O(|D|?).

With some more work we can get it down to O(nlogn).

2equivalences with some/all compatibility axioms



Henglein’s (1996) Quadratic Subtype Analysis 17

Language with record types
o=|[ly:01;... 1, : 0y

and subtyping o < T.
Main requirement to check: if ¢ < 7 and 7 accepts [, then o accepts I.

Data base contains facts
e accepts(o,l) giving the field labels
e equations o.l; = o; for describing component types

e subtype facts of the form o < 7



Formalization: Inference System ST A 18

Typing rules:

o<T accepts(o,l) accepts(T,I)
TLp ol T
ol o oLl p ol =rT.l

Type equality is an equivalence, plus compatibility axioms:

o=T c=0c o C71 =1

ol =rT.l ol T

THEOREM 2.9 (HENGLEIN 1997) Subtype constraints can be checked

in quadratic time.

Beweis. ST A(D) can be computed in time O(|D|?). O



Proof of 2nd Meta-Complexity Theorem 1o

e extend the Downey, Sethi, Tarjan (1980) algorithm
e alternatively,
e extend the first meta-complexity theorem to inference systems
with priorities and deletion
THEOREM 2.10 (G, MCALLESTER 2001) Let R be an
inference system with priorities and deletion such that all
closures R(D) are finite. Then one closure R(D) can be
computed in time O(|R(D)| + pfr(R(D))).
e define conditional congruence closure by inferences with

priorities and deletion based on ideas by (Bachmair, Tiwari
2000)



Union-Find as Inferences with Priorities and Deletion 20

Inference system UF' (priorities from left to right; premises in [...] are
deleted after the rule has fired)?:

z =y
(weight(x,wy)]
z — 1] [z =y weight(y, ws)
[z = x] Yy — 2 r =z w1 = W
T T — z r =z (y — x) AN weight(x,w; + wo)

THEOREM 2.11 Let £ be a set of ground equations over terms in 7.
Then pfy;p(UF(E)) is in O(nlogm), with n = || and m = |7 |.

With a slightly more sophisticated system we obtain O(n+mlogm).

“We also need the symmetric variants of the last two rules, and we assume that

initial data bases initialize weight by 1.



III. Dynamic Transitive Closure



Quasi-Orderings with Monotone Functions

22

Basic axioms QO

/ / !/
r=1 ==z
r=7x

Tr= =z f(x)= f(2')

for certain f

optionally exploiting the induced congruence
T=Y Y=

T =1

additionally, for atomic set constraints (Melski, Reps 1997):
flz) = fy)

xr=1Y

additionally, from pointer analysis:
input(X =Y) X :ref(T) Y :ref(T7)
T' =T




Ground Monadic Reachability 23

Decision problem:
QO E(si=ti)AN...AN(sp=1ty) D (so=ty) (s;, t; ground)
Example:
(start= fa)A(a= gb)A(b=c)A\(gc=d)A(fd = fin) D (start=-fin)

Graphically:
St e | = = = = m = m m = = = = = f g fin



Results about Ground Monadic Reachability

e GMR is 2NPDA-complete (Neal 1989)?
e 2NPDA acceptance is in O(n?) (Aho, Hopcroft, Ullman 1968)
e 1o subcubic algorithm known
e (JO (also non-monadic) is a local theory, that is,
QO = C iff QO[subterms in C| = C,
thus in O(n?) by (Dowling, Gallier 1980)

b=-c
gb=gc gc=d
a = gb gb=d
a=d
start = fa fa= fd
start = fd fd=fin
start = fin

aThis holds for flat terms already.



Many Data Flow Problems are Equivalent with GMR 25

e atomic set constraints (Melski, Reps 1997)

e interprocedural reachability for higher-order languages (Heintze,
McAllester 1997)

e Amadio/Cardelli typability (Heintze, McAllester 1997)

e Andersen’s (1994) pointer analysis (Aiken et al 1998)



Ordered Chaining
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Issue: better balancing of forward and backward computation
History: e Bledsoe, Kunen, Shostak (1985), Hines (1992):

limes theorems, set theory
o Levy, Agusti (1993): bi-rewriting for distributive lattices
e Bachmair, G (1996): ordered chaining for binary relations

Assumption: ground terms are ordered by > (total, well-founded, ...

Ordered Chaining OC"

y=x ulr]=v
uly] = v

if x>y and u > v

(Ground) reachability through rewrite proofs: 2
QO =D D (s=1t)iff s = ¢ in OC(D), that is,

S=>...=>w=...=>1
— — < <

2for flat terms decidable in O(|D|?) since |OC(D)| is in O(|D|?).



Chaining Diagram (Terms Ordered by Number)

given =-facts 19 Q\

70O

20

O
18
O

N4




Adding Peak Facts

w
Ko/

= 0



Reachability Through Rewrite Proots
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19 O
\Q

—

10



Adding Equality and Set Constraints 30

Deriving equations from inequations is optional. Using them for
simplification collapses cycles. Premises in parenthesis become
redundant and can be deleted.

[z =y [y =] .
: (whenever you like)
T =y A(y)

(if x > )

Negative inequations in inference rules have to be replaced by rewrite

provability, e.g., for set constraints we may add:

f(z) = f(y)

r=1Y




Theoretical Results and Open Questions

31

e completeness

e worst-case complexity not better than O(n?)
e for which classes of data bases quadratic?

e how to choose a good ordering?



Practical Results 32

Encouraging results by Aiken, Fahndrich, Foster, Su (1998, 2000) for

Andersen’s pointer analysis via atomic set constraints:

flat inequations X = Y, ref(X) =), and X = ref())
ref(X) minimal in >, therefore, O(1) test for injectivity
if > on set variables is random, then relatively few
variable-variable edges are added

partial cycle elimination according to

- }y y{

T =1

analytical model: O(1) for partial cycle test; ordered chaining
adds only 40% of the transitive edges

transformation to delay peak computation that eventually collapse

Very long programs can be analysed in reasonable time



Conclusions 33

Fundamental problem: efficient deduction for transitive relations in

algebraic structures
Logical view: clarifies the issues and provides general efficient methods
Advice to the PL community: adopt that view and obtain almost

optimal complexity results and prototype implementations for free
Advice to the ATP community: e make first-order provers work well

on these near-propositional cases
e find more meta-complexity theorems for the general case
e implement the algorithms behind the meta-complexity
theorems
e analytical models for ordered chaining: when is GMR

sub-cubic?



