
A Temporal-Probabilistic Database Model for

Information Extraction - Supplementary Material

Maximilian Dylla Iris Miliaraki Martin Theobald

June 20, 2013

This document provides additional material regarding the experiments,
which did not fit into the paper due to space constraints. To ease matching
the content of this document and the paper, we named this document’s
sections according to the headlines of the paper’s section 7.

1 Extraction and Reasoning Quality

1.1 Data Set

The data set as described in the paper is available for download here1.

1.2 Deduction Rules

As a first step, we aggregate the different extractions as distinguished by
their Ids to one duplicate-free fact:

AttendedSchool ′(X, Y)[Tb,Te) ← AttendedSchool ′(X, Y, Id)[Tb,Te)

Born ′(X)[Tb,Te) ← Born(X, Id)[Tb,Te)

Died ′(X)[Tb,Te) ← Died(X, Id)[Tb,Te)

Divorce ′(X, Y)[Tb,Te) ← Divorce(X, Y, Id)[Tb,Te)

Founded ′(X, Y)[Tb,Te) ← Founding(X, Y, Id)[Tb,Te)

GraduatedFrom ′(X, Y)[Tb,Te) ← GraduatedFrom(X,Y, Id)[Tb,Te)

IsDating ′(X, Y)[Tb,Te) ← IsDating(X,Y, Id)[Tb,Te)

MovedTo ′(X, Y)[Tb,Te) ← MovedTo(X,Y, Id)[Tb,Te)

Wedding ′(X, Y)[Tb,Te) ← Wedding(X, Y, Id)[Tb,Te)

1
http://www.mpi-inf.mpg.de/~mdylla/tpdbExtracted.zip

1

http://www.mpi-inf.mpg.de/~mdylla/tpdbExtracted.zip

Then, we deduce the AreMarried relation:

AreMarried ′(X, Y)[Tb,T ′
e)
←

(
Wedding ′(X, Y)[Tb,Te)∧
Divorce ′(X, Y)[T ′

b,T ′
e)
∧ Te ≤T T ′

b

)
AreMarried ′(X,Y)[Tb,T ′

e)
←

(
Wedding ′(X, Y)[Tb,Te)∧
¬Divorce ′(X, Y)[T ′

b,T ′
e)

)
After grounding all deduction rules we query for the relations Born’, Died’,
Founded’, GraduatedFrom’, IsDating’, MovedTo’, and AreMarried’.

1.3 Constraints

We manually designed the constraints by measuring their effect on the
precision-recall values in the training set. The constraints can be divided
into three groups, namely irreflexivenes, precedence and disjointness.
Irreflexive. We achieved improved results by constraining Divorce:

¬(Divorce ′(Y,X)[Tb,Te) ∧X = Y)

Precedence. The prime target for precendence constraints is the birth
date, which should occur before any other event in the life of a person:

¬(Born ′(X)[Tb,Te) ∧AreMarried ′(X,Y)[T ′
b,T ′

e)
∧ ¬Te ≤T T ′

b)
¬(Born ′(X)[Tb,Te) ∧AttendedSchool ′(X, Y)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)
¬(Born ′(X)[Tb,Te) ∧ Founded ′(X, Y)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)
¬(Born ′(X)[Tb,Te) ∧GraduatedFrom ′(X, Y)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)
¬(Born ′(X)[Tb,Te) ∧ IsDating ′(X, Y)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)
¬(Born ′(Y)[Tb,Te) ∧ IsDating ′(X, Y)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)
¬(Born ′(X)[Tb,Te) ∧MovedTo ′(X, Y)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)
¬(Born ′(X)[Tb,Te) ∧Wedding ′(X, Y)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)
¬(Born ′(Y)[Tb,Te) ∧Wedding ′(X, Y)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)

Also, the date of death should occur after any other fact relating to a person:

¬(AreMarried ′(X, Y)[Tb,Te) ∧Died ′(Y)[T ′
b,T ′

e)
∧ ¬Te ≤T T ′

b)
¬(Founded ′(X, Y)[Tb,Te) ∧Died ′(X)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)
¬(GraduatedFrom ′(X, Y)[Tb,Te) ∧Died ′(X)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)
¬(IsDating ′(X, Y)[Tb,Te) ∧Died ′(X)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)
¬(IsDating ′(X, Y)[Tb,Te) ∧Died ′(Y)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)
¬(MovedTo ′(X, Y)[Tb,Te) ∧Died ′(X)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)

2

Finally, we require the IsDating relation to take place before the couple is
married:

¬(IsDating ′(X, Y)[Tb,Te) ∧AreMarried ′(X, Y)[T ′
b,T ′

e)
∧ ¬Te ≤T T ′

b)

Disjointness. We enforce marriages of a person X to two different persons
Y and Z to be temporally disjoint by writing:

¬
(

AreMarried ′(X, Y)[Tb,Te) ∧AreMarried ′(X, Z)[T ′
b,T ′

e)

∧Y 6= Z ∧ Tb ≤T T ′
b ∧ T ′

b ≤T Te

)
¬

(
AreMarried ′(X, Y)[Tb,Te) ∧AreMarried ′(X, Z)[T ′

b,T ′
e)

∧Y 6= Z ∧ Tb ≤T T ′
e ∧ T ′

e ≤T Te

)
¬

(
AreMarried ′(X, Y)[Tb,Te) ∧AreMarried ′(X, Z)[T ′

b,T ′
e)

∧Y 6= Z ∧ T ′
b ≤T Tb ∧ Tb ≤T T ′

e

)
¬

(
AreMarried ′(X, Y)[Tb,Te) ∧AreMarried ′(X,Z)[T ′

b,T ′
e)

∧Y 6= Z ∧ T ′
b ≤T Te ∧ Te ≤T T ′

e

)
Now, we give the same constraints, but with exchanged order of arguments:

¬
(

AreMarried ′(Y,X)[Tb,Te) ∧AreMarried ′(Z, X)[T ′
b,T ′

e)

∧Y 6= Z ∧ Tb ≤T T ′
b ∧ T ′

b ≤T Te

)
¬

(
AreMarried ′(Y,X)[Tb,Te) ∧AreMarried ′(Z, X)[T ′

b,T ′
e)

∧Y 6= Z ∧ Tb ≤T T ′
e ∧ T ′

e ≤T Te

)
¬

(
AreMarried ′(Y,X)[Tb,Te) ∧AreMarried ′(Z, X)[T ′

b,T ′
e)

∧Y 6= Z ∧ T ′
b ≤T Tb ∧ Tb ≤T T ′

e

)
¬

(
AreMarried ′(Y,X)[Tb,Te) ∧AreMarried ′(Z, X)[T ′

b,T ′
e)

∧Y 6= Z ∧ T ′
b ≤T Te ∧ Te ≤T T ′

e

)
We continue by restricting that married persons cannot date other persons

3

during their marriage:

¬
(

AreMarried ′(X, Y)[Tb,Te) ∧ IsDating ′(X, Z)[T ′
b,T ′

e)

∧Y 6= Z ∧ Tb ≤T T ′
b ∧ T ′

b ≤T Te

)
¬

(
AreMarried ′(X, Y)[Tb,Te) ∧ IsDating ′(X, Z)[T ′

b,T ′
e)

∧Y 6= Z ∧ Tb ≤T T ′
e ∧ T ′

e ≤T Te

)
¬

(
AreMarried ′(X, Y)[Tb,Te) ∧ IsDating ′(X, Z)[T ′

b,T ′
e)

∧Y 6= Z ∧ T ′
b ≤T Tb ∧ Tb ≤T T ′

e

)
¬

(
AreMarried ′(X, Y)[Tb,Te) ∧ IsDating ′(X, Z)[T ′

b,T ′
e)

∧Y 6= Z ∧ T ′
b ≤T Te ∧ Te ≤T T ′

e

)
¬

(
AreMarried ′(Y,X)[Tb,Te) ∧ IsDating ′(Z, X)[T ′

b,T ′
e)

∧Y 6= Z ∧ Tb ≤T T ′
b ∧ T ′

b ≤T Te

)
¬

(
AreMarried ′(Y,X)[Tb,Te) ∧ IsDating ′(Z, X)[T ′

b,T ′
e)

∧Y 6= Z ∧ Tb ≤T T ′
e ∧ T ′

e ≤T Te

)
¬

(
AreMarried ′(Y,X)[Tb,Te) ∧ IsDating ′(Z, X)[T ′

b,T ′
e)

∧Y 6= Z ∧ T ′
b ≤T Tb ∧ Tb ≤T T ′

e

)
¬

(
AreMarried ′(Y,X)[Tb,Te) ∧ IsDating ′(Z, X)[T ′

b,T ′
e)

∧Y 6= Z ∧ T ′
b ≤T Te ∧ Te ≤T T ′

e

)
1.4 Results

1.4.1 100% Dataset

In the paper’s Figure 2(a) we present the table of F1 values together with the
detailed precision-recall plot in the paper’s Figure 2(b). Here in Figure 1,
we additionally depict the precision-recall plots for the other 7 relations.

1.4.2 3% Dataset

Since Markov Logic Networks in its implementations by Alchemy2 and Tuffy3

did not scale to the full data set, we ran them on a 3% sample of the data
set (about 65 facts in total). The corresponding run-times are depicted in
Figure 2. Finally, the following table contains the F1 measure for the 3% of
the data set:

TPDB-c TPDB+c Gurobi Beast-c Beast+c MLN-c MLN+c Tuffy-c Tuffy+c
AreMarried 0.68 0.68 0.48 0.32 0.32 0.67 0.63 0.49 0.51

AttendedSchool 0.70 0.70 0.54 0.54 0.54 0.5 0.5 0.54 0.54
Born 0.86 1.0 0.89 0.69 0.69 0.25 0.25 0.4 0.53
Died 0.56 0.55 0.74 0.55 0.74 0.5 0.67 0.55 0.74

Founded 1.0 1.0 0.5 0.5 0.5 1.0 1.0 1.0 1.0
GraduatedFrom 0.99 0.99 0.75 0.75 0.75 0.0 0.0 0.75 0.75

IsDating 0.48 0.48 0.43 0.43 0.43 0.20 0.20 0.37 0.31
MovedTo 0.75 0.75 0.75 0.57 0.59 1.0 1.0 0.61 0.64

2
http://alchemy.cs.washington.edu/

3
http://hazy.cs.wisc.edu/hazy/tuffy/download/

4

http://alchemy.cs.washington.edu/
http://hazy.cs.wisc.edu/hazy/tuffy/download/

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

AttendedSchool'

TPDB-c TPDB+c Gurobi Beast-c Beast+c

Recall

P
re
ci
s
io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Born'

TPDB-c TPDB+c Gurobi Beast-c Beast+c

Recall

P
re

ci
s

io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Died'

TPDB-c TPDB+c Gurobi Beast-c Beast+c

Recall

P
re

ci
s

io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Founded'

TPDB-c TPDB+c Gurobi Beast-c Beast+c

Recall

P
re

ci
s

io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

GraduatedFrom'

TPDB-c TPDB+c Gurobi Beast-c Beast+c

Recall

P
re
ci
s
io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

IsDating'

TPDB-c TPDB+c Gurobi Beast-c Beast+c

Recall

P
re
ci
s
io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

MovedTo'

TPDB-c TPDB+c Gurobi Beast-c Beast+c

Recall

P
re

ci
s

io
n

Figure 1: Precision Recall Plots for 100% of the data set

1

10

100

1000

10000

100000

1000000

TPDB-c TPDB+c Gurobi
Beast-c Beast+c Alchemy-c
Alchemy+c Tuffy-c Tuffy+c

m
s

Figure 2: Run-times on 3% of the data set

5

2 Query Answering Task

2.1 Data Set

We utilized the YAGO2 knowledge base which is freely available for down-
load4.

2.2 Q1 Hierarchical

The hierarchical query forms a union of two join queries and one relation,
where the argument of each result is a person’s name. We replace Constant
by 1000 different entities to obtain varying queries and lineage.

Result(X) ← IsMarriedTo(Id ,Constant , X)
Result(Y) ← Edited(Id ,Constant , X) ∧ActedIn(Id ′, Y, X)
Result(Y) ← IsLeaderOf (Id ,Constant , X) ∧ LivesIn(Id ′, Y, X)

The queried relation is Result. For MayBMS we run the following query:

CREATE TABLE i n t e n s i o n a l r e s u l t p r o b AS (
(SELECT DISTINCT arg0 , t ime begin , t ime end
FROM

(SELECT DISTINCT t0 . arg2 AS arg0 ,
t0 . t ime beg in AS t ime begin ,
t0 . t ime end AS t ime end

FROM i smar r i ed to prob AS t0 ,
dummy prob AS t1

WHERE t0 . arg1=’ Constant ’)
AS part0)

UNION
(SELECT DISTINCT arg0 , t ime begin , t ime end
FROM

(SELECT DISTINCT t1 . arg1 AS arg0 ,
t0 . t ime beg in AS t ime begin ,
t0 . t ime end AS t ime end

FROM ed i t ed prob AS t0 ,
ac t ed in prob AS t1

WHERE t0 . arg1=’ Constant ’ AND (t0 . arg2=t1 . arg2))
AS part1)

UNION

4
http://www.mpi-inf.mpg.de/yago-naga/yago/

6

http://www.mpi-inf.mpg.de/yago-naga/yago/

(SELECT DISTINCT arg0 , t ime begin , t ime end
FROM

(SELECT DISTINCT t1 . arg1 AS arg0 ,
t0 . t ime beg in AS t ime begin ,
t0 . t ime end AS t ime end

FROM i s l e a d e r o f p r o b AS t0 ,
l i v e s i n p r o b AS t1

WHERE t0 . arg1=’ Constant ’ AND t0 . arg2=t1 . arg2)
AS part2)

) ;
SELECT arg0 , conf ()
FROM i n t e n s i o n a l r e s u l t p r o b
GROUP BY arg0 ;

2.3 Q2 Read-Once

The query yielding read-once lineage looks as follows:

Result(X) ← DiedIn(Id, X,Constant) ∧HasGivenName(Id′, X, Y)
Result(X) ← DiedIn(Id, X,Constant) ∧ActedIn(Id′, X, Y)
Result(X) ← DiedIn(Id, X,Constant) ∧WasBornIn(Id′, Y,Constant)

Again, we instantiate Constant by 1000 different entities to obtain 1000
queries. Also, the queried relation is Result. For MayBMS we run the
following query:

CREATE TABLE i n t e n s i o n a l r e s u l t p r o b AS (
(SELECT DISTINCT arg0 ,

t ime begin ,
t ime end

FROM
(SELECT DISTINCT t1 . arg1 AS arg0 ,

t0 . t ime beg in AS t ime begin ,
t0 . t ime end AS t ime end

FROM d i ed in prob AS t0 ,
hasgivenname prob AS t1

WHERE t0 . arg2=’ Constant ’ AND t0 . arg1=t1 . arg1)
AS part0)

UNION
(SELECT DISTINCT arg0 ,

t ime begin ,

7

t ime end
FROM

(SELECT DISTINCT t1 . arg1 AS arg0 ,
t0 . t ime beg in AS t ime begin ,
t0 . t ime end AS t ime end

FROM d i ed in prob AS t0 ,
ac t ed in prob AS t1

WHERE t0 . arg2=’ Constant ’ AND t0 . arg1=t1 . arg1)
AS part1)

UNION
(SELECT DISTINCT arg0 ,

t ime begin ,
t ime end

FROM
(SELECT DISTINCT t0 . arg1 AS arg0 ,

t0 . t ime beg in AS t ime begin ,
t0 . t ime end AS t ime end

FROM d i ed in prob AS t0 ,
wasbornin prob AS t1

WHERE t0 . arg2=t1 . arg2 AND t1 . arg2=’ Constant ’)
AS part2)

) ;
SELECT arg0 , conf ()
FROM i n t e n s i o n a l r e s u l t p r o b
GROUP BY arg0 ;

2.4 Q3 Unsafe

The unsafe query is a boolean query whose lineage alters with every of the
1000 entities we insert for Constant:

Result(result)←
(

ActedIn(Id0, X,Constant) ∧WasBornIn(Id1, X, Y)
∧DiedIn(Id2, Z, Y) ∧WasBornOnDate(Z)[Tb,Te)

)
The queried relation is Result. For MayBMS we run the following query:

CREATE TABLE i n t e n s i o n a l r e s u l t p r o b AS (
SELECT DISTINCT t0 . arg2 AS arg0 ,

t0 . t ime beg in AS t ime begin ,
t0 . t ime end AS t ime end

FROM acted in prob AS t0 ,

8

wasbornin prob AS t1 ,
d i ed in prob AS t2 ,
wasbornondate prob AS t3

WHERE t0 . arg2=’ Constant ’
AND t0 . arg1=t1 . arg1
AND t1 . arg2=t2 . arg2
AND t2 . arg1=t3 . arg1) ;

SELECT arg0 , conf ()
FROM i n t e n s i o n a l r e s u l t p r o b
GROUP BY arg0 ;

3 Knowledge Building Task

3.1 Q4 Large Lineage

This query consists of two deduction rules, where the first encodes a #P-
hard subquery, which is used in each of the second deduction rule.

Expensive(result) ←
(

IsLocatedIn(Id0, X, Y) ∧WasBornIn(Id1, Z,X)
∧LivesIn(Id2, Z, U)

)
Result(X, Y)[Tb,T ′

e)
←

(
IsMarriedTo(Id0, X, Y) ∧OccursSince(Id1, Id0)[Tb,Te)

∧OccursUntil(Id2, Id0)[T ′
b,T ′

e)
∧ Expensive(result)

)
We query for the relation Result. For MayBMS we run the following query:

CREATE TABLE i n t e n s i o n a l r e s u l t p r o b AS (
SELECT DISTINCT t0 . arg1 AS arg0 ,

t0 . arg2 AS arg1 ,
t0 . t ime beg in AS t ime begin ,
t0 . t ime end AS t ime end

FROM i smar r i ed to prob AS t0 ,
o c c u r s s i n c e p r o b AS t1 ,
o c c u r s u n t i l p r o b AS t2 ,
i s l o c a t e d i n p r o b AS t4 ,
wasbornin prob AS t5 ,
l i v e s i n p r o b AS t6

WHERE t0 . arg0=t1 . arg1 AND
t1 . arg1=t2 . arg1 AND
t4 . arg1=t5 . arg2 AND
t5 . arg1=t6 . arg1) ;

SELECT arg0 , arg1 , conf ()

9

FROM i n t e n s i o n a l r e s u l t p r o b
GROUP BY arg0 , arg1 ;

3.2 Q5 Many Constraints

We use the following deduction rules:

Born(X)[Tb,Te) ← WasBornOnDate(Id, X)[Tb,Te)

Died(X)[Tb,Te) ← DiedOnDate(Id, X)[Tb,Te)

Divorce(X, Y)[Tb,Te) ← IsMarriedTo(Id, X, Y) ∧OccursUntil(Id′, Id)[Tb,Te)

HasChild(X, Y)[Tb,Te) ← HasChild(Id, X, Y) ∧WasBornOnDate(Id′, Y)[Te,Tb)

Wedding(X, Y)[Tb,Te) ← IsMarriedTo(Id, X, Y) ∧OccursSince(Id′, Id)[Tb,Te)

Marriage(X, Y)[Tb,T ′
e)
← Wedding(X, Y)[Tb,Te) ∧Divorce(X, Y)[T ′

e,T ′
b)

We query for the relations Born, Died, HasChild, and Marriage. Also, we
apply these constraints to the deduced facts. The precedence constraints
are:

¬(Born(X)[Tb,Te) ∧HasChild(X,Y)[T ′
b,T ′

e)
∧ ¬Te ≤T T ′

b)
¬(Born(X)[Tb,Te) ∧Marriage(X, Y)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)
¬(Born(Y)[Tb,Te) ∧Marriage(X, Y)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)
¬(Marriage(X, Y)[Tb,Te) ∧Died(X)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)
¬(Marriage(X, Y)[Tb,Te) ∧Died(Y)[T ′

b,T ′
e)
∧ ¬Te ≤T T ′

b)

10

Regarding disjointness we utilize:

¬
(

Marriage(X, Y)[Tb,Te) ∧Marriage(X,Z)[T ′
b,T ′

e)

∧Y 6= Z ∧ Tb ≤T T ′
b ∧ T ′

b ≤T Te

)
¬

(
Marriage(X, Y)[Tb,Te) ∧Marriage(X, Z)[T ′

b,T ′
e)

∧Y 6= Z ∧ Tb ≤T T ′
e ∧ T ′

e ≤T Te

)
¬

(
Marriage(X, Y)[Tb,Te) ∧Marriage(X, Z)[T ′

b,T ′
e)

∧Y 6= Z ∧ T ′
b ≤T Tb ∧ Tb ≤T T ′

e

)
¬

(
Marriage(X, Y)[Tb,Te) ∧Marriage(X, Z)[T ′

b,T ′
e)

∧Y 6= Z ∧ T ′
b ≤T Te ∧ Te ≤T T ′

e

)
¬

(
Marriage(X, Y)[Tb,Te) ∧Marriage(Z, X)[T ′

b,T ′
e)

∧Y 6= Z ∧ Tb ≤T T ′
b ∧ T ′

b ≤T Te

)
¬

(
Marriage(X, Y)[Tb,Te) ∧Marriage(Z, X)[T ′

b,T ′
e)

∧Y 6= Z ∧ Tb ≤T T ′
e ∧ T ′

e ≤T Te

)
¬

(
Marriage(X, Y)[Tb,Te) ∧Marriage(Z, X)[T ′

b,T ′
e)

∧Y 6= Z ∧ T ′
b ≤T Tb ∧ Tb ≤T T ′

e

)
¬

(
Marriage(X, Y)[Tb,Te) ∧Marriage(Z, X)[T ′

b,T ′
e)

∧Y 6= Z ∧ T ′
b ≤T Te ∧ Te ≤T T ′

e

)
¬

(
Marriage(Y,X)[Tb,Te) ∧Marriage(Z, X)[T ′

b,T ′
e)

∧Y 6= Z ∧ Tb ≤T T ′
b ∧ T ′

b ≤T Te

)
¬

(
Marriage(Y,X)[Tb,Te) ∧Marriage(Z, X)[T ′

b,T ′
e)

∧Y 6= Z ∧ Tb ≤T T ′
e ∧ T ′

e ≤T Te

)
¬

(
Marriage(Y,X)[Tb,Te) ∧Marriage(Z, X)[T ′

b,T ′
e)

∧Y 6= Z ∧ T ′
b ≤T Tb ∧ Tb ≤T T ′

e

)
¬

(
Marriage(Y,X)[Tb,Te) ∧Marriage(Z, X)[T ′

b,T ′
e)

∧Y 6= Z ∧ T ′
b ≤T Te ∧ Te ≤T T ′

e

)
The integer linear programs encode the same constraints.

4 Detailed Runtime Analysis

4.1 Q6 Deduplication

The query pattern is designed to yield exactly one answer fact, but with a
varying number of intervals attached to it. We instantiate Constant by 1000

11

different entities (in form of locations) to obtain the 1000 queries.

Born(X)[Tb,Te) ←
(

WasBornIn(Id , X,Constant)∧
WasBornOnDate(Id ′, X)[Tb,Te)

)
Died(X)[Tb,Te) ←

(
DiedIn(Id , X,Constant)∧
DiedOnDate(Id ′, X)[Tb,Te)

)
Lives(result)[Tb,T ′

e)
← Born(X)[Tb,Te) ∧Died(X)[T ′

b,T ′
e)

Lives(result)[tmin ,T ′
e)
← ¬Born(X)[Tb,Te) ∧Died(X)[T ′

b,T ′
e)

Lives(result)[Tb,tmax) ← Born(X)[Tb,Te) ∧ ¬Died(X)[T ′
b,T ′

e)

The queried relation is Lives. Here, result is a constant, such there is only
one answer fact per query.

12

	Extraction and Reasoning Quality
	Data Set
	Deduction Rules
	Constraints
	Results
	100% Dataset
	3% Dataset

	Query Answering Task
	Data Set
	Q1 Hierarchical
	Q2 Read-Once
	Q3 Unsafe

	Knowledge Building Task
	Q4 Large Lineage
	Q5 Many Constraints

	Detailed Runtime Analysis
	Q6 Deduplication

