

Selected Topics in Algorithms K. Mehlhorn Exercise 4 Summer 2009 We will discuss this exercise sheet on May 29th.

Motivation

We fill in some details of de Pina's algorithm for minimum cycle basis.

de Pina's Algorithm

de Pina suggested the following algorithm.

```
B := \emptyset
while |B| < m - (n - 1) do

compute a non-zero S \in k^E such that \langle C, S \rangle = 0 for all C \in B.

compute a minimum weight (isometric) circuit C with \langle C, S \rangle \neq 0.

add C to B.

end while
```

Correctness: Show that both versions of the algorithm (with and without the adjective isometric) computes a minimum weight k-basis.

Finding a Minimum Weight Circuit For the field of two elements (undirected cycle basis), the following method computes a minimum weight circuit.

Set up an auxiliary graph G_A . For each vertex v of G, we have vertices (v,0) and (v,1) in G_A . For each edge $e = uv \in G$, we have the edges $((u,i), (v,i+S_e))$ for i = 0, 1 in G_A . Here, addition is modulo two.

- Illustrate this definition by a small example.
- Consider a path in G_A from (v, 0) to (v, 1). Argue that is corresponds to a circuit C in G with (C, S) ≠ 0.
- Derive an alg for computing a minimum weight circuit with $\langle C, S \rangle \neq 0$.

Have fun with the solution!