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Let G = (V,E) be an undirected graph. For a spanning treeT of G and verticesu andv, let
dT (u,v) be the distance betweenu andv in T and letP(T ) = ∑{u,v} dT (u,v) be the sum over all
distances. Here the sum is over all pairs of nodes. LetW (T ) be the weight of the fundamental
cycle basis induced byT .

Exact 3-CoverGiven 3-element subsetsS1 to Ss of U = {1, . . . ,3u}. Is there an index set
I such thatU = ∪i∈ISi and |I| = u? We proved in Exercise Sheet 3 that Exact 3-Cover is NP-
complete.

Shortest Total Path Length Spanning Tree (STPLST): Given an undirected graphG and a
boundB. Is there a spanning treeT of G with P(T ) ≤ B?

Minimum Fundamental Cycle Basis Problem (MFCB): Given an undirected graphG, a
non-negative weight functionw : E → N and a boundB. Is there a spanning treeT of G with
W (T ) ≤ B?

Theorem 1 ([JLK78]) Shortest Total Path Length Spanning Tree is NP-complete.

Proof: We show Exact 3-Cover≤ STPLST. Consider an instanceS1, . . . , Ss, U = {1, . . . ,3u}
of Exact 3-Cover. Construct the following graph, see Figure1.

• V = R∪S∪U , whereR = {v0,v1, . . . ,vr }. We will fix r below.

• Edges

– v0 is connected to allvi, 1≤ i ≤ r and to allSi, 1≤ i ≤ s.

– eachSi is connected to thej ∈U with j ∈ Si.

Assume Exact 3-Cover has a solutionI and consider the following spanning treeT . It consists
of edgesv0vi for 1≤ i ≤ r andv0Si for 1≤ i ≤ s. Each j ∈U is connected to the uniqueSi with
j ∈ Si andi ∈ I. The total path length of this solution is

B = BRR +BRS +BRU +BSS +BSU +BUU
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Figure 1: . Reduction of Exact 3-Cover to STPLST.

whereBRR = r + 2r(r − 1)/2 = r2, BRS = s + 2rs, BRU = 2 · 3t + 3 · r · 3t = 6t + 9rt, BSS =
2·s(s−1)/2= s2−s, BSU = 3u(s−1)3+3u ·1·1= 9su−6u, andBUU = 4·3u(3u−1)/2−2u3=
18u2−12u.

So, if the instance of Exact 3-cover has a solution then thereis a spanning tree withP(T)≤ B,
whereB is defined as above.

Assume now that there is a spanning tree withP(T ) ≤ B. We will show that Exact 3-Cover
has a solution. ForX ,Y ∈ {R,S,U } let PXY be the cost of connectingX andY in T . Clearly, all
edges(v0,vi) are inT . Also, PRR ≥ BRR, PRU ≥ BRU andPRS ≥ BRS. Assume now that one of
the edges(v0,S j) is NOT in T . ThenPRS ≥ BRS +2(r +1). For r ≥ (BSS +BSU +BUU )/2 this
impliesP(T ) > B. We fix r at (BSS +BSU +BUU )/2. So(v0,S j) ∈ T for all j. ThenPRS = BRS

andPSS = BSS.
For eachj ∈U , there is exactly oneSi with (Si, j) ∈ T . For 0≤ ℓ ≤ 3, let kℓ be the number

of Si that are connected inT to exactlyℓ nodes inU . Then

PUU = 4 ·3u(3u−1)/2−2 ·3k3−2k2

and hencePUU = BUU only if k3 = u. If k3 = u, T encodes a solution to Exact 3-Cover.

Theorem 2 ([DPK82]) The Minimum Fundamental Cycle Basis Problem is NP-complete.

Proof: We show STPLST≤ MFCB. Let G = (V,E) be an instance of STPLST. Consider the
following instance of MFCB. We augmentG to a complete graphG′ = (V,E ′) and setw(e) = 1
for e ∈ E andw(e) = L for e ∈ E ′ \E. HereL is a large constant that we fix later. We call the
edges inE light and the edges inE ′ \E heavy. We will show that a large value ofL guarantees
that the solution to MFCB will use only light edges for the spanning tree and that this spanning
tree will be a solution to STPLST.

Consider any spanning treeT of G′ and assume that it usesq heavy edges. Thenn−1− q
edges ofT are light. Among the co-tree edges,m− (n− 1− q) are light andr − q are heavy,
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wherer = n(n−1)/2−m. For a pair{u,v} ∈ T , we havedT (u,v) = w(u,v). We have

W (T ) = ∑
{u,v}6∈T

(dT (u,v)+w(u,v))

= ∑
{u,v}6∈T

dT (u,v)+ ∑
{u,v}6∈T

w(u,v)

= ∑
{u,v}

dT (u,v)− ∑
{u,v}∈T

w(u,v)+ ∑
{u,v}6∈T

w(u,v)

= ∑
{u,v}

dT (u,v)−2 ∑
{u,v}∈T

w(u,v)+ ∑
{u,v}

w(u,v)

= S(T)+ rL+m−2qL−2(n−1−q)

= S(T)+ rL+m−2(n−1)−2qL+2q .

Assume we knew that an optimal solution for MFCB is guaranteed to haveq = 0. Then there
is a tree withS(T) ≤ B iff there is a tree withW (T ) ≤ B + rL + m−2(n−1) and we have the
desired reduction.

Consider now spanning treesT1 andT2, whereT1 uses only light edges andT2 usesq ≥ 1
heavy edges. We claimW (T1) < W (T2). Indeed,

W (T1) < W (T2) iff S(T1)+ rL+m−2(n−1) < S(T2)+ rL+m−2(n−1)−2qL+2q

iff S(T1)+2qL−2q < S(T2) .

Next observe thatS(T1) ≤ n2n = n3. We need a lower bound ofS(T2). Removal of theq
heavy edges fromT2 decomposesT2 into q +1 subtrees of sizes, say,k1 to kq+1. ThenS(T2) ≥
L∑i< j kik j ≥ Lmax(k1(k2 + . . .+ kq+1),(q + 1)q/2) ≥ Lmax(n−1,q2/2). For L = n4, the in-
equalityn3+2qL−2q < Lmax(n−1,q2/2) holds for all values ofq.

There is no need for the use of weights in the proof of theorem 2. Simply replace the heavy
edges by chains of lengthL and then the proof works for unweighted graphs.

The minimum fundamental cycle basis problem is not only NP-complete, it is also hard to
approximate. It is APX-hard and hence has no PTAS (polynomial time approximation scheme)
unless P = NP. The APX-hardness proof can be found in [KLM+09]. A polynomial time approx-
imation scheme for MFCB would have input(V,E,w) and parameterε > 0. It would produce a
fundamental cycle basis of cost no more than(1+ ε) times the optimal value and, for any fixed
ε, run in polynomial time. The degree of the polynomial may depend onε.

I close with two open problems:

• An approximation algorithm for the minimum fundamental cycle basis problem with ap-
proximation guaranteeO(logn). See [KLM+09] for what is known.

• The complexity status of the minimum integral cycle basis problem.
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