
Engineering DFS-Based Graph Algorithms

Kurt Mehlhorn∗, Stefan Näher†, and Peter Sanders‡

October 1, 2007

Abstract

Depth-first search (DFS) is the basis for many efficient graph algorithms. We introduce general
techniques for efficient implementations of DFS-based graph algorithms and exemplify them on three
algorithms for computing strongly connected components. The techniques lead to speed-ups by a factor
of two to three compared to the implementations provided by LEDA and BOOST. We have obtained
similar speed-ups for biconnected components algorithms. We also compare the graph data types of
LEDA and BOOST.

1 Introduction

Depth-first search (DFS) is the basis for many efficient graph algorithms. We introduce general techniques
for the efficient implementation of DFS-based graph algorithms and exemplify them on three algorithms
for strongly connected components of digraphs. The techniques lead to speed-ups by a factor of two to
three compared to the implementations provided by LEDA [MN99, LED] and BGL (BOOST Graph Li-
brary) [Boo], see Figure 1. The techniques apply to all DFS-based graph algorithms. We have already
applied them to biconnected components algorithms and obtained similar speed-ups.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 500 1000 1500 2000
n/1000

BGL (builtin)
LEDA (builtin)

CMG (improved)
T (improved)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1024 256 64 16 8 4 2 1
m/n

BGL (builtin)
LEDA (builtin)

CMG (improved)
T (improved)

Figure 1: The running time per edge of four different SCC-implementations (in µs): the built-in imple-
mentations of BGL and LEDA and the optimized T- and CGM-programs. The figure on the left shows the
times for different n and fixed edge density m/n = 10 and the figure on the right shows the times for fixed
m = 223 and different values of m/n. The running times of the optimized versions of T and CGM are
essentially identical.

A strongly connected component (SCC) of a directed graph (digraph) G = (V, E) is a maximal subset
of nodes C with the property that there is a directed path between any two nodes in C. Computing SCCs

∗MPI Informatik, Saarbrücken, Germany
†Universität Trier, Germany, naeher@uni-trier.de.
‡Universität Karlsruhe (TH), Germany, sanders@ira.uka.de. Partially supported by DFG grant SA 933/3-1.

1

means to label the nodes such that any two nodes belong to the same SCC iff they have the same label.
There are three different linear time algorithms for this problem, all based on depth-first search: Tarjan’s
algorithm [Tar72], the Cheriyan-Mehlhorn-Gabow1 algorithm [CM96, Gab00], and the Kosaraju-Sharir al-
gorithm [Sha81]. We refer to these algorithms as the T-, CMG-, and KS-algorithms, respectively. KS
performs two passes of DFS, one on G and one on the reversed graph; the other two algorithms rely on a
single DFS with somewhat more complex bookkeeping.

Modern processors are complex computing engines and the actual running time of a program is mainly
determined by three factors: (1) the number of instructions executed, (2) efficient use of the processor
pipeline, and (3) efficient use of the cache memory. In particular, cache faults carry a high penalty.

We will next sketch two of our speed-up techniques. Graph algorithms assemble information about the
input graph during their execution. Part of this information is associated with nodes, e.g., for a node we may
record whether DFS has reached it, the DFS-number, the number of the component containing it, and so on.
It is natural, to reserve separate storage locations for the different pieces of information. However, this is
frequently wasteful and leads to an unneccesarily large memory footprint and hence an unneccesarily large
number of cache faults. The different node labels are typically relevant at different times during execution
and hence can be combined into a single location. For example, node label zero may indicate that DFS
has not reached a node yet, a negative node label may indicate that the node has been reached and record
the (negated) DFS-number, and a positive node label may indicate that the node is completed and has been
assigned to an SCC. Another example is that a particular label is only relevant while the DFS-call for the
node is active. Then the information is best stored on the recursion stack.

DFS only needs access to the edges leaving a node. Therefore, a very simple graph representation
suffices. All edges leaving a node a stored in a common array. The arrays for different nodes may be
combined into a single array. The static graph types of BGL and LEDA use this representation. On this
representation, scanning the graph may incur up to 2n + m/B cache faults, one for each call, one for each
return, and one for each block of B edges. Here B is the size of a cache line measured in number of
edges that fit into a cache line. We give an alternative implementation where the number of cache faults lies
between n+m/B and n+3m/B. The edges emanating from a node are pushed onto a stack of edges when
the node is first encountered by DFS. Then the next edge to be explored is always on the top of the stack
and there is no cache fault when control returns from a recursive call and resumes the scan of an adjacency
array.

Besides the technical contribution, our paper should also be useful teaching material for a course in
algorithms or algorithm engineering, as it shows how careful analysis of even a simple program can lead
to significant improvements in running time. The forthcoming textbook [MS07] contains implementation
notes that hint towards efficient implementations. In fact, the current paper grew out of the implementation
notes for the chapter on graph traversal.

The structure of this paper is as follows. In Section 2 we review the algorithms and in Section 3 we
discuss the improvement techniques. Section 4 gives implementation details and Section 5 describes and
discusses the experiments. Finally, Section 6 offers a short conclusion. The Appendix shows some sources.

2 The Basic Algorithms

All SCC algorithms discussed in this paper are based on DFS. They take a directed graph G as input and
compute a node array compNum of integers indicating the component number of each vertex. Figure 2
gives a generic version of DFS from which the different SCC algorithms can be instantiated by defining the
operations Init , TreeEdge, NonTreeEdge, FinishTreeEdge, and FinishNode. Furthermore, all algorithms
use a DFS-numbering of the nodes that gives the order in which nodes are visited. We will write u ≺ v if u
has been visited before v. Sometimes they also need to know whether a node v is finished, i.e., whether the
call dfs(v) has been completed.

The algorithm of Kosaraju-Sharir: First, use DFS (G) to compute the order in which nodes are finished
(finishing times). Second, mark all nodes as unvisited, traverse them in order of decreasing finishing time,

1This algorithm was first described by Cheriyan-Mehlhorn [CM96] and later rediscovered by Gabow.

2

procedure DFS (G)
mark all nodes unvisited;
Init ;
forall v ∈ V do

if v is unvisited then
dfs(v);

fi;
od;

procedure dfs(v)
mark v visited;
TreeEdge(v);
forall w ∈ V with (v, w) ∈ E do

if w is unvisited then
dfs(w);
FinishTreeEdge(v, w)

else
NonTreeEdge(v, w);

fi;
od;
FinishNode(v);

Figure 2: Depth-first search of a directed graph G = (V, E)

and call dfs(v) on the reverse graph Grev for each still unvisited node v. Each call will visit exactly a
strongly connected component of G.

Init :
sccCount := 0;
open := empty stack;

TreeEdge(v):
lowPoint[v] := v;
open .push(v);

FinishTreeEdge(u, v):
if lowPoint[v] ≺ lowPoint[u] then

lowPoint[u] := lowPoint[v];
fi;

NonTreeEdge(u, v):
if v open and v ≺ lowPoint[u] then

lowPoint[u] := v;
fi;

FinishNode(v):
if lowPoint[v] = v then

repeat u := open .pop();
compNum[u] := sccCount ;

until u = v;
sccCount++;

fi;

Figure 3: Instantiation of basic DFS operations for Tarjan’s algorithm.

The algorithm of Tarjan: Consider the execution of DFS (G) and use Gc = (Vc, Ec) to denote the
currently explored subgraph, i.e., Vc comprises the visited nodes and Ec comprises the explored edges. We
call an SCC of Gc open if it contains an unfinished node (= a node v for which DFS (v) has not finished
yet) and closed otherwise. We call a node v open if v belongs to an open component and closed if it belongs
to a closed component. For every closed node v the number of its SCC is already known and stored in
compNum[v].

The algorithm maintains a stack open of all open nodes and stores for every open node v its so-called
lowpoint in a node array lowPoint such that lowPoint [v] is the node with the smallest dfs-number among
all nodes that are reachable from v by a path of tree edges followed by one non-tree edge including node v
itself. It it not difficult to see that a currently completed node v (at the end of dfs(v)) is a root of an SCC if
and only if v = lowPoint [v]. Then v and all nodes with a larger dfs-number can be removed from the stack
open . They form a new SCC. The basic operations are shown in Figure 3.

The algorithm of Cheriyan-Mehlhorn-Gabow: The algorithm is similar to Tarjan’s algorithm. In every
component, the node with the smallest DFS-number in the component is called the representative or root of

3

Init :
sccCount := 0;
roots := empty stack;
open := empty stack;

TreeEdge(v):
roots .push(v);
open .push(v);

NonTreeEdge(u, v):
if v is open then

while v ≺ roots .top() do
roots .pop();

od;
fi;

FinishNode(v):
if v = roots .top() then

roots .pop()
repeat u := open .pop();

compNum[u] := sccCount ;
until u = v;
sccCount++;

fi;

Figure 4: Instantiation of basic DFS operations for Cheriyan-Mehlhorn-Gabow.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1024 256 64 16 8 4 2 1
m/n

CMG original
CMG overlayed

CMG with edgeStack
CMG non-recursive

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1024 256 64 16 8 4 2 1
m/n

Tarjan original
Tarjan overlayed

Tarjan with edgeStack
Tarjan non-recursive

Figure 5: The performance improvements obtained for CMG and T by the optimizations described in Sec-
tion 3. The time per edge is shown in µs ; m/n varies and m = 223. We turned on one optimization after
the other.

the component. The idea of the AGM-algorithm is to maintain the strongly connected components of Gc

during the execution of DFS (G).
Open components are represented by two stacks open , and roots of open nodes stored in order of

increasing DFS number. Stack open keeps all open nodes and roots only roots, i.e, the nodes of roots

always form a subsequence of the nodes in open . With these definitions in place, the basic operations
become very simple. They are shown in Figure 4.

Note that the total number of executions of the loops in these operations is O(n) since each iteration
pops data from a stack that experiences at most n push operations. Moreover, the operations on the stacks
will be very fast in practice, since stacks have good cache locality.

3 Performance Improvements

We will first describe our improvements for the CMG algorithm, mostly because this is the algorithm for
which we implemented them first. Then we discuss modifications needed for the other algorithms. Our main
concern will be large graphs where cache faults due to random memory accesses are the main cost factor.

Overlayed Node Data: Besides the graph itself, CMG needs to store and access four kinds of information
for each node v: an indication whether v is marked, an indication whether v is open, something like a DFS-
number in order to implement ‘≺’, and, for closed nodes, the representative of its component (the output).
It seems that previous implementations kept this information separate leading to significant space overhead
and many cache faults. The array compNum suffices to keep this information. For example, if NodeIds

4

are integers in 1..n, compNum[v] = 0 indicates an unmarked node. Negative numbers indicate negated
DFS-numbers so that u ≺ v iff compNum[u] > compNum[v]. This works because ‘≺’ is never applied to
closed nodes. Finally, the test w ∈ open simply becomes compNum[v] < 0. Gabow’s description [Gab00]
of the algorithms already describes some of these optimizations.

Graph Representation: Since the graph is static and only outgoing edges need to be known, a very simple
adjancency array representation suffices. Nodes are numbered 1 through n. A single edge array E[1..m]
stores the target nodes of all edges grouped by source node. A vertex array V [1..n + 1] stores the starting
position of the edges for each node so that E[V [v]..V [v +1]−1] stores the target nodes of the edges leaving
node v (V [n + 1] = m). This leaves an important choice for storing the node array compNum: Store it as
a separate array or make he vertices a record with two fields. For sufficiently large n, the latter choice has
better cache locality since the adjancency information and the compNum of a node are frequently accessed
together.

Make the Common Case Fast: Except for very sparse graphs, the most frequently executed operation is
NonTreeEdge. This operation needs to know the DFS-number of roots.top(). Hence, we redefine roots to
store DFS numbers rather than NodeIDs of representatives. The only other access to the content of roots (in
FinishNode, “v = roots.top()?”) does not become much more expensive either, since the DFS-number of
v can be stored on the recursion stack (i.e., in a local variable).

Reducing Accesses to the Graph: DFS performs a sequential scan of the edges leaving a node v. How-
ever, interruptions by recursive calls can lead to additional cache faults when accessing the adjancency list
of v. It therefore makes sense to copy the adjacency list to the recursion stack once and for all when it is
first accessed. All remaining accesses can then be served from the stack. This is more cache efficient since
stacks have very good cache locality independent of the access pattern. A remaining problem is that C++
does not support variable size arrays on the stack. Hence, we use a separate stack for storing the copied
adjacency arrays. In a sense, we create a new representation of the graph with a layout tuned for the order
in which the nodes are accessed by DFS.

Nonrecursive Implementation: Traditional wisdom tells us that recursive algorithms can be tuned by
making them nonrecursive. This is always possible by maintaining a stack explicitly. This can be more
efficient because we have more control over content and representation of the stack. However, so far our
experiments show little difference. Apparently, modern compilers are good at keeping only things on the
stack that are really changing between the recursive calls.

Tarjan’s Algorithm: All optimizations above are also applicable to Tarjan’s algorithm. An additional
optimization which was already discussed by Sedgewick in [Sed92] is as follows: Low points do not have to
be stored in a node array since lowpoint data has to be available only for the current node v and the neighbor
node w that was just visited by a recursvive call dfs(w) (in FinishTreeEdge). It is sufficient to keep the
current lowpoint of v in a local variable and to make dfs(w) return the lowpoint of w. This improvement
makes Tarjan’s algorithm more elegant. In fact, after the optimization, the T- and the CMG-algorithm are
quite similar. The latter has an additional stack where the former needs an additional entry on the recursion
stack.

Kosaraju-Sharir: Most of the above optimizations are also relevant for this algorithm. The first pass
can be simplified to the extent that not even finishing times need to be stored in a node array. Instead, a
FinishNode operation simply pushes the NodeId on a stack constituting the output. Computing the reverse
graph is in itself not so easy. It is comparable to sorting the edges by their target node. Although cache
efficient integer sorting algorithms might help here, the cost is not negligible. Even if the input graph
already has reverse edges available, we still end up with two passes rather than one pass. Within the passes,
only the cheapest operations (stack accesses,. . .) can be saved compared to the one-pass algorithms. The
bottom line is that Kosaraju-Sharir does not look promising for a high performance implementation. Its
main asset is its simplicity.

5

4 Implementation

For the implementation we used four different kinds of graph data structures: LEDA dynamic and static
graphs, BOOST static graphs, and a simple hand coded graph data structure.

In order to use the same code base for LEDA and BGL graphs we used an adapter class that makes the
typical LEDA iteration macros and node_array syntax usable for BGL graphs as well. When working with
LEDA graphs it is possible to choose whether the compNum array is stored externally as a node_array or
whether this data should be stored directly in the node objects of the graph by using a node_slot. The latter
gives much better performance, in particular, when used together with a static graph structure. A detailed
description of static graphs and node slots can be found in [NZ02].

For the recursive versions of the code, it is necessary to work with a unlimited system stacksize. On
most operating systems the program stacksize is limited by default to a very small quantity. This will most
definitely cause stack overflow errors for large inputs. The stacksize can be set by using the limit command
on Linux (limit stacksize unlimited).

5 Experiments

For our experiments we use random graphs with varying n and m. We performed two sets of experiments,
one for varying n and fixed edge density m/n = 10 and one for fixed number of edges m = 223 and varying
n. For all algorithms under consideration, the number of instructions executed is almost independent of the
graph. Also, random graphs are not likely to be easy cases since random edges imply many random memory
accesses. In the following discussion we concentrate on large graphs with 223 edges in order to see caching
effects clearly. The implementation was done using gcc version 4.1 using LEDA 5.0 and the Boost graph
library version 1.34.1. Optimization level was -O2 producing 32 bit code. We report running times on one
core of a PC with 2 GByte of memory and a 2.4 GHz Intel processor model Core2-Duo 6600 . We obtained
very similar results for AMD Opteron and SUN Sparc processors.

Figure 1 compares the performance of our best implementations for T and CMG with previous im-
plementations. We use the static graph data structure from LEDA and all the optimizations outlined in
Section 3. The source codes can be found in the appendix. We see that the tuned versions of T and CMG
have essentially the same performance and are significantly faster than the built-in implementations of BGL
and LEDA. We also see that the running time per edge decreases with increasing edge density m/n. This is
easily understood. The running time of the algorithms depends linearly on n and linearly on m, however the
dependence on n comes with a larger factor of proportionality. Note, that tree edges cause recursive calls
(but there are only n− 1 of them) and that only n− 1 non-tree edges can cause the merging of components
in CMG. In T we may have Θ(m) changes of lowpoint values, but these are assignments to local variables
and hence almost free. Since the dependency on n comes with a larger factor of proportionality, the running
time per edge decreases as a function of m/n for fixed m.

Of course, it is difficult to explain the sources of differences when the underlying algorithm, implemen-
tation details, and graph representation are changed at the same time. So let us look at one aspect after the
other. Figure 5 shows the effect of our different optimizations applied to CMG and Tarjan’s algorithm. In
all cases, we use LEDA’s static graphs to represent graphs. After showing the performance of the original
algorithm, we turn on one optimization after the other: First, the overlayed node data improvement, then the
edge stack to reduce accesses to the graph, and finally a non-recursive version with both improvements. The
diagrams show that the first improvement reduces the running time of both algorithms by a factor of about
two, the edge stack gives another improvement of about 10 percent, whereas the non-recursive implementa-
tion only yields a marginal improvement.

Figure 6 shows the effect of different graph representations on the running time of tuned CMG. We
see that LEDA’s static graph data structure performs best, the BGL implementation comes in second, and
LEDA’s dynamic graphs come in last. This is to be expected as LEDA’s dynamic graphs offer more constant
time update operations than BGL’s graphs and LEDA’s static graphs offer only a small number of update
operations. We explain the difference between LEDA’s static and dynamic graphs.

6

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1024 256 64 16 8 4 2 1
m/n

CMG (LEDA dynamic)
CMG (BGL static)

CMG (LEDA static)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1024 256 64 16 8 4 2 1
m/n

KS
DFS

CMG
Tarjan

Figure 6: The figure on the left shows running times of the tuned version of CMG-algorithm with BGL
static and LEDA static and dynamic graph representation. The figure on the right compares four algorithms:
Kosajaru-Sharir, Cheriyan-Mehlhorn-Gabow, Tarjan, and simple DFS labelling

The static graph representation stores all edges in a single array, the dynamic representation uses linked
lists for the adjacency lists. The random graph generator ensures that the adjacency list of each vertex is
stored in consecutive locations. So the difference in running time is due to the fact the dynamic representa-
tion uses substantially more space.

Finally, Figure 6 shows the running time of the tuned versions of all three algorithms together with the
running time of a simple DFS-scan. We see that the DFS-scan takes almost as much time as the two one-pass
algorithms. A DFS-scan provides a lower bound for the execution time of any DFS-based algorithm. Thus
the tuned versions of T and CGM are essentially optimal and KS must take at least twice the time of the
other algorithms. In fact, it is worse since the reversed graph must be computed in addition.

6 Conclusion

We have shown that implementation details have an (for us unexpectedly) high impact on the performance
of SCC algorithms. It is very likely that this extends to other algorithms based on DFS. In particular,
reducing accesses to the graph will work for any DFS-based algorithm like DFS numbering, topological
sorting, st-numbering, and others. Overlaying the node data is more interesting for non-trivial algorithms
like biconnected components ([Tar72]), triconnected components([HT73]), or planarity testing ([HT74]).
Figure 7 shows that our techniques also lead to substantial speed-ups for biconnected component algorithms.

We have not yet looked on the influence of the graph structure on performance. Sibeyn et al. [SAM02]
have looked at ways to handle large graph using semiexternal algorithms where node descriptions fit into
fast memory but edges only on slow external memory with blocked access. Although the methods used
there are too complex to look promising for the cache-main-memory hierarchy, some ideas like reordering
nodes or adjacency lists might turn to be relevant also for internal memory algorithms.

We have tried prefetching instructions in order to hide memory access latencies — so far without success.

References

[Boo] Boost.org. boost C++ Libraries. www.boost.org.

[CM96] J. Cheriyan and K. Mehlhorn. Algorithms for dense graphs and networks on the random access
computer. Algorithmica, 15:521–549, 1996.

[Gab00] H. N. Gabow. Path-based depth-first search for strong and biconnected components. Information
Processing Letters, 74(3–4):107–114, 2000.

7

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 5 10 15 20
n/1 000 000

BCC (original)
BCC (overlayed)

BCC (edgeStack)

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 1024 256 64 16 8 4 2 1

tim
e

pe
r e

dg
e

m/n

BCC (original)
BCC (overlayed)

BCC (edgeStack)

Figure 7: The running time per edge of three different biconnected components implementations (in µs):
the original algorithms ([Tar72]) and the effect by applying the overlayed node data and edgeStack im-
provements one after the other. The figure on the left shows the times for different n and fixed edge density
m/n = 10 and the figure on the right shows the times for fixed m = 223 and different values of m/n.

[HT73] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM J. Comput.,
2(3):135–158, 1973.

[HT74] J. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. of the ACM, 21(4):549–568, 1974.

[LED] LEDA (Library of Efficient Data Types and Algorithms). www.algorithmic-solutions.com.

[MN99] K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial and Geometric Computing.
Cambridge University Press, 1999.

[MS07] K. Mehlhorn and P. Sanders. Algorithms and Data Structures — The Basic Toolbox. Springer,
2007. in preparation.

[NZ02] Stefan Näher and Oliver Zlotowski. Design and implementation of efficient data types for static
graphs. Lecture Notes in Computer Science, 2461:748–759, 2002.

[SAM02] J. F. Sibeyn, J. Abello, and U. C. Meyer. Heuristics for semi-external depth first search on
directed graphs. In Proceedings of the 14th Annual ACM Symposium on Parallel ALgorithms and
Architectures (SPAA-02), pages 282–292, New York, August 10–13 2002. ACM Press.

[Sed92] R. Sedgewick. Algorithms in C++. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1992.

[Sha81] M. Sharir. A strong-connectivity algorithm and its applications in data flow analysis. Computers
and Mathematics with Applications, 7(1):67–72, 1981.

[Tar72] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on Computing,
1:146–160, 1972.

8

Appendix: Selected Sources

Tuned Cheriyan-Mehlhorn-Gabow
template <class graph_t>
class STRONG_COMPONENTS_CMG {

int dfsCount;
int sccCount;

template<class compNumArray>
void dfs(const graph_t& G, node v, compNumArray& compNum, b_stack<node>& edgeStack,

b_stack<node>& open,
b_stack<int>& roots)

{ int dfsNum = --dfsCount;
compNum[v] = dfsNum;
roots.push(dfsNum);
open.push(v);

int sz = edgeStack.size();

edge e;
forall_rev_out_edges(e,v) edgeStack.push(G.target(e));

while (edgeStack.size() > sz)
{ node w = edgeStack.pop();

int d = compNum[w];
if (d >= 0) continue;
if (d == -1)
dfs(G,w,compNum,edgeStack,open,roots);

else
while (roots.top() < d) roots.pop();

}

if (roots.top() == dfsNum)
{ node u;

do { u = open.pop();
compNum[u] = sccCount;

} while (v != u);
roots.pop();
sccCount++;
}

}

public:

template<class compNumArray>
int run(const graph_t& G, compNumArray& compNum)
{ int n = G.number_of_nodes();
int m = G.number_of_edges();
b_stack<node> edgeStack(m);
b_stack<int> roots(n);
b_stack<node> open(n);
dfsCount = -1; sccCount = 0;

node v;
forall_nodes(v,G) compNum[v] = -1;

forall_nodes(v,G)
if (compNum[v] == -1) dfs(G,v,compNum,edgeStack,open,roots);

return sccCount;
}
};

9

Tuned Tarjan
template <class graph_t>
class STRONG_COMPONENTS_TARJAN {

int dfsCount;
int sccCount;

template <class compNumArray>
int dfs(const graph_t& G, node v, compNumArray& compnum, b_stack<node>& edgeStack,

b_stack<node>& open)
{ int dfsNum = dfsCount++;
int lowPoint = dfsNum;
compNum[v] = dfsNum;
open.push(v);

int sz = edgeStack.size();

edge e;
forall_rev_out_edges(e,v) edgeStack.push(G.target(e));

while (edgeStack.size() > sz)
{ node w = edgeStack.pop();

int d = compNum[w];
if (d == -1) d = dfs(G,w,compNum,edgeStack,open);
if (d < lowPoint) lowPoint = d;
}

if (dfsNum == lowPoint)
{ node u;

do { u = open.pop();
compNum[u] = sccCount;

} while (u != v);
sccCount++;
}

return lowPoint;
}

public:

template <class compNumArray>
int run(const graph_t& G, compNumArray& compNum)
{
int n = G.number_of_nodes();
int m = G.number_of_edges();

b_stack<node> edgeStack(m);
b_stack<node> open(n);

dfsCount = -(n+1); sccCount = 0;

node v;
forall_nodes(v,G) compNum[v] = -1;

forall_nodes(v,G)
if (compNum[v] == -1) dfs(G,v,compNum,edgeStack,open);

return sccCount;
}

};

10

