n

Infofylica

) Springer-Verlag 1984

Acta Informatica 21, 339-374 (1984)

Randomized and Deterministic Simulations of PRAMs
by Parallel Machines with Restricted Granularity
of Parallel Memories*

Kurt Mehlhorn' and Uzi Vishkin?

! Fachbereich 10, Universitit des Saarlandes, D-6600 Saarbriicken (Fed. Rep.)
2 Courant Institute, New York University, 251 Mercer Street, New York, NY 10012, USA

Summary. The present paper provides a comprehensive study of the follow-
ing problem. Consider algorithms which are designed for shared memory
models of parallel computation (PRAMs) in which processors are allowed
to have fairly unrestricted access patterns to the shared memory. Consider
also parallel machines in which the shared memory is organized in modules
where only one cell of each module can be accessed at a time. Problem.
Give general fast simulations of these algorithms by these parallel ma-
chines.

Each of our solutions answers two basic questions. (1) How to initially
distribute the logical memory addresses of the PRAM, to be simulated,
among the physical locations of the simulating machine? (2) How to com-
pute the physical location of a logical address during the simulation?

We utilize two main ideas for the first question.

(a) Randomization. The logical addresses are randomly distributed
among the memory modules. This is done using universal hashing.

(b) Copies. We keep copies of each logical address in several memeory
modules.

In a typical time cycle of the PRAM some number of memory requests
has to be satisfied. As a primary objective, our simulations minimize the
maximum number of memory requests which are assigned to the same
module. Our solutions also optimize the following computational resources.
They minimize the size of the physical memory, the time for computing the
mapping from logical to physical addresses and the space for storing this
mapping.

We discuss extensions of our solutions to various PRAMs and various
shared memory parallel machines. Our solution is also applicable to syn-
chronous distributed machines with no shared memory where the processors
can communicate through a bounded degree network.

* A preliminary version of this paper was presented at the 9th Workshop on Graphtheoretic
Concepts in Computer Science (WG-83), Fachbereich Mathematic, Universitdt Osnabriick, June
1983

340 K. Mehlhorn and U. Vishkin

L. Introduction

Consider algorithms designed for models of parallel computation in which
processors have access to a shared memory. Consider also parallel machines in
which this shared memory is organized in modules where only one cell of each
module can be accessed at a time.

The problem of simulating these algorithms on these parallel machines is
the problem of granularity of parallel memories (granularity, in short). Every
intuitive idea for coping with the granularity problem has to be analyzed for
different formal settings of assumptions for both the model of parallel com-
putation and the parallel machine. In order to overcome this difficulty we
present our main ideas on a setting of assumptions which enables us to
simplify the presentation by limiting the discussion to the actual problem
which is overcome by our ideas. Extensions of the ideas to other models of
computation and machines are given later in the paper.

We study ways by which the second parallel machine model below can
simulate the first. Both machine models employ p processing elements (PE’s or
processors) which operate synchronously and N common memory cells. In the
first model each processor has access to each of the N cells in each time unit.
We forbid only the case where two (or more) processors seek access to the
same cell at the same time. This is the Exclusive-Read Exclusive-Write Paral-
lel Random Access Machine (EREWPRAM). It is based on [11]. Our second
model of computation is called Module Parallel Computer (MPC). The com-
mon memory of size N is partitioned into m memory modules. Say that at the
beginning of a cycle of this model the processors issue R; requests for ad-
dresses located in cells of module j, 0Sj<m—1. Let R, ,,=max {|R|0<j<m
—1}. Then the requests for each module are queued in some order and
satisfied one at a time. So a cycle takes R, time. We assume that im-
mediately after a simulation of a cycle is finished every processor knows it. The
problem of simulating efficiently one cycle of the EREWPRAM by the MPC
is taken as the definition of the granularity problem in the next two chapters
which include the main contribution of this paper. When N=m the MPC can
simulate a cycle of the EREWPRAM in one time unit while when N=mp a
naive simulation may result in R, as large as p.

The survey paper [10] emphasizes the importance of the granularity prob-
lem. It reports about the considerable attention this problem has received in
the literature by mentioning fourteen papers that dealt with it. Most of these
papers suggest strategies for partitioning the memory addresses among the
modules for algorithms that either have access patterns which are known in
advance or have access patterns in successive time units which satisfy some
probabilistic assumptions. Our attitude is completely different. We present
solutions and analyses for the general problem of simulation. They do not
depend on the access behaviour of the algorithms being simulated. This is in
sharp contrast to both classes of past research mentioned above. In this spirit
[21] observed that in a few general cases the idea of dynamically changing
location of addresses among modules throughout the performance of an algo-
rithm enables efficient simulations utilizing only a moderate number of mod-
ules (m=p).

Randomized and Deterministic Simulations of PRAMs 341

Our research is motivated by the Ultracomputer project. The NYU-Ultra-
computer group [9] believes that a machine using 4096 processors and 4096
memory modules will be available by 1990. The MPC represents actually, an
abstract Ultracomputer design which idealizes only one point: the intercon-
nection of processors and memory modules. A significant part of this project
involves heuristics for difficulties related to the granularity problem. The
Ultracomputer is a general-purpose parallel computer that may be used for
any parallel algorithm. Our general solutions are, therefore, of particular re-
levance to its design.

There is an even stronger relation between the present paper and the
parallel-design distributed-implementation (PDDI) machine, proposed in [18].
The PDDI machine forms a counterpart to the Ultracomputer which differs
from it mainly at the following point. Its interconnection network, between
processors and memories, performs well in the worst case while the intercon-
nection network of the Ultracomputer performs well in the average (as was
indicated by many simulations). In order to explain how the PDDI paper and
the present paper complement one another we need the following simulation
problem. Consider algorithms designed for models of parallel computation in
which processors have access to a shared memory. (We refer to this models as
PRAMs in short. So far it is similar to the granularity problem). Consider also
synchronous distributed machines with no shared memory where the pro-
cessors can communicate through a bounded degree network which is fixed.
The problem is to simulate these algorithms on such a distributed machine.
Let us explain first why this problem is important. Many efficient algorithms
for abstract PRAMs have been been published in recent years. Because of the
relative simplicity of the PRAMs it is widely accepted that these models
provide a desirable setting for the design of parallel algorithms. On the other
hand, this model of synchronous distributed machines represents technologi-
cally feasible machines. Therefore, the theory of parallel computation has to
provide a solution for this problem. (This discussion on desireable and feasible
models of parallelism follows [15].) Awerbuch, Israeli, Shiloach, Schwartz and
Upfal solved this simulation problem directly.

However, we suggest a different strategy. It is suggested to combine our
solutions for the granularity problem together with the PDDI computer into
an efficient solution for the simulation problem. This combining can be done
with a relatively small effort that does not require any new ideas.

The efficiency of our solution compares favorably with other solutions. Let
us also mention a few advantages of our strategy over a direct solution. (1) The
granularity problem and the interconnection problem of processors and mem-
ories (solved by the PDDI) seem to be each considerably simpler than the
simulation problem. (2) Each of these problems has the flavor of a theoretically
basic problem since they overcome a basic difficulty, and are likely to arise in
other applications. (3) Our strategy demonstrates a methodological application
of randomization in the following sense. We first “clean” the simulation
problem from difficulties that have satisfactory deterministic solutions and only
then apply randomization. Specifically, the PDDI gives a efficient deterministic
solution for the interconnection and routing problem. We already indicated
that a naive deterministic solution must fail to give a good worst case solution

342 K. Mehlhorn and U. Vishkin

for the granularity problem. So, we are remained with the granularity problem
ready to demonstrate that randomization is provably helpful. This is unlike
[17] who applied randomization to the whole simulation problem. For more
on this application see Chapter ['V.

Part of this research can also be motivated by some data base applications;
where, for instance, there are p processes (transactions), m servers (resources,
disks) and N files distributed among the servers, so that each server may serve
at most one process at a time (a resource is locked by a transaction). The case
where a process may require only one file at a time readily fits our framework.
However, a few alternative assumptions regarding how many files can be
required simultaneously by the same process may reflect different circum-
stances. It might be interesting to investigate which such assumptions fits our
framework and possible extensions to others. We do not elaborate on this
motivation any more in this paper.

Each of our solutions for the granularity problem deals with two basic
questions. (1) How to initially distribute the logical memory addresses of the
EREWPRAM among the physical locations of the MPC? (2) How to compute
the physical location of a logical address during the simulation?

We utilize two main ideas for the first question.

(a) Randomization. The logical addresses are randomly distributed among the
memory modules. It is explained later in this paragraph why we have to be
very strict about efficiencies of algorithms for computation of physical lo-
cations of logical addresses (in response to Question 2 above). The key idea
behind the proposed approach is to utilize universal hasing in the simulating
machine. The MPC itself picks at random a hash function from an entire class
of hash functions, instead of a specific hash function. This function is used in
order to distribute the logical address among the memory modules.

(b) Copies. We keep several copies of each logical address in distinct memory
modules.

The impact of these two ideas on R, is as follows. Randomization is
shown to keep memory contention low in the average. The copies idea enables
to decrease memory contention in the worst case.

The second question. Observe that the copies idea requires not only to find
where there is a copy of a requested memory address. It is not less important
to assign each memory request to the ‘right’ copy. Namely, the assignment of
memory requests to copies should be done in a way that takes into account
simultaneous memory requests by other processors or the memory contention
will not be low. There is a typical difficulty that we had to cope with in
algorithms for the second question. Every algorithm we suggest for finding the
physical location of a logical address or for assignment to a physical copy of a
logical address is beneficial only if it is an efficient parallel algorithm. By
efficient we mean that it is very fast and does not use too much local or
common memory. Note that since the worst R, that we want to improve is p,
our algorithms have to be significantly faster than that. We would also like
that the size of the physical memory, and the space for storing the mapping
from logical to physical addresses will be minimized.

Randomized and Deterministic Simulations of PRAMs 343

The paper provides a three stage study of the granularity problem. The
ideas of each stage can be applied separately or in conjunction with the others.
Chapter II studies the first stage which involves applications of the randomi-
zation idea. The first stage is designed to keep us ‘out of trouble’, in the first
place, in the average case. Chapter III studies the second stage which uses the
copies idea. This idea, in conjunction with fast algorithms for picking the
‘right” copy of each address request, is shown to decrease memory contention
in the worst case, for the less fortunate cases of the first stage. Our above
definition of the granularity problem made the third stage somewhat indistinct.
In simulations of other models than the EREWPRAM by the MPC or other
machines, the problem of simulation is not completely solved by specifying for
each address request the module that satisfies it. Problems like scheduling the
requests for a module (in case queues are not available) or combining simulta-
neous requests for the same address in the same module may arise. They are
solved in the third stage which is described in Chapters IV.

11.1. A Probabilistic Simulation

In this section we begin to study a simple probabilistic simulation of PRAMs
on MPCs. Consider a PRAM with p processing elements and a shared memo-
ry of size N. Also consider an MPC wirh p processing elements, and a shared
memory of sizz N which is divided into m modules. More precisely, let
memory module MM;, 0<j<m, contain all (physical) addresses a with
0<a<N and amodm=j.

Our probabilistic simulation is based on universal hashing as introduced by
Carter and Wegman. Let H be a subset of Sy, the full set of permutations of
[0...N—1]. We use elements of H to make the connection between logical and
physical addresses. More precisely, we proceed as follows:

Initialization. Choose he H at random and store h in every processing element
of the MPC. The i-th PE of the MPC will run the same program as the i-th
PE of the PRAM to be simulated. We maintain the invariant that cell h(a) of
the MPC has the same content as cell a of the PRAM for 0SasN-1.

Step by Step Simulation. Let a; be the (logical) address generated by the i-th PE
of the MPC. Apply h to a; and obtain (physical) address b,=h(a,). Issue a
request for memory cell b,. This describes the behavior of the i-th PE of the
MPC, 1 <i<p. Memory module MM, 0<j<m, collects all requests for cells in
MM; and serves them sequentially. When all requests are served the next cycle
of the PRAM is simulated.

Of course, the quality of the simulation described above depends crucially
on class H of permutation used in the simulation. Note that the simulation is
probabilistic because h is chosen at random from class H. We want

1) H to be small; because every PE needs additional local memory of at least
O(log|H|) bits (assuming a suitable encoding) to store an element he H.

2) random elements of H to be easy to generate; because this will hold the
cost of the initialization phase small.

344 K. Mehlhorn and U. Vishkin

3) elements heH to be easy to evaluate; because this determines the cost of
translating from logical to physical addresses.

4) the length of the queues arising in the simulation to be short; because they
essentially determine the quality of the simulation.

We will next study expected queue length in more detail. Let S={a,,a,,
ooy @,y €[0... N—1] be a set of p addresses. Let he H be a permutation. Define

R;(h,S)=|{aeS; h@modm=j}|. 0<j<m,
Rpax(h, 8)= max R;(h,S), and

0<j<m

Rpw=_ max ¥ R, (hS)H|

X Sc[0..N—1] heH
IS|=p
R(h,S) is the length of the queue in front of memory module MM; when
permutation heH is used and set § of addresses is issued by the processors.
R,..(h,8) is the length of the longest queue in front of any memory module

under the same conditions. Next Z R,..(h,S)/|H| is the expected value of R,

heH
(.S). Finally, R_,, is the worst case of that value taken with respect to all
possible sets of p addresses. In other words, R, is the worst case (with respect
to addresses) expected (with respect to random elements of H) length of the
longest queue. Or even less formally, we (the good guys) have to make sure that
no matter which subset S of logical addresses will be specified by the bad guys,
the expected performance of a random element h of H is still not too bad.

We want R_, to be small. What can we expect? In order to get a feeling
for R, we will briefly study a limiting case first: H=S5,, the full set of
permutations of N elements. Note that class S, is much too large (N log N bits
local memory would be required in every processor) to be practically useful.

max X

Theorem 1. Let H=S,, and let m=p (suppose m=16). Then

R_ .. =min(logm/log(m/p), logm/log logm)+ 1

max =

Proof. Let S={a,,...,a,} <[0... N—1] be arbitrary. Let p, ; be the probability
that at least k elements of S are mapped into memory module j by a random
p
k
independent and uniformly distributed. Let p, be the probability that at least k
elements of § are mapped into some memory module. Then

element heS,. Then pk.jg()(l/m)“ since images of different addresses are

P _
PiSPiotPuat o HPim 1S (k)(l/m)“ L

Hence

X
I
S

W= Y k(g —pi+)< Y, min (I, (Z)(]/m)k—l)

k=1 k=1 kz1

Randomized and Deterministic Simulations of PRAMs 345

Since for m=16 we have (p/m)(m/k!)<1 for k=min(logm/log(m/p),
logm/loglogm) and decreases exponentially as a function of k for larger k, we
have

R_ . <min(logm/log(m/p), logm/loglogm)+1 [

max =

We infer from Theorem 1 that R__<1+logm/loglogm if m=p and H=S, and
that R_, <2+1/e if m=p'** and H=S,. Unfortunately, Sy is too large for
our purposes. However, close inspection of the proof of Theorem 1 suggests
methods for finding smaller classes of H which yield essentially the same value
of R, as H=S,. The diagram below shows a plot of a majoring function
of p, as a function of k. Our bound on p, decreases exponentially for k= L:
=min (logm/log (m/p), logm/loglogm). In particular p,<1/p for values of k
exceeding I where L is only slightly larger than L. Quantity R, is the area
under curve p,. The following simple observation is crucial for the sequel:
quantity R_, increases by at most one if p, were equal to 1/p for k= L. Thus
the bound on R, shown in Theorem 1 stays essentially true if we only know

that p, ;= ('Z) (1/m)* for k= L and that p, ; is non-increasing as a function of k.

We will explore this approach in the next section.

I1.2. On the Expected Length of the Longest Chain in Universal Hashing

Universal hashing was introduced by Carter and Wegman. They showed that
very small classes of hash function suffice to obtain an expected case behavior
which is similar to the one of ordinary hashing. We show in this section that
universal hashing is also competitive with respect to expected worst case
behavior.

Definition [5]. Let ceR, keIN, NeN, meN. A multiset H={h; h: [0... N
—1]—-[0...m—17} is ¢ strongly k universal if for all a,...,ae[0... N—1],
pairwise distinct, and all b,,...,b,e[0...m—1],

|{heH; h(a,)=b, for 1<i<k}|<c-|H|/m*. O

As in the preceeding section, let peN and let SS[0... N—1], |S|=p. For heH

let
R__(h,S)= max |{aeS; h(a)=j},

max g
0<Zj<m

346 K. Mehlhorn and U. Vishkin

and let
Ri‘laxz max Z Rmax(h= S)/‘Hi
SE[IOST'—AL_ 1] heH

We are now in a position to state the observation following Theorem 1 as

Theorem 2. Let H be a ¢ strongly k universal multiset of functions from [0... N
—1]to [0...m—1]. Then
RP. <k+cpm(p/m)/k!

max =

for all peN.

Proof. Let SS[0... N—1], |S|=p be arbitrary. Let p,(S) be the probability that
R (h,S)2 i, ie. p(S)=|{heH; Rpp, (h, $)Z }I/|H|. Then 12p, Zp,2p, = ... and

max (

P
anaxz max Z P,(S)
Sc[0...N—-1] j=1
I1Si=p
<k+p max pJ(S)
Se[0...N-1]
ISl=p
Next observe that p,(S)=p, o(S)+p, 1(S)+... + Py pm_1(S) where p, (S) is the
probability that at least k elements of S are mapped onto j. For fixed ay, a,, ...,

a,eS (pairwise distinct) we have

l{heH; h(a)=] for 1 <I<k}| <c|H|/m"

since H is ¢ strongly k univeral. Hence pk_j(S)§C(£) /m“gc(p/m)"/k! and
p(S)Zcm(p/m)/k! for all S. O

Before we give some examples of strongly universal classes we recall the
following lemma.

Lemma [5]. If HS{h; h:[0...N—1]—>[0... N—1]} is ¢ strongly k universal
and r:[0...N—=1]—=[0...m—1] is such that |r-*"()IZ[N/m] for all j, 0<j<m,

then multiset _
H={roh; heH}

is ¢ strongly k universal where é=(m[N/m]/N)¥c.?

Proof. Let a,,...,a,€[0... N—1] be pairwise distinct and let b,,...,b,e[0...m
—17. Then there are at most [N/m]* tuples c¢,, ..., ¢,€[0... N—1] with r(c;)=b,
for 1 i< k. For every such tuple (c,, ..., c,) there are at most ¢|H|/N* functions
heH with h(a)=c; for 1=i<k. Thus H is ¢ strongly k universal with ¢
=([N/m]/(N/m)‘c. O

We will next give some examples. Applications 1 and 2 are based on the
fact that there are small doubly and triply transitive permutation groups. A set

H of permutations of set X is transitive if for all a,be X there is he H such that
h(a)=>h. It is doubly (triply) transitive if it contains a permutation replacing

* Let x be a real number. [x] denotes the smallest integer = x.

Randomized and Deterministic Simulations of PRAMs 347

any whatever given ordered pair (triple) of elements in X by any whatever
ordered pair (triple) of elements in X. The reader may consult [4] for a
detailed discussion. Application 3 uses the fact that a polynomial of degree k is
fixed by its values at k+1 points, i.e. a random polynomial of degree k maps a
set of k+1 points into a random set.

Application 1. Let N be a prime and let H, = {h; h(x)=(ax+b)mod N for some
a,be[0... N —1], a0}, let r(x)=x modm and let H, ={roh; heH,}. Since for
eVvery X,,X;, ¥, y2€[0...N—1], x,#x,, y,+y, there is exactly one pair a,
be[0...N—1] such that y,=ax,+bmodN and y,=ax,+bmodN class H,
is 1 strongly 2 universal and hence H’l is (m[N/m]/N)? strongly 2 universal.
For m=p> we obtain Rf, <2+4/2!=4; note that (m[(N/m)]/N)=2. Finally,

observe that H, is a set of permutations.

Application 2. Let N be a prime. For a,b,c,de[0... N—1] with ad—bc+0
mod N define h, , . ,: [0...N—1Ju{cc} —-[0... N—1]Ju {0} by

afc if x=00
ha.b.c.d(x) =40 if x=d/c
(ax—b)/(cx—d)mod N otherwise

Note that division is well-defined since the integers mod N are a field. Also the
first two clauses in the definition coincide if ¢=0. It is known (a proof can be
found in [4]) that h,, ., is a permutation and that set H,={h,, ., a.b,c,
de[0...N—1], ad —bc+0} is a triply transitive group of permutations, i.e. for
all x,,x,,x; and y,,y,,y,€[0... N—=1Ju {0}, x,,x,,x; pairwise distinct,
there is exactly one heH, with h(x)=y, for 1<i<3. Thus H, is 1 strongly 3
universal and hence I-?z={roh; heH,} and r(x)=xmodm is & strongly 3
universal. Note that (m[N/m]/N)*=8. Thus for m=p? we have R =3+ 8/3!
=13/3. Finally, we want to mention that h, , . ,(x) can be evaluated efficiently
using Euklid’s algorithm (cf. [1], p. 300-302). More precisely, h, , . 4(x) can be
computed in O(log N) arithmetic steps.

Application 3. Let N be a prime, let k be an integer and let H,={h; h(x)
= Y ax'modN for some ¢,€[0... N~1] and a;#0 for some i=1} be the
0<i<k
set of all polynomials of degree at most k— 1. Since for every x,,...,x, and y,,
0 €[0...N—1], x|, ..., x, pairwise distinct, there is at most one non-trivial
polynomial h of degree at most k—1 with h(x)=y, for 1=i<k we conclude
that H, is 1 strongly k universal. Also H,={roh; heH,} is ¢ strongly k
universal with é=(m[N/m]/N)*<(1+m/N)*. Thus for m=p'***~1" we have
RFP <k+6p2+2i(k—1)p7[2ltk—l}]k/k!

<k+¢/k!
Another interesting choice is k=3 Inp/Inlnp and m=p. Then

RP. <k+¢ép?/k!=0(Inp/lnlnp).

max =

348 K. Mehlhorn and U. Vishkin

Application 3 should be compared with Theorem 1. It states that if the class of
hash functions is restricted to the set of all polynomials of degree at most
3lnp/Inlnp (note that there are only N?"P'"'"P such functions) then the
expected worst case behavior is as good as if we use all hash functions (and
there are NV of those). Similarly, if m=p'** and k=1+2/¢ for some &¢>0 and
if the class of hash functions is restricted to the set of polynomials of degree at
most k—1 (note that there are only N*~!'=N?* such functions) then the
expected worst case behavior is almost as good (except for a multiplicative
factor of two) as if we use all hash functions (and here are NV of those).
Unfortunately, class H, is not a class of permutations and hence class H,
cannot be directly used in simulating PRAMs by MPCs.

Example 1. Example 1 is slightly more difficult to treat; it is not a direct
application of Theorem2. Let N=2" and m=2" Then [0...N—1] can be
identified with the bit vectors of length n, ie. [0...N—1]={0,1}" The bit
vectors of length n form a vector space of dimension n over the field of two
elements. In a vector space we can use linear transformations to map any set
of (linearly independent) vectors into any other set of vectors. This suggests to
consider H,={h;h: {0,1}"—{0,1}" and h(x)=Mx for some n by n (0,1) -
invertible matrix M},

Here matrix multiplication is over the field of two elements. It is important
for the application in Sect. I13 that H, is a set of permutations. As before, let
r(x)=xmodm and H,={roh; heH,}.

Before we analyze the behavior of class H, we show that elements of H,
are easy to find by a probabilistic algorithm. More precisely, we show that a
significant fraction of all (0, 1)-matrices is invertible.

Lemma 1. [H,|= [] (2"—2)=2""/".
0Zis=n-1

Proof. Lemma 1 is well known and can be found for example in E. Artin:
Geometric Algebra. We include the very short proof for the sake of complete-
ness. Choose M column by column. When columns 1 to i have been chosen
(and are linearly independent) then column i+1 must be different from all
linear combinations of columns 1 through i. Hence there are 2"—2' choices for
column i+ 1. Thus

|| =(@"—1)(2"—2) .. (2"—2"-1)

=2 n (1=279.
i=1
Next observe that
ﬁ (1 —2_i)§ei In(1—=2-9
i=1 -
—(7/5) Z 27
=e i=1 since In(l —x)= —7x/5for 0Zx=1/2

IV

e 5, O

Randomized and Deterministic Simulations of PRAMs 349

Lemma 1 shows that at least 25%, of all (0, 1)-matrices are invertible. Hence
invertible (0, 1)-matrices can be found by taking a few random (0, 1)-matrices
and checking for singularity by Gaussian elimination. We will next show that
H, is a good class of hash functions.

For x,,X,,...,X, a set of vectors we write dim(x,, x,,...,x,) to denote the
dimension of the space spanned by x, ..., x,. Also, if xe{0,1}" we write x, for
the b-dimensional vector consisting of the last b components of x.

Lemma 2. Let a,...,a,€{0,1}", pairwise different. Let d=dim(a, —a,, ..., a,
—a,). Then
n2
{M;(Ma,),=(Ma,),=...=(May),}| £2 m.

Proof. If (Ma,),=...=(Ma,), then (M(a, —a))),=0 for 2<i<k. Assume w.lo.g.
that a, —a,, ...,a, —a,,, are linearly independent. Let X be the n by d matrix
whose columns are a, —a,, ...,a, —a,,,. Let X, be the first d rows of X and
let X, be the remaining n—d rows. Assume w.l.o.g. that X, is non-singular. Let
M’ be the matrix consisting of the first b rows of M. Let M, consist of the first
d columns of M’ and let M, consists of the remaining n—d columns. Then

M, X, +M,M,=0
or
M,=—M,X,X[".

Thus M, is determined by the choice of M, and hence there are at most 2" ="
=2""/m? matrices M such that (Ma,),=...=(Ma,),. Recall that m=2°. [

Lemma 3. Let S=1{a,,...,a,} {0, 1}~ Let t, , be the number of subsets of S of
cardinality k and dimension 1. Then

fkis (?) (kz—r 1)‘

In particular, t, ;=0 for 2'+1<k.

Proof. Any subset of cardinality k and dimension [can be written as a set of
linearly independent elements plus a set of k—[vectors which are linear

combinations of the first | elements. There are only ([;) choices for the first set
!

2
and only () choices for the second set. [

k—1
We are now in a position to estimate the behavior of class H,. Let S={a,,

a,, ..., a,} {0, 1}" be arbitrary. As above, let
pi=prob (R, (h)= k)=|{he A ; R, (h, S)Z K}|/|\H,|

max(max

Lemmad.a) p,Z2p,=p;2...

b) pScmy. t, m~" where c=¢€'"®
1z0

¢) p.=2em(p2kim)ti =1 for 2=k=<logm/p—1.

350 K. Mehlhorn and U. Vishkin

Proof. a) obvious.

b) We have
<Y Y |{heH,; h maps all points of 4 into the same location}|/|H |
t=z0 \fﬂg_sk
dimA=1
é z c/m”l
120 A<S, |Al=k
dimA=1
by Lemma [, 2 and the observation that dimA=I, A={a,,...,a,} implies

dim(a, —a,,,a;, —aq)=1—-1

by the definition of ¢, ,. This proves part b).
c) For k=2 we have t, ;=0 for I<logk—1. Hence by part b) and Lemma 3.

P\ (2\ _
wn 3 ()
pk logk—?gfgk I k—l

cm Y (p2%/m)!

logk— 1 215k
Scm(p2tjm)s Y (p2h/m!
1z0
gzcm(pzk/m)logk— 1

IIA

since p2¥/m<1/2 for k=log(m/p)—1. O

Lemmas 1 to 4 directly lead to
Theorem 3. Let N=2" m=2" and let H, be defined as above. a) there is a
function f: N >R, f(p)=0(p") for all £>0 such that for mzpf(p) we have:

RP _<20log p/(log (10 log p))* + O(1).

b) Let £>0. For m=p' ¢ we have:

RF .. Z0(1).

max =

Proof. Note first that
l’;mxz Z pk§k1+ppk|

1=k

A
A
=

for every k,, 1 <k, <p. From Lemma 4, ¢ we conclude further

R?‘naxgkl +2Cmp(p2k'/m)103k1—l
where ¢c=¢"'>.
a) Let f(p)=max (22", 210%op/los(1018p) Then f(p)=0(p°) for all £>0. Let

k,=logf(p)/loglogf(p). Then k, (log f(p))/10 and hence
PZ'H/m gpf(p)m Ofpf(p) =f(p) 9/10

Randomized and Deterministic Simulations of PRAMs 351

Also logk, —1=loglogf(p)—logloglog f(p)—1=(loglogf(p))/2 since
loglog f(p)=10. Thus

PPy szcmpf(p)—‘?ioglogftm/zo

) —9logl)/20
= 2ep°f (p) S (p)—>1="es ol
Szczzlogp+logf(m— 9log f(p)loglog f(p)/20

S 2¢23oap—TlogS(mloglog S1pN20 gince loglog f(p) 2 10
=0(1) since 7 log f(p) loglog f (p)/20=2logp

for sufficiently large p. Thus

R} =log f(p)/loglog f(p)+O(1)
<20logp/(log (10 log p))* + O(1).

b) Let m=p'+*% Then
Rp <k1+2cp2+z(2k1/p£)logk1—1

max =

for all k,, 1<k, <p. Let k, be such that 2+e=¢(logk, —1), ie. k, =222
Then

max =

RP <k1 +2cp2+£ﬁr:(logk|~1)2kl(tugk;ﬁ 1)
=D2+2e L 9l +2/2)22 %20

=0(1). O

Theorem 3 states that the performance of class H, is “close” to the perform-
ance of the full set of permutations. More precisely, if m=p'*® then R?
=0(1) in both cases. Of course, the constants involved are dramatically dif-
ferent. Also R? . =O(logp/loglogp) can be achieved by class H, for m=pf(p)
where f(p) grows slower than any root of p. If the full set of permutations is
used there R, =O(logp/loglogp) can be achieved for m=p.

Why doesn’t class H, behave well in the case m=p? The answer comes in
two parts. Firstly, the bounds derived in Lemmas 3, 4 and hence in Theorem 3
are not sharp. Secondly and more significantly, class H, has a certain de-
ficiency. Multiplying by a random, invertible matrix hashes a set of independent
vectors very well, however, it does not do that well on a set of linearly
dependent vectors. A variant of Lemma 1 can be used to show that the
expected dimension of a random set a,, ..., a, of vectors in {0, 1}" is very large,
namely n—0(1). Unfortunately, this observation is of no use since we are
dealing with worst case behavior.

We will now discuss a possibility to overcome this problem. As above, let
N=2" m=2% Assume also that g= N —c for some small constant ¢ is a prime.

For ae[l...g—1] let
h,:[0...2"—1]->[0...2"—1]

be defined by
. (ax) mod g %f x<gq
X if g€x=N-1.

352 K. Mehlhorn and U. Vishkin

Note that h, is a permutation. We conjecture

Conjecture. Let a,,...,a,e{0, 1}"=[0...2"—1] be arbitrary. For ae[l...q—1]
let dim, be the dimension of set h,(a,), ..., h,(a,). Then

Y dim,/(g—1)=min(n,p)—f

l=a<g

for some small constant f. Moreover,

i

|[{a; 1 £a<gq and dim,=min(n, p)—f—i}|Zgp~

foralli=1.

Informally, the conjecture states that a random function h, turns a set of p
vector a,, ...,a, into a (nearly) independent set of vectors. Moreover, it Is very
unlikely that the dimension of the resulting set of vectors is much less than the
expected dimension.

Consider class

A,={h: {0, 13" {0, 1}*; h(x)=(Mh,(x)) mod 2°

for some a, | £a<gq, and some invertible n by n (0, 1)-matrix.}. We next show
that class H, is a very good class of hash functions provided that the conjec-
ture is true.

Theorem 4. Let H 4 be defined as above and let mZ=2p. If the conjecture above is
true then
RE <k+3cmp’t!/k!

for all k, f <k<min(n, p). Here c=¢"">.

Proof. Let S={a,,...,a,} [0... N—1]. As above, let p,=prob(R,,,(h, S)=k).
Then

g1 R
py= 3. |{heH,;h maps at least k points
a=1

of h,(S) into the same location}|/|H,|

1A

q—1
Y Y Y |{heH,; h maps all points of h,(A)
a=1120

AcS ; P 2
Ty AIELG the same location}|/|H 4|

2 >, em'7lq
Z11z0 Acs

Al =k
dimha(A)=1

1%

by Lemma 2

= Y Y la:dimh(A)=1}|em'~'/g
=S 1z0

A
|4l=k

min{n. k)— f—1 .
cm! —tp—(mln(n.k)—ffl)

lIA
1

n
“

i=0

Y
Il
-

Randomized and Deterministic Simulations of PRAMs 353

+ Z le—[min(n,k)—f]

AcS
4| =k

<2¢ (E) m-p’* ¢ (i)ml+ffk

since k=n and m=2p by assumption
=3¢ (i)mpf"‘=3cmpf/k!

since m=2p and k> f by assumption. The proof is now completed since RZ
Zk+pp,forall k. [T

Theorem 4 has an interesting consequence. Assume that m=2p and
nzlogp. The latter assumption 1is certainly realistic. Let k=(f+2)
log p/loglogp. Then RE <(f+2)logp/loglogp+6. This is basically the same

behavior as the behavior of the full class of permutations; cf. Theorem 1.

I1.3. Probabilistic Simulations Revisited

We will now apply the results of Sect.IL.2 to the probabilistic simulation
described in Sect.II.1. We assume throughout this section that operations on
addresses, like multiplying by an integer, take unit time,

Theorem 1. Let m=p>. Then a T(n) - time bounded PRAM with p PE’s and N
memory cells, can be simulated by a randomized MPC with p PE’s and m
memory modules and total memory of size N+ 2p in time O(T(n)).

Proof. We use the simulation as described in Sect. II.1 except that permutation
m is chosen from class H,. Every processor needs two additional storage cells
to store w. Also one step of the PRAM takes expected time O(1) on the
MPC. O

Theorem 2. Let m=p? Then a T(n) time bounded PRAM with p PE's and N
memory cells can be simulated by a randomized MPC with p PE’s m memory
modules and total memory size N+ 4p in time O(T(n) log N).

Proof. Replace H, by H, in the proof of Theorem 1 and observe that the
functions in H, can be evaluated in time O(log N). [

Theorem 3. a) Let m=p. Then a T(n) time bounded PRAM with p PE’s and N
memory cells can be simulated by a randomized MPC with p PE’s, m memory
modules and total memory size (N + p) log p in time O(T(n) log p).

b) Let ¢>0 and let m=p'*% Then a T(n) time bounded PRAM with p
PE’s and N memory cells can be simulated by a randomized MPC with p PE’s, m
memory modules and total memory size (1+2/e)(N + p) in time O(T(n)).

Proof. a) We use the simulation as directed in Sect. I1.1 except that = is chosen
from class H, with k=3logp/loglogp. Then every processor requires O(logp)

354 K. Mehlhorn and U. Vishkin

cells to store n. There is one additional problem now: class H, is not a class of
permutations. Rather me H; might map up to logp/loglogp distinct points into
the same cell. It can certainly map no more distinct into the same cell since
ne H, is a nontrivial polynomial of degree at most log p/loglog p. Therefore the
simulating MPC has logp/loglogp copies of every memory cell. A memory
access is made by sending the original PRAM address a and the modified
address m(a) to the appropriate memory module. We can then build up a
balanced tree (say) for all addresses which are mapped to the same address by
7. Thus access time within a memory module might be as large as O(loglogp).
Also the expected number of concurrent accesses to the same module is
O(logp/loglogp) by Sect.1l.2, application 3 and hence it takes an expected
number of O(logp) MPC-steps to simulate our PRAM step. Also evaluation of
a hash function in H, takes O(log p) steps.

b) The proof is completely analogous to the proof of part a). We choose
k=1+2/e. Then at most 2/¢ distinct points are mapped into the same cell. Thus
the total memory size is (1+2/¢)(N+p) and it takes an expected number of
0(2/elog2/e) MPC steps to simulate one PRAM step. [

Theorem 4. a) There is a function f: N>R with f(p)=0(p®) for all £>0 such
that: if N=2" m=2"=pf(p) then a T(n) time bounded PRAM with p PE’s and
memory size N can be simulated on a randomized MPC with p PE's, m memory
modules and total memory size N+ plogN in time

O((log N)* + T(n)(log p/(loglog p)* + log N)).

b) Let £>0 be fixed. If m=p' "¢ then the time bound reduces to O((log N)?
+ T(n)log N).

Proof. Replace H, by H, in the proof of Theorem 1 and observe that an
element of H, can be stored in log N words of length (log N) each. Thus every
processor needs log N additional memory cells. A random element of H, can
be chosen as follows. Generate log N random bitstrings of length log N each.
(In time O(log N)?) and check whether the (0—1) matrix M generated in this
way is invertible. This takes time O((log N)?) on a sequential machine. Also
O(1) tries suffice on the average. Thus choosing a random element of H, takes
time O((log N)*). Next observe that it takes time O(log N) to multiply an log N
by log N matrix by a vector. The time bounded is now an easy consequence of
Theorem 3 of Sect. I1.2. O

We do not feel that Theorems 1 to 4 are best possible. They complement
each other in that they optimize different parameters of the problem. Theorems
I, 2 and 4 present solutions with only a very moderate increase in total
memory size (O(1) additional cells per processor in Theorems! and 2 and
O(log N) in Theorem4) and only a moderate increase in running time (a
multiplicative factor of O(1) in Theorem 1 and O(log N) in Theorems 2 and 4).
However, all three theorems require a non-linear number of memory modules
thus increasing the size of the interconnection network. Theorem 4a is our best
result in that respect.

Randomized and Deterministic Simulations of PRAMs 355

On the other hand, both parts of Theorems 3 provide us with solutions with
a small number of memory modules (p in part a and p'*® in part b) and
modest increases of running time (O(logp)) in part a and O(l) in part b).
However, both parts force us to increase total memory size considerably.

Theorem 4 of the previous section has the potential (if the conjecture were
true) of combining most advantages of the other schemes. With only two
memory modules per processor and only log N additional memory cells per
processor it achieves a slowdown of O(log p/log log p).

II1. Efficient Deterministic Simulations

Say that each of the N addresses is contained in exactly ¢ of the m memory
modules for some integer c(c> 1). Each such distribution of addresses is called
a c-partitioning.

We may break each cycle of the EREWPRAM into two halves: one
includes all read instructions from the common memory, while the other
includes all the write instructions of the cycle. This enables us to classify the
cycles into reading cycles and writing cycles without multiplying the running
time by more than a factor of two. We argue, in the paper, that the worst case
time for simulating writing cycles worsens only a little while the worst case
time for simulating reading cycles improves a lot. Many simulations of pro-
grams for the Ultracomputer have been run. The ratio between read in-
structions and write instructions that relate to the common memory was
around 8:1. This fact is important since in case a store instruction into the
common memory is executed we need access to all copies of the memory
address, while in case a fetch instruction is executed one of the copies would
suffice. See more on writing cycles on the last chapter. Our main concern is to
study the advantages and limitations of the copying approach for simulating
reading cycles. Our analysis applies also to input addresses (which are only
read).

We start this chapter by studying some limitations of the copying ap-
proach. Then, a specific c-partitioning is proposed. For this c-partitioning we
give upper bounds for the optimal R_,, achievable. We include also two
sections that discuss how to compute efficiently good assignments of address
requests to modules. The first of these sections deals with polynomial-time
sequential algorithms for computing optimal assignments, namely with mini-
mum R_,.. The second section suggests fast parallel algorithms that give low
(but not necessarily minimum) R_,.. For the purpose of fast simulation we
only need algorithms of the second kind. The proposed c-partitioning is very
efficient when this stage is applied separately. However, an alternative c-
partitioning which combines well with the first stage is considered sub-
sequently. The last section of this chapter demonstrates that a number of

copies c 1s useful when () is much larger than N.
C

Note that the number of simultancous requests for memory addresses is
=p. In order to use one parameter less, and thereby simplify the presentation,

356 K. Mehlhorn and U. Vishkin

we consider the most difficult case only; ie., where this number is p. It will be
straightforward to extend our results to cases where this number is <p.

I11.1. Lower Bounds

Assume that some c-partitioning is given. Problem: Find a lower bound for
the optimal worst case time delay (R_,,,) for any p reading requests for memory
addresses.

Let 1<i,<i,... <i,<m be k modules and A;, ;, . be the set of all
memory addresses such that all their ¢ copies are contained in memory
modules i,,i,,...,i,. We are looking for a (very unfortunate) set of p memory
addresses such that all their copies are contained in a minimum number of
modules. More formally, we are looking for a minimum size subset of modules
{i,sizy..., 0y} such that # A, ;5 =P
m—c

k—c

The summation on the left hand side is on all (}:) subsets of kK modules. The

Claim. The equation Z#Ail‘iz,'__‘ikz()N holds for any k,csk=m.

right hand side gives an alternative evaluation which is based on the fact that
each memory address is contained in ¢ modules; fixing k—c additional mod-
. m—c co : .
ules (1n any of the (k) posmbﬂmes) gives a subset of k modules contain-
—c
ing this address. This completes the proof of the claim.
Hence, there is at least one subset of k modules that contains

() (2} ==ttt mmte=

elements. We are looking for the minimum k such that

(1) p<k...(k—(c—1)N/m...(m—(c—1))).

Denote this k by K. This implies that

Observation 1. R, Zzp/K,. I N= (m) x for some integer x, then from in-

k b s
equality (1) we get p=k...(k—(c—1))x/cl or p= (C) x. This implies

Observation 2. For N= (m) x, Rpx2p/K, where K, is the smallest k satisfying
c

o< (e

It is shown later that the last lower bound meets exactly an upper bound
on R_, for a specific c-partitioning that we propose. Therefore, we delay
presentation of explicit evaluations until this later discussion.

Randomized and Deterministic Simulations of PRAMs 357

I11.2. The Proposed c-Partitioning

m

Our suggested c-partitioning is simple. For N < () and an address i, 0<i<N,

¢
my . . .
take the i-th subset of ¢ modules (out of (c) in the lexicographic order) and
: m m
put a copy of address i in each of the ¢ modules. If (x—1) (C)<N§x (n) for
some integer x, then partition the addresses into x approximately equal subsets
(layers) and fix the c-partitioning of each of the x layers separately as for

()

Remark. For an address i it takes O(c?) time to compute the subset of ¢

modules containing its copies. Clearly, i, =i (mod ([N/(m)])) is the serial
C

i 7 i
number of i in its layer. The minimum i,(2=c¢) such that (‘) =i, implies that
¢

module number i, —1 contains a copy of address i. Let us explain this. We
have m modules numbered 0,1, ...,m—1. The lexicographic orde implies that

Y : i, —1
all ¢ copies of the first (I‘C) addresses of the present layer are distributed
among modules O,1,...,i; —2. Then, the next (EC‘) addresses (including the

address being considered) have a copy at module i, —1 and their other c—1
copies are distributed among modules 0, 1,...,i; —2. The computation of i,
takes O{c) time. This is because we get a constant difference approximation to
i, by Stirling formula and explicit presentation of i;.
i,—1 . g i
Denote i’2=il—(1) The minimum i,(=c—1) such that (ll)gi’z
»

implies that module number i, —1 contains a copy of address i. This takes
O(c—1) time; and so on.

IIL3. Upper Bounds
m , s
Theorem 1. Let t be an integer, N=x() Sf:mm{s; ()xg(t—l)s-H} and
c ¢
r=S8,(t—1)+1. If S,=m then: (a) There exist r address requests which cause
memory contention of at least t(R_, =t) for any assignment of requests to

max —
copies. (b) For any r—1 requests, however, it is possible to get R, <t—1.

Proof. We show (b) first. Say, in contradiction, that a set of r—1 requests is
given such that the best R_, obtainable is t. (It will be easy to modify our
argument if the best R_, that can be obtained is greater than t). Among all
possible ways to partition requests among our modules which imply R =t
choose these that assign minimum number of modules with exactly ¢ requests.
Then, restrict further the choice to a partition where a module with the

358 K. Mehlhorn and U. Vishkin

smallest serial number possible is assigned with ¢ requests. So we have ¢
requests for addresses in some module. All these addresses have other copies in
other modules. Let S, denote a lower bound on the number of modules
containing all copies of these ¢ addresses and T, denote a lower bound on the
total number of address requests assigned to these modules. The T, addresses
may have copies in other modules. Let S, denote a lower bound on the
number of modules containing all copies of these T, addresses and T, denote a
lower bound on the total number of address requests assigned to these mod-
ules. It should be clear how to define S,,S,,... and T5, T,

Claim 1. Each module which enters the scene is assigned with at least t—1
requests.

Proof. Our sequence satisfies the following. There exists a directed path of the
following form from the first module (the one we started with, which is
assigned with t requests) to each module which is counted by the S; numbers;
the nodes along the path are modules; and there is a directed edge from
module 4 to module B if module A4 is assigned with some address request and
another copy of this address is located in module B. By propagating requests
along this path we may decrease the number of requests assigned to the first
module by one, increase the number of requests assigned to the last module on
the path by one and not change the number of requests assigned to any other
module. Thus, the existence of a module as in Claim 1, which is assigned with
less than t—1 requests contradicts the choice of the partitioning of requests
among modules above.

. s
Corollary 1. T,=S,(t—1)+1, for i=1. And since Si+1=m1n{s; (C)ng,} we
get,

Sl=min{s; (z)xgt}, S,-+1=min{s; (z)xZSi(t—l)+l}, for i>1.

Claim 2. The sequence (of integers) {S;} converges to S,.
Proof. Recall S, <m. If §;<S§, then §,_, satisfies §;<S§; ;<S,. If §;=S, then
Siv1=35-
So we could not start with less than S (t—1)+1 requests. A contradiction.
Proving (a) is easy. Take r(=S,(t—1)+1) requests that all their copies are
in S, modules. This completes the proof of Theorem 1. [

The Connection with the Lower Bound

We showed that for any r address requests the smallest number of modules to
contain their copies is the smallest k satisfying r=< (C)x, which is exactly our

S,. Then we concluded that R,,,, is at least the smallest integer satisfying R,
=r/S,. Here this integer is t which is exactly the best R, achievable. So, the
upper bound and the lower bound are exactly equal.

Randomized and Deterministic Simulations of PRAMs 359

For any p requests let us establish an éxplicit upper bound on the best R,
achievable. Denote this R, by t. Let x be the integer such that

o (f)ens()

Similar to the proof of Theorem 1 we restrict the choice of the assignments of
requests to modules. Then, we start with a module which is assigned with ¢
requests. Now, s is the minimum number of modules that have to be assigned
with at least t—1 requests in order not to enable us decrease ¢ in the first
module. The following inequality holds from similar reasons to the proof of

Theorem 1, x (z);(r—l)ﬁ- 1. It implies
xst/elz(t—1)s ss=(t—1)c!/x)t—?
Together with the fact p=(t—1)s+1 we get

t=D(=Delx)tt=p

implying
(t— 1)~ Zpflelfxy'F?,
(t—1y=xp'/e!
and
14 (xp e e
Thus,

Theorem 2. R, <1 + ((pf- ‘/c!)[N / (’:)])”

IIL4. Optimal Assignment

The problem of optimal assignment to the ‘right’ copy of each requested
memory address, in order to minimize R, is solvable in polynomial time. We
actually solve the problem for any distribution of copies among modules (not
only ¢-partitionings), in Fig. 1. For more on the Max-Flow problem, see [6].

An Alternative Solution

We have to assign p requests to modules. Assign one request at a time. Say
that i out of the p address requests, for some 0<i<p, got already (temporary)
assignment to modules. Assume that these i requests are assigned to modules
in a way which minimizes R___ with respect to them. Denote this R, by R, ;-
We show how to extend this assignment to another temporary assignment
for one more request, in a way which achieves minimum R_,, with respect to
the i+ 1 requests. Qur algorithm and proof are similar to the proof of Theorem
1. Consider the following auxiliary directed graph. Nodes represent modules.
There is an edge from module A to module B if module A is assigned with a

360 K. Mehlhorn and U. Vishkin

source capacity r nodes capacity 1 edge from nodes capacity sink
1 representing address-node to representing z
address module-node if the modules
requests module contains a

copy of the address

The optimal assignment algorithm: find (by binary search) minimum z that enables flow of r.

Fig. 1. Finding optimal assignment to copies by utilizing instances of Max-flow

request for some address a while B contains another copy of a. The algorithm
for extending the assignment of i requests to an assignment of i+ 1 requests is
as follows.

(1) Assign the (i+1)—st address request to a module M, containing one of
the copies of the address. (Add to the auxiliary digraph ¢—1 edges from this
module to the other modules that contain copies of this address.)

(2) If M, is now assigned with <R, ; requests then we are done. (It is
impossible to add a request and get R__. ;. <R ..:)

(3) If M, is now assigned with R, ,+1 requests search the auxiliary
digraph for a module which is assigned with less than R_,, ; requests and is
reachable through a directed path from M,. (Any efficient search can be
utilized here. For instance Breadth First Search.) If such a module is found
then propagate request assignments along a path in the digraph from M, to
this module. (This results by the following change: the number of requests
assigned to this module increases by one. Note, however, that it is still =R, ;.
The number of request assigned to all other module is exactly the same as
it was for the i requests.)

(4) If no such module is found in (3) do nothing (the request is assigned to
M,).

The only thing that has to be proved is that step (4) is correct. In other
words: why is it impossible to assign these i+1 requests with R_.. ;. =R .. .
rather than R, ;. =R,..;+1? Assume, in contradiction, that there is an
assignment of these i+ 1 requests with R, ;. ,=R,..;- In this contradictory
assignment M, is assigned with =R_, . ; requests. Therefore, there exists a
request for some address a, which is assigned to M, in our assigment (the
result of step (4)) but not in the contradictory assignment. Hence, the auxiliary
graph contain an edge from M, to M, - the node representing the module that
the request for a is assigned to it in the contradictory assignment. By step (3),
M, has R_,, ; request assigned to it in our assignment. Define S, an auxiliary
set of modules, to include presently M, and M,. In our assignment both

Randomized and Deterministic Simulations of PRAMs 361

modules of § have together 2R, ;+1 requests assigned to them while in the
contradictory assignment there are at most 2R _, . such requests. Therefore,
there exist a request for some address a, which is assigned to a module of § in
our assignment but not in the contradictory assignment where this request is
assigned to another module not in §, say M,. This implies the existence of an
edge in the auxiliary graph from this module in S to M. By step (3) M, has
R,...; requests assigned to it in our assignment. Add M, to S. Similarly we
show that the set S can grow infinitely large. The number of modules is finite,
so we got a contradiction. Therefore, the assignment achieved by our algorithm
yields the minimum R__..

IILS. Fast Parallel Approximation Algorithms

The above mentioned optimal assignment algorithms are of general theoretical
interest and might be relevant for data-base applications as mentioned in the
introduction. However, the simulation requires fast parallel algorithms for the
assignment problem even if the optimal result is not achieved (remember that
we are after fast simulation of one EREWPRAM cycle). This poses a challenge
of a new kind.

m
Lemma. Let NZ () be the number of addresses. For p address requests we can
¢

achieve R, Scp“ V< in parallel time O(c?+clogp). For c=2, we can do it in
constant parallel time.

Remark. The claim for ¢=2 needs a little bit stronger assumptions about the
MPC; like, a memory request can be dropped by the requesting processor, or,
alternatively, a memory module can discard memory requests sent to it if their
location in the module’s queue exceeds a certain point.

Proof of Lemma. By induction on c¢.
For ¢=2 start with any assignment of address requests to copies. For all

modules where the number of requests is ;]/p (there exist 51/5 such mod-
ules) switch all requests above the]/p line (by doing that for all requests that

were not responded in the first]/p time units of the cycle which is being
simulated, we avoid computation of serial numbers for ¢=2) to the other copy.
Second copies belong to pairwise distinct modules. Therefore, each module gets

no more than]/p requests for second copies. Assume by induction that the
Lemma holds for ¢ —1. We want to show that it holds for ¢. Assign all address
requests to their first copy. Take a module which is assigned with = p—!/
requests. There exist <p'’/9 such modules. The first p“ '’ among these
requests will be satisfied by the module. The assignment of the other, say x,
requests will be switched to other modules. The other ¢—1 copies of the x

. . —i1 -
addresses relate like ¢ —1 copies of a subset of (m i) addresses. Namely, it is
Ci—

impossible that there are two out of these x requests such that all their ¢—1
copies are in the same modules. We have to decide which are the p“~ "¢ first

362 K. Mehlhorn and U. Vishkin

requests assigned to and satisfied by the module. We do it in a way which
utilizes sorting. We actually do more. We schedule the requests to the module
by numbering them from one on. The scheduling is done as follows.

Say that processor i (1=i<p) has a read request for some address at
module j;, (0=<j,<m—1). We represent it by a pair (j;, i).

Step 1. Sort these pairs according to the following lexicographic order:
Ui i) <Gin i) A [y, <] or [j;, =j;, and iy <i,].

The sorting can be done in O(logp) time on an EREWPRAM using the
algorithms of [2] or [14].

Let A[1],..., A[p] be the output sorted vector. Step 1 groups all requests
for the same module into the intervals in A. Namely, if there are any requests
for some module j they appear as A[a;], A[«;,,], ..., A[f;] for some
I1sa;2f;=p (0=j=m—1). Let A[y] be a request for module j. The serial
number of A[y] among the requests for module j is y—a+ 1. We show how to
compute this serial number into R(y).

Step 2. Initialization.
for 1<y =<ppardo
R(y):=1
(Comment. The following instruction breaks the vector A into linked lists
corresponding to modules. The linked list for module j will start at A[$,] and
end at A[«;].)
NEXT(1):=‘undefined’
for 2 <y <p pardo
if the module of requests A[y] and A[y—1] are the same
then NEXT(y):=y—1
else NEXT(y): =‘undefined’
Apply [logp] iterations
for 2<y=p pardo
if NEXT(y) is not ‘undefined’
then R(y):=R(y)+ R(NEXT(y)); NEXT(y):=NEXT(NEXT(y))
else abort.

This step takes O(logp) time on an EREWPRAM and completes the com-
putation of the serial numbers into the vector R.

The scheduling of requests to second copies is done separately in each set
of requests, that were switched from the same module, and so is the scheduling
for later copies which is done separately for even more refined sets. The
definition of such a refined set (at each transition from i to i—1 copies and
application of the inductive step) includes all address requests that passed
through the same sequence of modules but have not yet been satisfied. The
computation of serial numbers for such set meets exactly the scheme of
computation of serial numbers described above. (Here, we do not need the
assumptions of the remark for ¢=2 since switched requests are not sent in the
first place.) Therefore, we can apply the induction. Let A4, be sizes of switched

Randomized and Deterministic Simulations of PRAMs 363

sets then

Z(C_ l)Af.“‘ D= (o — l)p””p((”‘ 1)e)ptle = 2)/te = '”:(C_ 1)plie— 1o

The inequality holds because the left hand side is maximized when all the
A; numbers are equal. The ¢? size is due to the need to compute the subset of
modules that contain a copy of an address by each processor using its local
memory. The logp is due to computations of serial numbers which is required
at each of the ¢ steps of the induction. [J

1/c
Theorem 3. We can achieve R, =c¢ (p“ 1 [N /(m)]) in parallel time O(c*+c¢
log p). ¢

Proof. Let x be the integer such that (x—1) (m) <NZx (’:) Apply the lemma
&

for each of the x layers, separately. Let p; be the number of requests in the i-th
layer, 1 i< x. Then we get

X X
Rouax S Y Raua VY e~ e xe(p/x)fe= 1
1 1

e S ()

R (i) is the R obtained for each layer. The first inequality is obvious. The
second is implied by the lemma. The third is because its left hand side is
maximized when all the p;, are equal. The scheme of computation of serial
numbers as above should be used here as well. [J

II1.6. Connection with the First Stage

The proposed c-partitioning above poses some difficulties in combining it with
the probabilistic simulation of the previous chapter. There, a copy of address q;
could have been found in module h(a;)(mod m). While in this chapter the set of
modules that contain copies of address h(a;) was selected differently. Each
address is assigned to a set of modules containing its copies (according to the
definition of the proposed c-partitioning at the beginning of Sect. II1.2) where
no function like the remainder mod m seems to be involved in determining any
member of this set. (For instance, module h(a;)(mod m) may not have a copy of
address ;). This is the reason why for the purpose of combining this stage with
the previous one we propose an alternative c-partitioning. Its small disadvan-
tage is that it gives a little bit inferior results than the first c-partitioning. Its
big advantage is that it suits to be a second stage following Chapter 1. Note
that in the sequal we always omit the hashfunction h and refer to the address «,
only. When the solution of this section is set to follow Chapter Il address a;
should be replaced by h(a,).

364 K. Mehlhorn and U. Vishkin
The Alternative c-Partitioning

For N<m!/(im—c)! and address i, 0<i<N, the first copy of i is in module
i(mod m), the second copy is in module i(mod(m—1)) of the remaining m—1
modules and so on. Namely the j-th copy, 1 £j=c, i1s in module i(mod (m—j
+1) of the m —j + 1 modules not occupied by the first j —1 copies.

Example. Let m=10 ¢=3 and i=15. The first copy of i i1s in module 5
(15{mod 10)=135), the second is in module 7 (15(mod 9)=6 and since module 5 is
occupied, module 7 corresponds to 6) and the third is in module 9 (15(mod 8)
=7 and module 5 and 7 are occupied).

If (x—1)m!/im—c))<N=x(m!/(m—c)!) for some integer x then partition
the addresses into x approximately equal subsets (layer) and fix the c-partition-
ing of each of the x layers as for N <m!/(m—c)!.

Remark. For an address i it takes O(clogc) time to compute the subset of ¢
modules containing its copies. Clearly, i} =i(mod [N(m—c)!/m!]) is the serial
number of i in its layer. Find the modules one at a time. Create a 2-3 tree for
the modules that were chosen so far. (For more on 2-3 trees, see [1].) By
keeping in each internal node of the tree information about the number of
unoccupied modules among its leaf-descendents we can identify the module of
the next copy and update the tree in time O(logc). The simple additional
details are omitted. In the cases where N=xc! (T)(=xm!/(m—c)!) for some
integer x, Observation 2 and Theorem 1 still hold since # 4, . i,,...,i,=xc! for
any subset {i,,i,,...,i,} of k modules in both c-partitionings (using the no-
tations of the lower bounds section). In order to shorten the paper we recon-
structed here only the upper bound analogues to Theorem 2. This is done in an
informal way since it follows the same lines as the proof of Theorem 2.

For any p requests we want to find an upper bound on the best R_,,
achievable. Let x be the integer such that (x—1)m!/{m—c)!l<N=xm!/(im—oc)l
For some R_, =t and a module assigned with ¢ requests denote by s the
minimum number of modules (including the first module) that have to be
assigned with at least t—1 request in order not to enable us to decrease ¢ in
the first module. The following two inequalities hold:

(1) xslis—eYlz(t—1)s+1.
(2) p=(t—1)s+1.

(1) implies xs°=(t—1)s and s=(t/x)°~'. This and (2) imply
==/ 1=p, (—1F=xp! and t=1+(xpt~)1
Theorem 2'. For the alternative c-partitioning
RS 1+(p7 [N(m—c)l/m!])"e.

The analogue to Theorem 3 will be

Randomized and Deterministic Simulations of PRAMs 365

Theorem 3'. For the alternative c-partitioning we can achieve

R, . Sc(p ! [Nm—c)l/m!]l

in parallel time O(c logc+c logp).

Proof. The only new idea in this proof is the following. We show that all
addresses that fall in the same layer of our alternative c-partitioning can be
efficiently further partitioned into ¢! ‘sublayers’ as follows. Take a layer. It has
at most m!/(m—c)! addresses. Given any ¢ modules there are at most c!
addresses (in the layer) such that all their copies are in these ¢ modules. Recall
that the definition of the alternative c-partitioning specifies for each address
the module in which copy «, 1<a=c, of this address is stored. Thus, we have
to specify for each address i of layer | not only the ¢ modules
0B, <B,<...<f.,<m-—1 in which this address has copies. But also a per-
mutation on this list of modules that indicates in which module is the first,
second, ..., c-th copy. It is simple to see that we can instead use a permutation
on [1,...,¢] (together with the list of modules f,, ..., 8,). This permutation is
the key for partitioning each layer into ¢! sublayers. The discussion below fills
in the details for computing these sublayers from the alternative c-partitioning.
Let (i,,i;,...,i) be a c-tuple of modules that contain the respective first,
second, ..., c-th copy of address i that belongs to layer [for some i and I All
addresses of layer | Denote by N(j) the cardinality of {i,|k <j and i, <i;}. Note
that these cardinalities can be observed upon searching the 2-3 tree mentioned
above for i; without changing the O(logc) time estimate. Obviously 0= N(j) <j.

Define L(iy,i,,...,i)=2,(j—1)!N(j) to be the sublayer of address i in layer I
1

The only address in this sublayer which is contained in modules i ,i,,...,i 1s i.
Therefore, the N addresses form alltogether ¢![N(m —c)!/m!] sublayers. Apply-
ing the lemma similar to the proof of Theorem 3 to each of this sublayers
completes the proof of the theorem. The O(clogp) size represents the com-
putation of serial numbers as in the proof of the lemma.

IIL.7. Some Nonconstructive Upper Bounds

In this section we demonstrate a way for utilizing a number of copies ¢ where
()»N. A typical counting argument that provides for non-constructive c-
C

partitionings having the desirable property of enabling small R_,, is presented.
We leave the problem of constructing such efficient c-partitionings open.
We first need the following theorem:

Theorem 4. Let p and m be as before. Let d be a positive integer, where p=dm.
Assume that a c-partitioning is given such that for every subset of size p of the N
addresses, the set of modules that contain all ¢ copies of these p addresses is of
size = [p/d]. Then it is possible to get R_, <d for every p memory requests.

max —

366 K. Mehlhorn and U. Vishkin

Proof. Assume, in contradiction, that there exists a set of p(=dm) requests that
causes R >d. By a similar technique to the proof of correctness of the
alternative sequential algorithm, we choose an assignment such that some
module is assigned with =d+ 1 requests. They must have copies in one more
module. This second module must be assigned with =d request. So far we

2d+1
have =2d+ 1 requests. They must have copies in z3= [T+] modules. The

third module is also assigned with =d requests, and so on. So we get that this
set of requests was of size =dm+ 1. A contradiction.

This is, actually an extension of Hall’s Theorem (cf. [6]) which is given for
the case d=1. An upper bound on the portion of c-partitionings that do not
have the favorable property described in the theorem is

2 ([S]_l)! (cN —ck)!

=2, (x) ([g]ﬂ')(N"(T[k]_l)_ck), (cN)!

d

ol
m
assuming that N is divisible by m. (Note, that the definition of a ¢-partitioning
is extended to the case where more than one copy of an address is contained in
the same module.) This upper bound reminds to some extent the proof of the
existence lemma of “expander bipartite graphs” given in p. 298 of [12].

If we prove for some values of N, m, p, d and ¢ that I, (the portion of
“bad” c-partitionings) is smaller than one then we gave a (non-constructive)
existence proof of a “good” c-partitioning.

Appendix I examplifies a result that can be derived from this upper bound.
We get that if N=p* m=p?% d=1 and p is “large enough” than there exists a
“good” 10-pertitioning,

In a similar way to the considerations above we may obtain an upper
bound of 1 —b on the portion of bad c-partionings, for some positive constant
b. Since we do not have a way to construct a “good” c-partitioning, we can
choose one at random and use it till the first time it fails. Namely, if we find
for the first choice a set of requests for which it is impossible to get R, =d,
then we choose another c-partitioning and so on. Obviously, with high proba-
bility, we find after a small number of trials a “good” c-partitioning.

IV. Efficient Low-Level Simulations

The purpose of this paper is to present ways for simulations of shared memory
models of parallel computation which allow fairly unrestricted access patterns of
processors to shared memory cells by machines in which the memory is
organized in modules where only one cell of each module can be accessed at a
time. As was mentioned in the introduction the paper envisions a three stage
analysis and solution to the problem. The combination of the two earler
stages brings us to a point where each processor of the MPC simulating
machine specifies in each cycle being simulated both an address request and

Randomized and Deterministic Simulations of PRAMs 367

the module that was chosen to satisfy this request. The problem is how to
complete the simulation. The choice of the EREWPRAM and the MPC for
presentation of our ideas for the first two stages is due to the fact that the
simulation of the former by the latter distinguished both the problems and
solutions. However, this choice made the need for a third stage indistinct. This
is the reason that here we switch to other models of computation. Instead of
the EREWPRAM we take a more permissive model of computation, the
concurrent-read concurrent-write (CRCW)PRAM. In this model several pro-
cessors are allowed to read simultaneously from the same memory location. If
several processors try to write simultaneously into the same memory location
the lowest numbered processors succeeds. This model is based on [7] and [16].
We substitute the MPC machine by a weaker machine named non-queued
(NQ)-MPC. Here only one address request may arrive at each module at each
time unit. Besides that the NQ-MPC is similar to the MPC.

We wish to simulate one cycle of the CRCWPRAM. Assume that each
processor of the NQ-MPC is assigned already both with an address request
from the common memory and the memory module which has to satisfy this
address request. Assume also that m=p, namely the number of modules is at
least as big as the number of processors. Our proposed solution resembles the
simulation of a CRCWPRAM by a EREWPRAM in [19]. Unfortunately, our
present problem requires not only the circumvention of access conflicts to the
same memory location but also to the same module. Our simulation resembles
also the proof of the Lemma in Sect. IIL.5. Whenever the considerations are
similar to this proof we shorten the presentation. The first step of the simula-
tion is:

(1) Sort in parallel the p triples specified below in the lexicographic order.

Each processor enters the triple: (the serial number of the module assigned
to its address request, the serial number of the address request itself, its own
serial number).

The NQ-MPC sorts them using [2] sorting algorithm in time O(logp). It
does not need more than size p shared memory. This is achieved by using one
cell of each module. The result is that all requests for the same module (resp.
the same address of the same module) appear in successive locations of the
sorted vector. Let us call the set of such successive locations interval (resp.
subinterval) denoted I(M) (resp. SI(M,a)). M and a represent indeterminants
corresponding to modules and addresses, respectively. Note that subintervals
are sorted by the serial number of the processors.

(2) The serial number of each subinterval relative to the other subintervals
in the sorted vector is computed. Denote it by #SI1(M, a).

A processor is allocated to each triple. By comparison with the triple in the
preceding place of the sorted vector the processor finds out whether its triple is
the smallest in its subinterval. If yes it is chosen to ‘represent’ the subinterval
as will be seen later; let us call the triple in this case, a subinterval-triple. Now,
we apply the following computation. It is similar to Step 2 in the proof of the
Lemma (Sect. 111.5).

Initialization.

368 K. Mehlhorn and U. Vishkin

for each triple x, | £ x<p, pardo
if x is a subinterval-triple
then R(x):=1
else R(x):=0
NEXT(1):=‘Undefined’
for each triple x, 2<x=<p, pardo
NEXT(x):=x—1
Apply [logp] iterations
for 2<x<p pardo
if NEXT(x) is not ‘undefined’
then R(x):=R(x)+ R(NEXT(x)); NEXT(x):=NEXT(NEXT(x))
else abort.
This computation takes (O[logp]) time. It results with the required subinterval
serial number associated with the subinterval triple.
(3) The serial number of each subinterval which is smallest in its interval
(min (# SI(M, b)) is ‘broadcasted’ to all other triples of the interval.
b

The number #SI(M,a)—min(#SI(M,b))+1 is the serial number of the
b

subinterval SI(M, a) relative to other subintervals of interval I(M). The broad-
casting is done in [logp] pulses. In pulse i, 1 <i<[logp], each processor that
knows already, the serial number of the smallest subinterval of the interval of
its triple writes it into the 2°~' successor of the triple in the sorted vector if it
belongs to the same interval. It is simple to see (see [19]) that all triple get the
appropriate message and each module is accessed by one processor at a time.

(4) The processor of each subinterval-triple performs the requested access
to the right module in time corresponding to the serial number computed in
Step (3) above.

In case, we simulate a writing cycle (recall the classification of the previous
chapter into reading and writing cycles) we are done. In case a reading cycle is
simulated we finish by:

(5) The content read by the processor of each subinterval-triple is broad-
casted to all other triple of this subinterval.

The broadcasting is done by a similar technique to Step(3). Broadcasting
for the same purpose is used in [19]. It is appropriate to mention at this point
that the O(logp) time sorting algorithms of [2] has a large constant in front of
the logp. It is possible to use instead the O(logp time (with very high probabil-
ity) algorithm of [14]. Another alternative is Batcher’s O(log? p) time algorithm
which is probably best for small values of p.

Simulations by a Synchrounous Distributed Machine

Our next goal is to replace the NQ-MPC by the Parallel-Design Distributed-
Implementation (PDDI) general-purpose computer of [18]. Every algorithm
for the CRCW PRAM can be run on the PDDI. (Even algorithms for a model
of computation which is stronger than the CRCW PRAM can be used but we

Randomized and Deterministic Simulations of PRAMs 369

prefer not to discuss it here.) Each such algorithm is automatically simulated
by the network which is described briefly below. The network has three kinds
of processors. S,,...,S, are called super-processors. Each simulates the be-
haviour of (several) processors of the PRAM. M,,..., M, are called memory-
processors. Each simulates a memory module. An interconnection network
connects the super-processors with the memory-processors. It consists of a
sorting network followed by a merging network. The “switches’ in this network
‘are called comparator-processors since they correspond to comparator modules
in the sorting and merging network. There are f(s,m) comparator-processors,
where the function f depends on the specific selection of sorting and merging
network. Let I(s, m) denote the longest directed path in the sorting and merging
networks that were selected (I(s,m) corresponds to the worst case execution
time of a network). A typical time cycle of the CRCW PRAM includes
instructions for reading from or writing into it shared memory. The PDDI
simulates it by routing messages between the super-processors and the memeory-
processors. The main result concerning the PDDI is the following.

Theorem [18]. Suppose we are given an algorithm for the CRCW PRAM whose
running time is O(t/p) for any number of 1Zp=<x processors and N common
memroy locations, where t,x and N are some numbers. The interconnection
network of the PDDI machine can simulate this algorithm using s super-pro-
cessors, m=N memory-processors and f(s,m) comparator-processors in time
O(t/s) for any s < x/l(s, m).

Remark. For some selection of sorting and merging networks for the PDDI we
get f(s,m)=0(slogs+mlogm) and I(s,m)=0(logs+logm).

This theorem assumes N=m. We also refer the reader to a discussion in
[18] which implies how to extend the proof of the theorem for cases where
m<N, by queuing requests for different cells of the same module. This dis-
cussion implies essentially that the time O(t/s) in the conclusion of the theorem
should be replaced by O(tR/s) where R(=R_,) is the average maximum
memory contention over all memory modules.

max

(Remark. We only explain briefly why such a result is possible. The com-
munication between super-processors and memory-processors makes a heavy
use of pipelining in the interconnection network. All computations required for
the queuing are performed in the interconnection network itself as “side
effects” of the communication between super-processors and memory-pro-
cessors. It is done in a way which “absorbs™ the time for these computations
into the “big oh” of ¢/s in the theorem. We do not elaborate any more on how
it is done since this would require a much longer description of the PDDI.)

Suppose now that we want to use the probabilistic solutions of the present
paper in order to keep the memory contention R, low. Then we get the
following.

Probabilistic Simulations Revisited for the Second Time

Corollary. Suppose we are given an algorithm for the CRCW PRAM whose
running time is O(t/p) for any number of 1=p=x processors and N common

370 K. Mehlhorn and U. Vishkin

memroy locations, where t. x and N are some numbers. The interconnection
network of the PDDI machine can simulate this algorithm using s super-pro-
cessors, m memory-processors and f(s,m) comparator-processors in time O(tR/s)
for any s< x/l(s,m), where the following applies.

(1) If m=s* then R=1 and the simulation needs total memory size of N +2s.

(2) If m=s2 then R=Ilog N and the simulation needs total memory size of N
+4s.

(3a) If m=s then R=logs and the simulation needs total memory size of (N
+s)logs.

(3b) If e>0 and m=s'** then R=1 and the simulation needs total memory
size of (1 +2/8)(N +5).

(4a) There is a function f: N - R with f(s)=0(s%) for all £>0 such that: if N
=2" (n is the size of the input) and m=2°=sf(s) the time of the simulation is
O((log N)® +t(logs/(loglogs)* +log N)/s) and the simulation needs total memo-
ry size of N+slogN.

(4b) Let >0 be fixed. If m=s'*¢ then the time of the simulation reduces to
O((log N)* +t log N/s).

[17] proved the following result. For any p, there exist synchronous distrib-
uted machines in which p processors can communicate with a bounded num-
ber of others such that: Given an algorithms for a PRAM which runs in O(x)
using p processors, it can be simulated in time O(xlog?p) (almost surely) by
the machine. Let us compare his result with ours. The literature contains many
algorithms which make an efficient use of a large number of processors (for
large enough input). Therefore, it is likely that the number of processors in a
real machine will be far less than the number of processors emplyed by a
PRAM algorithm. Let us demonstrate an on example how the efficiencies of
the simulation results for the PDDI take advantage of that. Consider the
problem of finding the k-th largest out of n elements. [20] gave an algorithm of
time O(n/p) using p=n/(lognloglogn) processor and common memory of size
O(n). We wish to simulate this algorithm by a synchronous distributed ma-
chine. Observe that real processors should be pretty powerful in order to
simulate processors of a PRAM including their full instruction set. Say that a

machine can have }/n such processors. So the PDDI will have V'n super-
processors. Say also that a machine can have m processors that simulate
memory modules. Such processors need to have totally different properties
than the super-processors. Indeed the PDDI does not link the number of
super-processors to the number of memory-processors. The Corollary implies

that while m ranges between]/; and n]/H the running time of a PDDI ranges

between O(]/n) and O(]/ nlogn) and the additional memory between O(n) and
O(nlogn). We have not mentioned yet the O(mlogn) comparator-processors.
Observe, that this processors need not be as complex as the other processors.
Actually they can be fairly degenerate: their instruction set and local memories
are small. Therefore, the hardware cost of the comparator-processors is domi-
nated by the hardware cost of the other processors.

Randomized and Deterministic Simulations of PRAMs 371

On the other hand Upfal’s solution implies a running time of O[]/;e log? n)
of the simulating machine.

V. Summary

We gave above a detailed description of each component of our solution. Here
we would like to give a high level description of a simulation of the
CRCWPRAM by the NQ-MPC.

The CRCWPRAM (resp. NQ-MPC) is permissive (resp. restrictive) relative
to the spectrum of other permissive (resp. restrictive) models of computation
that appear in the literature. This enables us to go again through the main
notions of our solution in order to summarize them in a uniform fashion.

Stage one assumes a class H of hashfunction. Pick at random one of them,
say h. This hashfunction implies the location of the ¢ copies of each address a;.
By the alternative c-partitioning of stage two the j-th copy is in module
h(a)(mod m—(j—1)) of the modules that were not occupied by the first j—1
copies (1 £j=c¢). The step by step simulation starts with cach processor of the
NQ-MPC machine specifying an address request for read or write like its
corresponding CRCWPRAM processor. Now we have to split into reading
and writing cycles. For reading cycles Theorem 3’ gives an algorithm for allo-
cation of address requests to modules. A scheduling of the requests to time
units of the simulated cycle and a way to transmit the read request to the
modules and the response back to the processors are described in the previous
chapter. For writing cycles each address request is assigned to all its ¢ copies.
We do not do worse than ¢ times (the time for one reading cycle). The reader
is invited to conclude this by observing that we can access: first copies, then
second copies, and so on.

In this paper we were able to apply a few powerful concepts developed by
Theoretical Computer Science to a problem which arises in a natural way from
practice. One concept is the use of randomization in the sense described in
[13]. The second concept is the use of augmanting paths in the analysis and
algorithms of Chapter III. The third concept is expander graphs in Sect. ITIL7.

Among the technical contributions of the paper we think that two are of
particular interest: (1) The way universal hashing is used and analyzed. This is
due to a different efficiency criterion than in [5] that has to be satisfied. (2)
The fast parallel approximation algorithms. This is interesting since we used
approximation for problems that were solved serially using augmenting paths.
Augmenting path seems to be a procedure which is inherently serial. There are
other problems whose algorithms use variations of augmenting paths. These
include finding maximum matching in a graph and maximum flow in a
network. So far, there are no fact parallel algorithms using a small number of
processors for these problems. (By this we mean that the running time of the
algorithm is poly-log in the length of the input for the problem; and, a
simulation of such an algorighm by a single processor results in a serial
algorithm which is as good, or “almost™ as good, as the fastest serial algorithm
for the problem.) It is possible that such algorithms do not exist. If this is true

372 K. Mehlhorn and U. Vishkin

it might still be possible to find fast parallel approximation algorithms, as we
did here.

The formulation of the granularity problem together with the problem
solved by the PDDI is an interesting exercise in a methodoligical solution to a
“real problem”. That is the problem of simulating PRAMs by synchronous
distributed machines. As was indicated in the introduction it was methodologi-
cal to first identify these two problems and later attempt to solve them rather
than to solve this simulation problem directly.

Appendix 1

The following example may illustrate what are the results that one may expect
out of Sect. II1.7. No special effort was made to get the best possible result in
the subsequent computation.

Example. Let N=p* m=p* and d=1. Then,
1< ¥ (pa) (Pz) (cpk)! (ep®—ck)!
P K, \K k| (cpk—ck)! (cp)

LG)

Si
()= () () (")
ck)= \k/ \k (c—2)k
we get
epk\ /{c=1)p*>—p?
glékép((.'k)/((C—z}k)
Since el ey
(22
ck (ck)!
and
((c— 1)p3—p2) J ((e=1)p*—p?—(c =2k~
(c—2)k = ((c—2)k)!
we get
” (ck)! (cpk)™*
= e, (e=2k) ! (e = 1)p* —p* —(c=2)k)™ 2%
N (ck)! < () 2k- « » 3 2 - -
ow ——— < (ck)**; and for p “large enough” p°>p*+(c—2)k where ¢ is a
((c—2)k)!

constant and k<p. So
(cky** (cpk)™

= &, (e=p)FoF

Randomized and Deterministic Simulations of PRAMs 373
Call each element L,. Let ¢=10. For large enough p

_10%(10p)'°

ey P

Since it is easy to verify that the derivate of L, with respect to k (1=k=p) is

negative for large enough values of p, we get) L, <I. So, we proved the
15k<p

existence of a 10-partitioning such that for these parameters gives always a

memory contention of one.

Acknowledgement. We are grateful to the referees for their thorough remarks. Discussions with A.
Gottlieb, M. Snir, P.Spirakis and A.Wigderson are gratefully acknowledged. We thank Kevin
McAuliffe for the information about the ratio between read and write instructions achieved in
simulations of the Ultracomputer Project.

References

1. Aho, AV, Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms.
Reading, MA: Addison-Wesley 1974

2. Ajtai, M., Komlos, J., Szemeredi, E.: An O(nlogn) sorting network. Proc. Fifteenth ACM
Symposium on Theory of Computing, pp. 1-9, 1983

3. Awerbuch, B., Israeli, A., Shiloach, Y.: Efficient simulations of PRAM by Ultracomputer.
(Preprint). Dept. of Computer Science, Technion, Haifa, Israel, 1983

4. Carmichael, R.D.: Groups of finite orders. Dover: DoverPublications 1956

5. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Proc. Nineth ACM Sym-
posium on Theory of Computing, pp. 106-112, 1977

6. Even, S.: Graph Algorithms. Potomac, MD: Computer Science Press 1979

7. Goldschlager, L.M.: A Unified Approach to Models of Synchronous Parallel Machines. Proc.
Tenth ACM Symposium on Theory of Computing, pp. 89-94, 1978

8. Gonnet, G.H.: Expected length of the longest probe sequence in hash code searching. JACM
28, 289-304 (1981)

9. Gottlieb, A., Grishman, R., Kruskal, C.P., McAuliffe, K.P., Rudolph, L., Snir, M.: The NYU
Ultracomputer-Designing, a MIMD Shared Memory Parallel Machine. IEEE Trans. Comput.
c-32, 175-189 (1983)

10. Kuck, D.J.: A survey of parallel machine organization and programming. Comput. Surveys 9,
29-59 (1977)

11. Lev, G., Pippenger, N., Valiant, J.G.: A fast parallel agorithm for routing in permuting
networks. IEEE Trans. Comput. ¢-30, 93-100 (1981)

12. Pippenger, N.: Superconcentrators. SIAM J. Comput. 6, 298-304 (1977)

13. Rabin, M.O.: Probabilistic algorithms. In: Algorithms and Complexity, J.F. Traub (ed.)
New York: Academic Press 1976

14. Reif, J.,, Valiant, L.J.: A logarithmic time sort for linear size networks. Proc. Fifteenth ACM
Symp. Theory Comput. pp. 10-16, 1983

15. Schwartz, J.T.: Ultracomputers. ACM Trans. Progr. Lang. Syst. 2, 484-521 (1980)

16. Shiloach, Y., Vishkin, U.: Finding the maximum, merging and sorting in a parallel com-
putation model. J. Algorithms 2, 88-102 (1981)

17. Upfal, E.: A probabilistic relation between desirable and feasible models of parallel com-
putation. Proc. Sixteenth ACM Symp. Theory Comput. 1984 (To appear)

18. Vishkin, U.: Parallel-Design space Distributed - Implementation space (PDDI) general pur-

374 K. Mehlhorn and U. Vishkin

pose computer. RC 9541, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598,
1982. To appear in Theoretical Computer Science)

19. Vishkin, U.: Implementation of simultaneous memory address access in models that forbid it. J.
Algorithms 4, 45-50 (1983)

20. Vishkin, U.: An optimal parallel algorithm for selection. (Preprint, 1983)

21. Vishkin, U., Wigderson, A.: Dynamic parallel memories. Information and Control 56, 174-182
(1983)

Received May 28, 1984 /July 2, 1984

