
Set-Up

set up non-certifying and certifying planarity demo. Let the
non-certifying demo run during introduction

Certifying Algorithms Kurt Mehlhorn 1

Certifying Algorithms
Algorithms Explaining their Work
Algorithmics meets Software Engineering

Kurt Mehlhorn

Outline of Talk

problem definition and certifying algorithms
examples of certifying algorithms

testing bipartiteness
matchings in graphs
planarity testing
convex hulls
further examples

advantages of certifying algorithms
universality
formal verification and certifying algorithms
summary

Certifying Algorithms Kurt Mehlhorn 3

The Problem

Program for f
x y

A user feeds x to the program, the program returns y .

How can the user be sure that, indeed,

y = f (x)?

The user has no way to know.

Certifying Algorithms Kurt Mehlhorn 4

Warning Examples

LEDA 2.0 planarity test was incorrect
Rhino3d (a CAD systems) fails to com-
pute correct intersection of two cylinders
and two spheres

CPLEX (a linear programming solver) fails on benchmark
problem etamacro.

Mathematica 4.2 (a mathematics systems) fails to solve a
small integer linear program

In[1] := ConstrainedMin[x , {x==1,x==2} , {x}]
Out[1] = {2, {x->2}}

In[1] := ConstrainedMax[x , {x==1,x==2} , {x}]
ConstrainedMax::"lpsub": "The problem is unbounded."
Out[2] = {Infinity, {x -> Indeterminate}}

Certifying Algorithms Kurt Mehlhorn 5

The Problem

Program for f
x y

A user feeds x to the program, the program returns y .

How can the user be sure that, indeed,

y = f (x)?

The user has no way to know.

How do we behave when we delegate a task to a personal
assistent?

The Proposal
A program should justify (prove) its answers in a way that is
easily checked by the user of the program.

Certifying Algorithms Kurt Mehlhorn 6

The Problem

Program for f
x y

A user feeds x to the program, the program returns y .

How can the user be sure that, indeed,

y = f (x)?

The user has no way to know.

How do we behave when we delegate a task to a personal
assistent?

The Proposal
A program should justify (prove) its answers in a way that is
easily checked by the user of the program.

Certifying Algorithms Kurt Mehlhorn 6

A Certifying Program for a Function f

Certifying
program for f Checker C

x
x y

w

accept (x , y ,w)

reject

On input x , a certifying program returns
the function value y and a certificate (witness) w

w proves y = f (x) even to a dummy,

and there is a simple program C, the checker, that verifies
the validity of the proof.

Certifying Algorithms Kurt Mehlhorn 7

A First Example: Testing Bipartiteness of Graphs

A graph is bipartite if its vertices
can be colored black and white
such that the endpoints of each
edge have distinct colors. YES NO ??

Conventional algorithm outputs YES or NO

Certifying Algorithm outputs

a two-coloring in the YES-case

an odd cycle in the NO-case

Remark: simple modification of the standard algorithm suffices

Certifying Algorithms Kurt Mehlhorn 8

A First Example: Testing Bipartiteness of Graphs

A graph is bipartite if its vertices
can be colored black and white
such that the endpoints of each
edge have distinct colors. YES NO ??

Conventional algorithm outputs YES or NO

Certifying Algorithm outputs

a two-coloring in the YES-case

an odd cycle in the NO-case

Remark: simple modification of the standard algorithm suffices

Certifying Algorithms Kurt Mehlhorn 8

Bipartite Graphs: An Algorithm

construct a spanning tree of G

use it to color the vertices with colors red and blue

check for all non-tree edges: do endpoints have distinct
colors?

if yes, the graph is bipartite and the coloring proves it.

if no, declare the graph non-bipartite: Let e = {u, v } be a
non-tree edge with equal colored endpoints

0

1

2

3

4

5

6

7

e together with the tree path
from u to v is an odd cycle.
Note that the tree path has
even length since u and v have
the same color.

Certifying Algorithms Kurt Mehlhorn 9

Bipartite Graphs: An Algorithm

construct a spanning tree of G

use it to color the vertices with colors red and blue

check for all non-tree edges: do endpoints have distinct
colors?

if yes, the graph is bipartite and the coloring proves it.

if no, declare the graph non-bipartite: Let e = {u, v } be a
non-tree edge with equal colored endpoints

0

1

2

3

4

5

6

7

e together with the tree path
from u to v is an odd cycle.
Note that the tree path has
even length since u and v have
the same color.

Certifying Algorithms Kurt Mehlhorn 9

Examples

Planarity Testing
Maximum Cardinality Matchings

Further Examples

Certifying Algorithms Kurt Mehlhorn 10

Example II: Planarity Testing

Given a graph G, decide whether it is planar
Tarjan (76): planarity can be tested in linear time
A story and a demo
Combinatorial planar embedding is a witness for planarity

Chiba et al (85): planar embedding of a planar G in linear time

Kuratowski subgraph is a witness for non-planarity
Hundack/M/Näher (97): Kuratowski subgraph of non-planar G in linear time, LEDAbook, Chapter 9

Certifying Algorithms Kurt Mehlhorn 11

Example III: Maximum Cardinality Matchings

A matching M is a set of edges no two of which share an
endpoint

The blue edges form a matching of maximum cardinality;
this is non-obvious as two vertices are unmatched.

A conventional algorithm outputs the set of blue edges.

Certifying Algorithms Kurt Mehlhorn 12

Maximum Cardinality Matching: A Certifying Alg

Edmonds’ Theorem: Let M be a matching in a graph G and let
` be a labelling of the vertices with non-negative integers such
that for each edge e = (u, v) either `(u) = `(v) ≥ 2 or
1 ∈ { `(u), `(v) }. Then

|M| ≤ n1 +
∑
i≥2

bni/2c ,

where ni is the number of vertices labelled i .

Certifying Algorithms Kurt Mehlhorn 13

Maximum Cardinality Matching: A Certifying Alg

Edmonds’ Theorem: Let M be a matching in a graph G and let
` be a labelling of the vertices with non-negative integers such
that for each edge e = (u, v) either `(u) = `(v) ≥ 2 or
1 ∈ { `(u), `(v) }. Then

|M| ≤ n1 +
∑
i≥2

bni/2c ,

where ni is the number of vertices labelled i .

n1 = 4, n2 = 3, n3 = 3.

no matching has more
than
4 + b3/2c+ b3/2c = 6
edges.

|M| = 6

Certifying Algorithms Kurt Mehlhorn 13

Maximum Cardinality Matching: A Certifying Alg

Edmonds’ Theorem: Let M be a matching in a graph G and let
` be a labelling of the vertices with non-negative integers such
that for each edge e = (u, v) either `(u) = `(v) ≥ 2 or
1 ∈ { `(u), `(v) }. Then

|M| ≤ n1 +
∑
i≥2

bni/2c ,

where ni is the number of vertices labelled i .

Let M1 be the edges in M having at least one endpoint
labelled 1 and, for i ≥ 2, let Mi be the edges in M having
both endpoints labelled i .

M = M1 ∪M2 ∪M3 ∪ . . .

|M1| ≤ n1 and |Mi | ≤ ni/2 for i ≥ 2.

Certifying Algorithms Kurt Mehlhorn 13

Further Examples

biconnectivity, strong connectivity, flows, . . . ,

Convex Hulls

Schmidt, Mehlhorn/Neumann/Schmidt: Three-Connectivity of
Graphs

Georgiadis/Tarjan: Dominators in Digraphs

Wang: Arrangements of Algebraic Curves

Mehlhorn/Sagraloff/Wang: Root Isolation for Real Polynomials

Althaus/Dumitriu: Certifying feasibility and objective value of
linear programs

Hauenstein/Sottile: alphaCertified: certifying solutions to
polynomial systems

Cook et al: Traveling Salesman Tours

Cheung/Gleixner/Steffy: Verifying Integer Programming Results

Certifying Algorithms Kurt Mehlhorn 14

History

I do not claim that I invented the concept; it is an old
concept

al-Kwarizmi: multiplication
extended Euclid: gcd
primal-dual algorithms in combinatorial optimization
Blum et al.: Programs that check their work

I do claim that Näher and I were the first (1995) to adopt the
concept as the design principle for a large library project:
LEDA

(Library of Efficient Data Types and Algorithms)

Kratsch/McConnell/M/Spinrad (SODA 2003) coin name

McConnell/M/Näher/Schweitzer (2010): 80 page survey

Certifying Algorithms Kurt Mehlhorn 15

How I got interested?

till ’83: only theoretical work in algorithms and complexity

’83 – ’89: participation in a project on VLSI design:
implementation work proceeds very slowly

since ’89: LEDA, library of efficient data types and algorithms

many implementations incorrect

’95: adopt exact computation paradigm (computational
geometry) and certifying algorithms as design principles

’95 – ’99: make textbook algs certifying, reimplementation of
library, LEDA book

since ’00: additional certifying algorithms

’10: 80 page survey paper

since ’12: formal verification of checkers

Certifying Algorithms Kurt Mehlhorn 16

The Advantages of Certifying Algorithms

Certifying algs can be tested on
any input
and not just on inputs for which the result is known.

Certifying algorithms are reliable:
Either give the correct answer
or notice that they have erred ⇒ confinement of error

Computation as a service
There is no need to understand the program, understanding
the witness property and the checking program suffices.
One may even keep the program secret and only publish the
checker

Certifying Algorithms Kurt Mehlhorn 17

The Advantages of Certifying Algorithms

Certifying algs can be tested on
any input
and not just on inputs for which the result is known.

Certifying algorithms are reliable:
Either give the correct answer
or notice that they have erred ⇒ confinement of error

Computation as a service
There is no need to understand the program, understanding
the witness property and the checking program suffices.
One may even keep the program secret and only publish the
checker

Certifying Algorithms Kurt Mehlhorn 17

The Advantages of Certifying Algorithms

Certifying algs can be tested on
any input
and not just on inputs for which the result is known.

Certifying algorithms are reliable:
Either give the correct answer
or notice that they have erred ⇒ confinement of error

Computation as a service
There is no need to understand the program, understanding
the witness property and the checking program suffices.
One may even keep the program secret and only publish the
checker

Certifying Algorithms Kurt Mehlhorn 17

Odds and Ends

General techniques

Linear programming duality
Characterization theorems
Program composition

Probabilistic programs and checkers

Reactive Systems (data structures)
does apply to problems in NP (and beyond), e.g., SAT

output a satisfying assignment of satisfiable inputs or
ouput a resolution proof for unsatisfiability.

Certifying Algorithms Kurt Mehlhorn 18

Universality

Does every problem have a certifying algorithm? Can every
program be converted into a certifying one?

I know 100+ certifying algorithms, see survey by
McConnell/M/Näher/Schweitzer (CS Review), in particular, all
text-book algorithms can be made certifying

most programs in LEDA are certifying, and

checking a solution is never harder than finding it.

Certifying Algorithms Kurt Mehlhorn 19

Universality

Does every problem have a certifying algorithm? Can every
program be converted into a certifying one?

I know 100+ certifying algorithms, see survey by
McConnell/M/Näher/Schweitzer (CS Review), in particular, all
text-book algorithms can be made certifying

most programs in LEDA are certifying, and

checking a solution is never harder than finding it.

Certifying Algorithms Kurt Mehlhorn 19

Universality

Does every problem have a certifying algorithm? Can every
program be converted into a certifying one?

I know 100+ certifying algorithms, see survey by
McConnell/M/Näher/Schweitzer (CS Review), in particular, all
text-book algorithms can be made certifying

most programs in LEDA are certifying, and

checking a solution is never harder than finding it.

Certifying Algorithms Kurt Mehlhorn 19

Universality

Does every problem have a certifying algorithm? Can every
program be converted into a certifying one?

I know 100+ certifying algorithms, see survey by
McConnell/M/Näher/Schweitzer (CS Review), in particular, all
text-book algorithms can be made certifying

most programs in LEDA are certifying, and

checking a solution is never harder than finding it.

Certifying Algorithms Kurt Mehlhorn 19

A Certifying Program for a Function f

Certifying
program for f Checker C

x
x y

w

accept (x , y ,w)

reject

On input x , a certifying program returns
the function value y and a certificate (witness) w

w proves y = f (x) even to a dummy,

and there is a simple program C, the checker, that verifies
the validity of the proof.

Let us have a closer look at the checker
programs.

Certifying Algorithms Kurt Mehlhorn 20

The Maximum Cardinality Matching Checker
Edmonds’ Theorem: Let M be a matching in a graph G = (V , E) and let ` : V → N such that for each edge
e = (u, v) of G either `(u) = `(v) ≥ 2 or 1 ∈ { `(u), `(v) }. Then

|M| ≤ n1 +
∑
i≥2

bni/2c ,

where ni is the number of vertices labelled i .

The Checker Program has input G, M, and `:
checks that M ⊆ E ,

checks that M is a matching,

checks that ` satisfies the hypothesis of the theorem, and

checks that |M| = n1 +
∑

i≥2 bni/2c

set c[v] = 0 for all v ∈ V ;
for all e = (u, v) ∈ M: increment c[u] and c[v];
if some counter reaches 2, M is not a matching.

Certifying Algorithms Kurt Mehlhorn 21

Who Checks the Checker?

How can we be sure that the checker programs are correct?

My answer up to 2011: Because they are so simple.

Because we can prove their correctness in a formal system

Isabelle/HOL
Nipkow/Paulson

formal
mathematics

proof are
machine-checked

only kernel needs
to be trusted

Certifying Algorithms Kurt Mehlhorn 22

Who Checks the Checker?

How can we be sure that the checker programs are correct?

My answer up to 2011: Because they are so simple.

Because we can prove their correctness in a formal system

Isabelle/HOL
Nipkow/Paulson

formal
mathematics

proof are
machine-checked

only kernel needs
to be trusted

Certifying Algorithms Kurt Mehlhorn 22

Who Checks the Checker?

How can we be sure that the checker programs are correct?

My answer up to 2011: Because they are so simple.

Because we can prove their correctness in a formal system

Isabelle/HOL
Nipkow/Paulson

formal
mathematics

proof are
machine-checked

only kernel needs
to be trusted

definition disjoint-edges :: (α, β) pre-graph ⇒ β ⇒ β ⇒ bool where
disjoint-edges G e1 e2 = (

start G e1 6= start G e2 ∧ start G e1 6= target G e2 ∧
target G e1 6= start G e2 ∧ target G e1 6= target G e2)

definition matching :: (α, β) pre-graph ⇒ β set ⇒ bool where
matching G M = (

M ⊆ edges G ∧
(∀e1 ∈ M. ∀e2 ∈ M. e1 6= e2 −→ disjoint-edges G e1 e2))

definition edge-as-set :: β ⇒ α set where
edge-as-set e ≡ {tail G e, head G e}

lemma matching disjointness:
assumes matching G M
assumes e1 ∈ M assumes e2 ∈ M assumes e1 6= e2
shows edge-as-set e1 ∩ edge-as-set e2 = {}
using assms
by (auto simp add: edge-as-set def disjoint-edges def matching def)

Certifying Algorithms Kurt Mehlhorn 22

What do we Formally Verify and How?

Edmonds’ theorem

Checker always halts and either rejects or accepts.

Checker accepts a triple (G,M, `) iff is satisfies the
assumptions of Edmonds’ theorem.

we prove Edmonds’ theorem in Isabelle

we translate checkers from C to I-Monads with AutoCorres
(NICTA)

I-Monads is a programming language defined in Isabelle

we prove items 2 and 3 for the resulting I-Monads program
in Isabelle

since NICTA-tools are verified, this verifies the C-code of the
checker

verification revealed that one of the checkers in LEDA was
incomplete

Certifying Algorithms Kurt Mehlhorn 23

What do we Formally Verify and How?

Edmonds’ theorem

Checker always halts and either rejects or accepts.

Checker accepts a triple (G,M, `) iff is satisfies the
assumptions of Edmonds’ theorem.

we prove Edmonds’ theorem in Isabelle

we translate checkers from C to I-Monads with AutoCorres
(NICTA)

I-Monads is a programming language defined in Isabelle

we prove items 2 and 3 for the resulting I-Monads program
in Isabelle

since NICTA-tools are verified, this verifies the C-code of the
checker

verification revealed that one of the checkers in LEDA was
incomplete

Certifying Algorithms Kurt Mehlhorn 23

Formal Verification: Summary

Formal Instance Correctness
If a formally verified checker accepts a triple (x , y ,w),

we have a formal proof that y is the correct output for input x .

a high level of trust (only Isabelle kernel needs to be trusted)

a way to build large libraries of trusted algorithms
Alkassar/Böhme/M/Rizkallah: Verification of Certifying Computations, JAR 2014

Noshinski/Rizkallah/M: Verification of Certifying Computations through AutoCorres and Simpl,
NASA Formal Methods Symposium 2014

Certifying Algorithms Kurt Mehlhorn 24

Summary
Only certifying algs are good algs
Certifying algs have many advantages
over standard algs:

every run is a test
notice when they erred
can be relied on without knowing code
are a way to computation as a service

Formal verification of checkers and
formal proof of witness property are
feasible

Most programs in the LEDA system are
certifying.

When you design your next
algorithm,

make it certifying.

Certifying Algorithms Kurt Mehlhorn 25

Summary
Only certifying algs are good algs
Certifying algs have many advantages
over standard algs:

every run is a test
notice when they erred
can be relied on without knowing code
are a way to computation as a service

Formal verification of checkers and
formal proof of witness property are
feasible

Most programs in the LEDA system are
certifying.

When you design your next
algorithm,

make it certifying.

Certifying Algorithms Kurt Mehlhorn 25

Summary
Only certifying algs are good algs
Certifying algs have many advantages
over standard algs:

every run is a test
notice when they erred
can be relied on without knowing code
are a way to computation as a service

Formal verification of checkers and
formal proof of witness property are
feasible

Most programs in the LEDA system are
certifying.

When you design your next
algorithm,

make it certifying.

Certifying Algorithms Kurt Mehlhorn 25

Summary
Only certifying algs are good algs
Certifying algs have many advantages
over standard algs:

every run is a test
notice when they erred
can be relied on without knowing code
are a way to computation as a service

Formal verification of checkers and
formal proof of witness property are
feasible

Most programs in the LEDA system are
certifying.

When you design your next
algorithm,

make it certifying.

Certifying Algorithms Kurt Mehlhorn 25

Summary
Only certifying algs are good algs
Certifying algs have many advantages
over standard algs:

every run is a test
notice when they erred
can be relied on without knowing code
are a way to computation as a service

Formal verification of checkers and
formal proof of witness property are
feasible

Most programs in the LEDA system are
certifying.

When you design your next
algorithm,

make it certifying.

Certifying Algorithms Kurt Mehlhorn 25

	Intro
	Examples
	Advantages
	Universality
	Verification
	Summary

