13

Collective Communication and Computation

]

Counting votes after electiondl is an early example of massively parallel computing.
In a large country, there are millions and millions of ballots cast in thousands and
thousands of polling places distributed all over the country. It is clearly a bad idea
to ship all the ballot boxes to the capital and have them counted by a single clerk.
Assuming the clerk can count one vote per second 24 h a day, counting 100000000
votes would take more than three years. Rather; the votes are counted in each station
and the counts are aggregated in a hierarchy of election offices (e.g., polling place,
city, county, state, capital). These counts are very compact and can be communicated
by telephone in a few seconds. Overall, a well-organized counting process can yield
a preliminary result in a few hours. We shall see that this is an example of a global
reduction and that efficient parallel algorithms follow a very similar pattern.

Most parallel algorithms in this book follow the SPMD (single program multiple
data) principle. More often than not, the high symmetry of these algorithms leads to
highly regular interaction patterns involving all the PEs. This is a mismatch to the
low-level primitives of our machine models such as point-to-point message exchange
(Sect. or concurrent access to memory locations (Sect. 2.4.1)). Fortunately,
these interaction patterns usually come from a small set of operations for which we
can provide a library of efficient algorithms. Hence, these collective communication
operations definitively belong to the basic toolbox of parallel algorithms and thus
get their own chapter in this book. Figure [[3.1] and Table [3.1] give an overview.
Note that all bounds stated in this table are better than what one obtains using trivial
algorithms. While the table gives asymptotic running times, in the following we shall
look also at the constant factors involved in the terms depending on o and 3. We
shall call this the communication time. A bound of aa + b will in all cases imply a
running time of act + b + O(a +b).

! The illustration above shows a polling station in New York circa 1900. E. Benjamin An-
drews, History of the United States, volume V. Charles Scribner’s Sons, New York (1912).

394 13 Collective Communication and Computation

broadcast all-reduce prefix-sum/scan all-to-all

scatter

(e
|

|
]

Fig. 13.1. Information flow (left to right) of collective communication operations. Note that
the actual data flow might be different in order to improve performance.

Table 13.1. Collective communication operations and their asymptotic complexities;
n = message size, p = #PEs, a = message startup latency, f = comm. cost per word

Name # senders # receivers # messages Computations? Complexity Section
Broadcast 1 p 1 no alogp+pn O3]
Reduce p 1)4 yes alogp+pn [[32
All-reduce p p p yes alogp+pn [13.2
Prefix sum p p p yes alogp+pn [O33]
Barrier p p 0 no alogp 13.4.2
Gather p 1)4 no alogp+ Bpn 3.3
All-gather p p P no alogp+ Bpn 33
Scatter 1 p p no alogp+ Bpn [I3.3]
All-to-all p p P? no log p(a+ B pn)
or p(a+pfn)

We begin with a group of operations with essentially the same complexity,
and some closely related algorithms: sending a message to all PEs (broadcast,
Sect. [[3:1), combining one message from each PE into a single message using an
associative operator (reduce, Sect. [13.2), a combination of reduce and subsequent
broadcast (all-reduce), and computation of the partial sums Ziiipmc Xi, where, once
more, the sum can be replaced by an arbitrary associative operator (prefix sum or
scan, Sect.[13.3).

In Sect.[13.4] we discuss the barrier synchronization, which ensures that no PE
proceeds without all the other PEs having executed the barrier operation. This op-
eration is particularly important for shared memory, where it is used to ensure that
no data is read by a consumer before being produced. On shared-memory machines,

13 Collective Communication and Computation 395

we also need further synchronization primitives such as locking, which are also ex-
plained in Sect.[13.4

The operations gather (concatenate p messages, one from each PE), all-gather
(gather plus broadcast, also called gossip or all-to-all broadcast), and scatter (one
PE sends one individual message to each PE) are much more expensive, since they
scale only linearly with p and should be avoided whenever possible. Nevertheless, we
sometimes need them, and Sect. provides some interesting algorithms. Finally,
in Sect. we consider the most expensive operation, all-tfo-all, which delivers
individual messages between all PEs.

We explain the collective operations first for the distributed-memory model. Then
we comment on the differences for shared memory, where we have hardware sup-
port for some of the operations. For example, concurrent reading works well because
the hardware internally implements a kind of broadcast algorithm. In small shared-
memory systems, constant factors may also be more important than asymptotic com-
plexity. For example, p concurrent fetch-and-add instructions may often be faster
than a call to a tree-based reduction algorithm. However, this may not apply for large
p and large objects to be combined.

v

complete binary tree

-

binomial tree A

broadcast
uononpal

o

»
L

with in-order a| | =
. G| |3
numbering Sl |e
Tl O
ol |=
a8
\j
hypercube
Hy 011 011 111 111
Hy ® HII ﬁ
[001d— 001 101011011

T

H, H; |
I:I M—% 1100——1101
000 000 100 100

Fig. 13.2. Basic communication topologies for collective communications

396 13 Collective Communication and Computation

All these algorithms are based on the three basic communication topologies bi-
nomial tree, binary tree, and hypercube shown in Fig. The tree topologies are
good for one-to-p patterns (broadcast and scatter) and p-to-one patterns (reduce and
gather) and are introduced in Sect. [[3.1] together with the broadcast operations. The
hypercube introduced in Sect.[13.2.1]can in some cases accelerate p-to-p communi-
cation patterns and also leads to particularly simple algorithms.

13.1 Broadcast

In a broadcast, a root PE r wants to send a message m of size n to all PEs. Broad-
casting is frequently needed in SPMD parallel programs to distribute parameters of
the input or other globally needed values. Shared-memory machines with coherent
caches support broadcasting by hardware to some extent. When one PE accesses a
value, its cache line is copied to all levels of the cache hierarchy. Subsequently, other
PEs accessing the same caches do not have to go down all the way to main memory.
When all PEs access the same value, this hardware mechanism — with some luclé
— will build a tree of caches and PEs in a similar fashion to the distributed-memory
algorithms we shall see below. For example, the value may be copied from main
memory to the L3 cache of all processor chips. From each L3 cache, it is then copied
to the L2 and L1 caches of each core, and the hardware threads running on the same
core need only to access their local L1 cache.

Going back to distributed memory, let us assume for now that » = 0 and that the
PEs are numbered 0..p — 1. Other arrangements are easy to obtain by renumbering
the PEs, for example as ipoc — ¥ mod p. A naive implementation uses a for-loop and
p— 1 send operations. This strategy is purely sequential and needs time at least a(p —
1); it could be a bottleneck in an otherwise parallel program. A better strategy is to
use a divide-and-conquer strategy. PE 0 sends x to PE [p/2] and delegates to it the
task of broadcasting x to PEs [p/2]..p — 1 while PE 0 itself continues broadcasting
to PEs 0.. [p/2] — 1. More generally, a PE responsible for broadcasting to PEs i..j
delegates to PE [(i + j)/2].

13.1.1 Binomial Trees

Suppose now that p is also a power of two. Then the resulting communication topol-
ogy is a binomial tree. We have already seen binomial trees in the context of address-
able priority queues (see Fig.[6.3in Sect.[6.2.7)). Fig. draws them differently to
visualize the communication algorithm. Edges starting further up are used earlier in
the broadcast algorithm. Interestingly, the binary representation of the PE numbers
tells us the role of a node in the tree: A PE number i with £ trailing 0’s indicates that
this PE has & children with numbers i+ 1,i+2, ..., i+ 25! and that PE i — 2% is its
parent. This is so convenient that we also adopt it when p is not a power of two. We

2 In the worst case, all PEs may try to read the value exactly at the same time and will then
produce a lot of contention in trying to access the main memory.

13.1 Broadcast 397

§ step |3
S|1 # 2|8
g 8
£(2 1%
3 0

Fig. 13.3. Data flow for binomial tree broadcast (left) and reduction (right) with p = 8. The
values at step i indicate the state of the computation at that step.

simply round up to the next power of two, use the binomial tree for that power of two
and then drop the nodes with number > p. The resulting graph is still a tree, and it is
easy to generalize the communication algorithms. Indeed, the following pseudocode
works for any tree spanning all PEs:

Procedure Tree::broadcast(m)
receive(parent, m) /I does nothing on root
foreach ¢ € children do send(c, m) /I largest first for binomial tree

Figure[I3.3l(left) shows the data flow for p = 8. It is very important that the messages
to the children are sent in decreasing order of their size. Is tree broadcast a good
algorithm? We first show an upper bound for binomial trees.

Theorem 13.1. The broadcast algorithm for binomial trees needs communication
time
[log p] (et + fn).

Proof. We use induction on p. The base case p = 1 is easy, PE 0 is the only node.
The receive operation does nothing and the set of children is empty. Hence, no com-
munication is needed.

The induction step assumes that the claim is true for all p < 2* and shows that this
implies that the claim also holds for all p < 2%*!. For 2% < p < 2K+! the first send
operation sends m to PE 2% in time o + Bn. From then on, PEs 0 and 2* execute the
broadcast algorithm for a subtree of size < 2*. Hence, by the induction hypothesis,
they need time k(o + Bn). Overall, the time is (k+ 1)(a+ Bn) = [log p] (a + Bn).

O

This bound is in some sense the best possible: Since one communication operation
can inform only a single PE about the content of message m, the number of PEs
knowing anything about m can at most double with each communication. Hence,
oclog p is a lower bound on the broadcasting time.

Exercise 13.1. Show that the running time of binomial tree broadcast becomes
Q(oclog2 p) if the order of the send operations is reversed, i.e., small children are
served first.

Another obvious lower bound for broadcasting is 7 — every nonroot PE must receive
the entire message. However, binomial tree broadcast needs log p times more time.
In fact, for long messages, there are better algorithms, approaching fn for large n.

398 13 Collective Communication and Computation

13.1.2 Pipelining

There are two reasons why binomial trees are not good for broadcasting long mes-
sages. First, PE 0 sends the entire message to [log p| other PEs, so that it becomes a
bottleneck. Hence, a faster algorithm should send only to a bounded number of other
PEs. This problem is easy to fix — we switch to another tree topology where every
PE has small outdegree. Outdegrees of one and two seem most interesting. For out-
degree 1, the topology degenerates to a path, leading to communication time Q(pa).
This is not attractive for large p. Hence, outdegree two — a binary tree — seems like
a good choice. This is the smallest outdegree for which we can achieve logarithmic
height of the tree.

Another problem is that any broadcasting algorithm which sends m as a whole
will need time Q(logp(a+ Bn)). Hence, we should not immediately transfer the
entire message. Rather, we should chop the message into smaller packets, which are
sent independently. This way, broadcasting can spread its activity to all PEs much
faster. Reinterpreting message m as an array of k packets of size [n/k|, we get the
following algorithm that once more works for any tree topology:

Procedure Tree::pipelinedBroadcast(m : Array[1..k] of Packet)
fori:=1tokdo
receive(parent, m[i])
foreach c € children do send(c, mli])

Figure[13.4] gives an example.

A
S

Fig. 13.4. Pipelined binary tree broadcast with p =7 and k = 3. Top: 10 steps using a complete
binary tree and half-duplex communication. Bottom: 7 steps using a skewed tree and full-
duplex communication.

Lemma 13.2. On a binary tree, the algorithm Tree::pipelinedBroadcast needs com-
munication time

T(Ln,k) < 2L+ 3(k—1)) (a+B m) (13.1)

where L is the length of the longest root to leaf path in the tree.

13.1 Broadcast 399

Proof. Sending or receiving one packet takes time « + f3 [n/k]. It remains to show
that after 2L+ 3(k — 1) such communication steps, every PE has received the entire
message. A PE which has successfully received the first packet needs two steps to
forward it to both of its neighbors. Hence, after 2L steps, every PE has received the
first packet. An interior node of the tree can process one packet every three steps
(receive, send left, send right). Hence, after 3(k — 1) further steps, the last packet has
arrived at the last PE. a

It remains to determine k and L. If we use a perfectly balanced binary tree, we get L =
|log p|. Ignoring rounding issues, we can find an optimal value for k using calculus.

We get k = /Bn(2L —3)/3a if this value is > 2. This yields the following bound.

Theorem 13.3. Using pipelined broadcast on a perfectly balanced binary tree, we
can obtain communication time

(k) = 3ﬁn+2(xlogp+0(\/ aﬁnlogp) =O0(Bn+alogp).

Exercise 13.2. Prove Theorem[13.3]

13.1.3 Building Binary Trees

We have not yet explained how to efficiently build the topology for a perfectly bal-
anced binary tree — each node (PE) needs to know the identity of its parent, its chil-
dren, and the root. We describe a construction principle that is simple, is easy to
compute, can also be used for reduction and prefix sums, and uses subtrees with
contiguous numbers. The latter property might be useful for networks that exhibit a
hierarchy reflected by the PE numbering. Figure[I3.2] gives an example. Figure [[3.3]
gives pseudocode for a tree class defining a perfectly balanced binary tree whose
nodes are numbered in-order, i.e., for any node v, the nodes in the subtree rooted at
the left child of v have a smaller number than v and the nodes in the subtree rooted at
the right child of v have a larger number than v. The constructor takes a user-defined
root and calls a recursive procedure buildTree for defining a binary tree on PE num-
bers a..b. This procedure adopts the root x and parent y passed by the caller and calls
itself to define the subtrees for PEs a..x — 1 and x4 1..b. The roots of the subtrees are
placed in the middle of these subranges. Since PE i, needs only the local values
for the parent, left child, and right child, only that branch of the recursion needs to
be executed which contains i,rc. Thus, we get execution time O(log p) without any
communication.

Exercise 13.3. Prove formally that the tree constructed in Fig. [I3.5] has height <
[log p| regardless of the root chosen.

Exercise 13.4. Design an algorithm that runs in time O(log p) and defines a balanced
binary tree where the nodes are numbered layer by layer as in Sect.

400 13 Collective Communication and Computation

Class InOrderTree(r = [p/2] : 1..p) /I subclass of Tree
leftChild, rightChild, parent, root : 1..pU{L}
root .:=r

buildTree(1, p,root, 1)

//build subtree on PEs a..b with root x € a..b and parent y
Procedure buildTree(a,b,x,y : 1..pU{L})
if iproc < x then buildTree(a,x — 1,[“3=L] x)
else if iproc > x then buildTree(x+ 1,b, [*F52] x)
else // iproc = x

parent :=y I ax-1x+1.b p

leftChild := if a = x then L else [%*1] ;\/_/

rightChild := if b = x then L else [+:1t2] foroc

Fig. 13.5. Constructor of an in-order binary tree

13.1.4 *Faster Broadcasting

With binomial tree broadcasting we have a very simple algorithm that is optimal
for small messages. Pipelined binary tree broadcasting is simple and asymptotically
optimal for long messages also. However, it has several weaknesses that can be im-
proved on.

First, we are not exploiting full-duplex communication. For very long messages,
we can exploit full-duplex communication by using a unary tree — a path consisting
of p nodes. The following linear pipeline algorithm exploits full-duplex communi-
cation. While receiving packet i, it forwards the previous packet i — 1 down the line:

Procedure Path::pipelinedBroadcast(m : Array[l..k] of Packer)
receive(parent,m[1])
for i:=2to k do receive(parent, mli]) || send(child, m[i — 1])
send(child,m[k])

The algorithm terminates in p + k — 1 steps. Optimizing for & as in Sect.[13.1.2lyields
running time
Ty (k) = ﬁn—i—pa—i—O(\/(Xﬁnp) .
This is optimal for fixed p and n — oo.
The linear pipeline is much worse than pipelined binary tree broadcasting for

large p unless 7 is extremely large. We can also use bidirectional communication for
binary tree broadcasting, as in the following exercise.

Exercise 13.5. Adapt pipelined binary tree broadcasting so that it exploits full-
duplex communication for communicating with one of its children and runs in time

T, =2Bn+2alogp+ O(\/ aﬁnlogp) .

Hint: Use the same trick as for the linear pipeline. Figure[[3.4] gives an example.

13.1 Broadcast 401

For large n, this is still a factor of two away from optimality. We seem to have the
choice between two evils — a linear pipeline that does not scale with p and a binary
tree that is slow for large n. This seems to be unavoidable for any tree that is not a
path — the interior nodes have to do three communications for every packet and are
thus overloaded, whereas the leaves do only one communication and are thus under-
loaded. Another trick solves the problem. By carefully scheduling communications,
we can run several tree-based broadcast algorithms simultaneously. One approach
uses log p spanning binomial trees embedded into a hypercube [ﬁ]. Another one
uses just two binary trees [277]. The principle behind the latter algorithm is simple.
By ensuring that an interior node in one tree is a leaf in the other tree, we cancel
out the imbalance inherent in tree-based broadcasting. This algorithm is also easy to
adapt to arbitrary values of p and to prefix sums and noncommutative reduction.

Another weakness of binary tree broadcasting can be seen in the example in
Fig.[[3:4l Some leaves receive the packets later than others. It turns out that one can
reduce the latency of broadcasting by building the trees in such a way that all leaves
receive the first message at the same time. This implies that, towards the right, the tree
becomes less and less deep. Interestingly, one can obtain such a tree by modifying
the procedure buildTree in Fig. to place the root of a subtree not in the middle
but according to the golden ratio 1 : (14 +/5)/2. Fig.[[3.4] gives an example where
all leaves receive a packet at the same time. When an interconnection network does
not support arbitrary concurrent communications, one can adapt the tree structure
so that not too many concurrent communications use the same wire. For example,
Fig. [[3.6 suggests how to embed a spanning binary tree of depth log p + O(1) into
two-dimensional square meshes such that at most two tree edges are embedded into
connections between neighboring PEs.

**Exercise 13.6. (Research problem) Is there an embedding which uses any edge of
the mesh for only a single tree edge?

**Exercise 13.7. Construct a binary tree of depth O(log p) such that only a constant
number of tree edges are embedded into connections between neighboring PEs of a
p = k x 2F mesh. Hint: Use horizontal connections spanning 2’ PEs in layer i.

T bl d hdhalhd bl h il

o o oo oo

L anan au B ahan andl anan s 0L Snan aid

oo 0|9 00, 0008 o1y 400

T hdhalhd hdilhd T T hd T T T hd h il

. oo [YpSLAPSLIPSp SN NP S PULLID UL P Sy

T T T T T hdilhd T T 7 T T T 7 h il
o o oo oo o8 o0 oo o e 60 606000 o0 o0 s
e b i a0 L 40 &0 i L dh ab ARl &0 40 a1 40 45 AR &5 40 S0
oo oo o 0% e ® 5 00 [YESLAPUL AP Sy SN Jp S S APULEP g Sy
L S il S dihd L anan au B anan o HL anan a0l Snan and

oo o0 00 o0 PEPSF I SL-~ AL AW SiL = AL A S WIFgp SIS

T T hd hdhalhd T hd h il

[YpSLAPULIPSp Uy UL IP UL Py uiy

L Aidh ARl A0 SRl S040 SRl ShA0 did

o 00 00 6000 o0 00 s

Fig. 13.6. H-tree embedding of a binary trees into 2D meshes.

402 13 Collective Communication and Computation

13.2 Reduction

Reduction is important in many parallel programs because it is a scalable way to
aggregate partial results computed on different PEs into a global result.

Given a message m; on each PE i, a reduction computes);,m;, where @ can
be any associative operator, i.e., Va,b,c: (a®@b) ® ¢ = a® (b ® ¢). Some algorithms
also require ® to be commutative, and sometimes it is convenient if we have a neutral
element (e.g., 0 for ® = +). In practice, the most frequent operators are +, min, and
max, which are all commutative and have a neutral element.

Exercise 13.8. Explain how to compute both the minimum and the location of the
minimum using a reduction. Is the resulting operation commutative?

Exercise 13.9. Show that floating-point addition is, strictly speaking, not associative.
What are the consequences of treating it like an associative operation?

When long messages are involved in a reduction, we shall assume that they represent
vectors of smaller objects and thus the reduction can be computed componentwise.
This will be important in order to use pipelining techniques.

Shared-memory machines have limited support for reduction in the form of fetch-
and-add instructions. However, when all processors are adding to a global value at
the same time, software implementations along the lines of what is presented below
may still be faster.

Mathematically speaking, associativity is the key to reducing in parallel. When
we write B, ,m;, this is conventionally interpreted as

(¢ (mo@m) @my) -) @mp_2) @mp_

which looks inherently sequential. However, associativity allows us to rewrite the
sum as any binary tree whose interior nodes are labeled with @ and whose ith leaf is
m;.

Parallel reduction algorithms thus use trees much like the broadcasting algo-
rithms we have seen in Sect. [[3.1] Indeed, that similarity goes much further. The
algorithms we propose here are basically obtained by running a broadcasting algo-
rithm “backwards”. The leaves of the tree send their values to their parents, which
add them up before forwarding the partial sum to their parents. This works even for
noncommutative operators if the nodes of the tree are numbered in-order.

For binomial trees, we have already seen the resulting code in Sect. Fig-
ure[I3.3 gives an example and illustrates the symmetry with respect to broadcasting.
Note that compared to broadcasting, the “running backwards” rule means that we
also reverse the order in which we receive from the children — this time from left to
right. This is important to achieve the same communication time as for the broad-
casting algorithm.

For binary trees, we get the following pseudocode (for the nonpipelined case).
To simplify some special cases, we use a neutral element 0:

13.2 Reduction 403

Procedure InOrderTree::reduce(m)
x:=0; receive(leftChild,x)
72:=0; receive(rightChild,z)
send(parent,x @ m® z) /I root returns result

We leave formulating pseudocode for pipelined tree reduction as an exercise
but prove its complexity here, which is the same as for pipelined broadcasting
(Lemmal|l3.2]).

Lemma 13.4. Pipelined binary tree reduction needs communication time
T®(Lon,k) < (2L+3(k— 1)) (a+ﬁm), (13.2)

where k is the number of packets and L is the length of the longest root-leaf path in
the tree.

Proof. We have to show that 2L+ 3(k — 1) packet communication steps are needed.
Reduction activity propagates bottom up, one level every two steps. Hence, the root
performs its first addition after 2L steps. An interior node of the graph (e.g., the right
child of the root) can process one packet every three steps (receive left, receive right,
send sum). Hence, after 3(k — 1) further steps, the last packet has arrived at the root.

O

Since the execution time is the same as for broadcasting, we can also optimize k in
the same way and obtain the following corollary.

Corollary 13.5. Using pipelined reduction on a perfectly balanced binary tree, we
can obtain communication time

T,° (k) = 3ﬁn—|—2alogp—|—0(\/ (xﬂnlogp) =0(Bn+alogp).

All the optimizations in Sect.[[3.1.4also transfer to reduction, except that using
log p spanning trees] does not work for noncommutative reduction — it seems
impossible to have in-order numberings of all the trees involved. However, this works
for the two trees used in [m].

13.2.1 All-Reduce and Hypercubes

Often, all PEs (rather than only one root PE) need to know the result of a reduc-
tion. This all-reduce operation can be implemented by a reduction followed by a
broadcast. For long messages and for shared-memory machines (where broadcast is
supported by the hardware) this is also a good strategy. However, for short messages
we can do better reducing the latency from 2aclog p to arlog p. We show this for the
case where p(= 2¢) is a power of two.

In this case, all-to-all communication patterns can often be implemented using a
hypercube: A d-dimensional hypercube is a graph Hy = (0..2¢ — 1, E) where (x,y) €
E if and only if the binary representations of x and y differ in exactly one bit. Edges

404 13 Collective Communication and Computation

corresponding to changing bit i are the edges along dimension i. Figure [13.2] shows
the hypercubes for d € 0..4. The hypercube communication pattern considers the
PEs as nodes of a hypercube. It iterates through the dimensions, and in iteration i
communicates along edges of dimension i.

For the all-reduce problem, we get the following simple code:

fori:=0tod—1do
send (iproc ® 2°,m) || receive (iproc ® 21, m’) /I Or, for short:
mi=mm Il m® = m@ (iproc 2')

Understanding how and why a hypercube algorithm works often involves loop invari-
ants dealing with i-dimensional subcubes. All the 2/ nodes sharing the most signifi-
cant bits i..d — 1 in their number form an i-dimensional hypercube. For all-reduction,
the loop invariant says that after iteration i, all i 4- 1-dimensional subcubes have com-
puted an all-reduce within that subcube. Figure[I3.7] gives an example.

13.3 Prefix Sums

A prefix sum or scan operation is a generalization of a reduction where we are in-
terested not only in the overall sum but also in all the prefixes of the sum. More
precisely, PE i wants to compute ®;<,,,./m;. A variant of this definition computes the
exclusive prefix sum ®j<;,,.m; on PE i.

Prefix sums with ® = + are frequently used for distributing work between PEs;
see also Sect. We have seen an example for a different operator in Sect. [LT.1]
where it was used for computing carry lookaheads in parallel addition. Prefix sums
are equally important for shared-memory and distributed-memory algorithms, and
there is no hardware support for them on shared-memory machines.

Here is a very simple hypercube algorithm for computing prefix sums which just
adds two lines to the all-reduce algorithm presented in Sect. [[3.2.1]

C

x:=m; invariant x is the prefix sum in current subcube

fori:=0tod—1do
send(iproc ® 2°,m) || receive(iproc & 2',m’)
m:=mem /I update overall sum in subcube
if iproc bitand 2/ then x:=m' @x /I update prefix sum in subcube

Figure[13.7] gives an example. Note that this algorithm computes both the prefix
sum and the overall sum on each PE. This is handy, since in many applications we ac-
tually need both values, for example for distributed-memory quicksort (Sect. 5.7.1).
We obtain the following result:

Theorem 13.6. The hypercube algorithm computes a prefix sum plus all-reduce in
communication time

logp(o+np).

Hypercube algorithms only work when p is a power of two. Also, for long mes-
sages, it is problematic that all PEs are active in every step and hence we cannot use

13.3 Prefix Sums 405

Ill
1
7
|34

Fig. 13.7. A hypercube prefix sum (top values)/all-reduce (bottom values) for p = 8. The top
row shows the general computation pattern, with x : y as an abbreviation for @ly.:xm,-. The
bottom row shows a concrete numeric example.

4 12
.-
71 _1ris
.|JI
8 1
1
4

pipelining. In order to obtain a fast algorithm for arbitrary p and for long messages,
we have therefore developed an algorithm based on in-order binary trees]. Fig-
ure [[3.8] gives such an algorithm. For simplicity, we use neutral elements and do not
show the code for pipelining. The algorithm consists of two phases. First, there is an
upward phase, which works in the same way as reduction. Then comes a downward
phase, which resembles a broadcast but computes the prefix sum and sends different
data to the left and the right child. We exploit the fact that the PEs are numbered
in-order, i.e., each PE i is the root of a subtree containing all the PEs in a range
a..b of integers. During the upward phase, PE i receives the sum x of the elements
a..iproc — 1 from its left subtree. The downward phase is implemented in such a way
that PE iproc receives the sum £ of the elements on PEs 0..a — 1. Hence, PE ijoc can
compute its local prefix sum as £+ x + m. The left subtree is numbered a..iproc — 1,
so that iproc forwards £ there. The right subtree is numbered iproc + 1..5, S0 that iproc
sends the local prefix sum £ + x + m. Figure [3.9 gives an example.

Function InOrderTree::prefixSum(m)
/lupward phase:
x:=0; receive(leftChild,x)
72:=0; receive(rightChild, z)
send(parent,x +m—+z)

// downward phase:

0:=0; receive(parent,()
send(leftChild ()
send(rightChild, {4 x +m)

return /+x+m

Fig. 13.8. Prefix sum using an InOrderTree

406 13 Collective Communication and Computation

iproc ipl’OC 0
m 3 X m
x z 7 14 Result 8 7
8 17 0 15
1 5 1 5
3 4 4 3 8 4
1 5 0 7 15 27
0 2 4 6 0 2 4 6
4 1 8 5 4 1 8 5
4 8 23 32

See also Fig.[13:8]

Since the communication operations are exactly the same as in a reduction fol-
lowed by a broadcast, we can adopt the strategy for pipelining and the analysis pre-
sented in the previous sections and get obtain the following corollary.

Corollary 13.7. Using pipelined prefix sums on binary trees, we can obtain commu-
nication time

T5(k) = 6Bn +4alogp + O(\/(xﬁnlogp) — O(an+ Blogp).

The optimizations in Sect. [3.1.4] also transfer to prefix sums except that we
cannot use logp spanning trees simultaneously]. We need the same in-order
numbering of all trees involved in order to compute prefix sums, even for commuta-
tive operations. Using the result for two compatibly numbered trees (277, we obtain

execution time 2f3n +4ologp + O (« / aﬁnlogp) .

13.4 Synchronization

In a synchronization event, different threads inform each other that they have reached
a certain location in their code. Thus synchronization is communication even if no
additional information is exchanged. We have already introduced shared-memory
locks in Chap. 2l In Sect. [3.4.1] we shall fill in some details. We discuss global
synchronization of all PEs in Sect.

13.4.1 Locks

In Sect. we learned about binary locks. A lock is represented by a memory cell
STi] which takes on values 0 and 1. A thread acquires this lock by changing the value
from O to 1 and releases the lock by changing it back to 0. In order to make sure that
only one thread can acquire the lock, the variable is set using a CAS instruction:

repeat until CAS(i,desired :=0,1)

13.4 Synchronization 407

This kind of lock is called a spin lock because the thread trying to acquire it simply
waits in a loop (spin) while repeatedly checking whether the lock is available. If
many threads contend for the same lock, a basic spin lock may become inefficient,
and a more careful implementation is called for:

Procedure lock(i : N) /I acquire lock in memory cell S[i]
desired =0 : N
loop
if S[i] = 1 then backoff /I wait a bit

else if CAS(i,desired, 1) then return

We have made two improvements here. First, we attempt the expensive CAS instruc-
tion only when an ordinary memory read tells us that we “might” be successful.
Second, we do not spin in a tight loop gobbling up a lot of hardware resources but
instead call a procedure backoff that uses various measures to save resources. First
of all, backoff should call the machine instruction pause, which tells the proces-
sor to yield resources to another thread on the same core. In addition, backoff may
explicitly wait before even attempting to read S[i] again in order to avoid situations
where many threads wait for S[i] = 0 and each of them executes an expensive CAS
when S[i] becomes 0. One such adaptive strategy is exponential backoff — the back-
off period is multiplied by a constant in every loop iteration until it hits a maximum
in ®(p). Thus, even if all PEs do little else but contend for the same lock, we can
achieve a constant success probability for the CAS instruction. After a successful
lock, the backoff period is reduced by the same factor. Waiting can be done with a
for-loop that does nothing other than execute the pause instruction. Unlocking a
spin lock is very simple — simply set S[i] :=0. No CAS instruction is necessary.

Distinguishing readers and writers is slightly more complicated but can also be
implemented with the spin-locking idea. Now the lock variable S[i| is setto p+ 1 if a
writer has exclusive access, where p is an upper bound on the number of threads.
Otherwise, S[i] gives the number of readers. Locking for writing has to wait for
S[i] = 0. Locking for reading has to wait for S[i] < p and it then increments S[i].
Unlocking from reading means decrementing S[i] atomically.

Sometimes locks are held for a very long time. For example, a thread holding
a lock may be waiting for I/O or a user interaction. Then a more complicated kind
of lock makes sense, where the runtime system, in cooperation with the operating
system, suspends threads that are waiting for a lock. An unlock then has to activate
the first thread in the queue of waiting threads.

3 This is true at least on the x86 architecture. Other architectures may need additional mem-
ory fence operations: see also Sect.

408 13 Collective Communication and Computation
13.4.2 Barrier Synchronization

When a PE in an SPMD program calls the procedure barrier, it waits until all other
PEs have called this routine. A barrier is thus a global synchronization of all PEs.
This is needed when a parallel computation can only proceed if all PEs have finished
a computation, for example updating a shared data structure.

The behavior of a barrier is entailed by calling an all-reduce with an empty (or
dummy) operand.

Corollary 13.8. A barrier needs communication time O(alogp).

On distributed-memory machines, there is little else to say. On shared-memory ma-
chines, barriers are so important that it is worth looking at some implementation
details affecting the constant factors involved. Figure[[3.10 gives pseudocode. Here,
we adopt the basic idea to implement an all-reduce and choose a combination of a
binomial tree reduce and a (hardware supported) broadcast. The idea is to replace
a send operation by a write operation to a single memory cell (readyEpoch) that
no other PE ever writes to. A receive operation becomes waiting for this memory
cell to change. If there were only a single call to the procedure barrier, it would
suffice to use a simple flag variable. However, in general, we would need an addi-
tional mechanism to reset these flags, which costs additional time. We circumvent
this complication by using counters rather than flags.

epoch =0: N /I how often was barrier called locally?
readyEpoch =0 : N /I how often did my subtree finish a barrier?
Procedure barrier

epoch++

for i:=0 to |childrenInBinomialTree| do /I that number should be precomputed

while readyEpoch @ (iproc + 21) = epoch do backoff
readyEpoch := epoch
while readyEpoch@0 # epoch do backoff /I implicit broadcast

Fig. 13.10. SPMD code for a shared-memory barrier.

13.4.3 Barrier Implementation

In this section we provide a C++ implementation of the binomial tree barrier and
benchmark it against the simple folklore barrier shown in Listing [[3.1l The latter
implementation uses a PE counter ¢ and an epoch counter that are aligned with cache-
line boundaries (64 bytes on x86) to avoid false sharing. The barrier wait method
accepts the ID of PE iPE and the total number of PEs p. In this implementation, only
p is used but for the sake of generality we stick with this interface to be compatible
with other barrier implementations. Each PE atomically increments the counter ¢
with the last PE (that passes the barrier) incrementing the epoch and resetting the PE

13.4 Synchronization 409

counter ¢ (lines[6HR). All other PEs wait for this epoch transition in line[I0l Note that
the epoch variable is declared with the volatile storage class (see Sect.[B3) to
prevent caching it into a local stack variable or a register through the compiler. The
barrier semantics (proceed if all PEs have finished a computation) also requires a
CPU memory fence because otherwise the processor is, in general, allowed to reorder
computations including loads/stores before and after the barrier, a contradiction to
the semantics. For this purpose we have inserted a CPU memory fence (line [[2).
On x86 architectures, this fence is not required, because the code flow includes an
atomic operation on counter ¢ (line [6), which is an implicit CPU memory fence on
x86.

Listing 13.1. A simple barrier in C++

class SimpleBarrier {
public:

1

2

SimpleBarrier(): ¢(0), epoch(0) {} 3
void wait(const int /« iPE +/, const int p) { 4
register const int startEpoch = epoch; 5
if(c.fetch_add(1) == p—1) { 6
c=0; 7
++epoch; 8

} else { 9
while(epoch == startEpoch) backoff(); 10

} 11
atomic_thread_fence(memory_order_seq_cst); // not required on x86 12

} 13
protected: 14
atomic<int> ¢ __attribute__ ((aligned(64))); 15
char pad[64 — sizeof(atomic<int>)]; 16
volatile int epoch __attribute__ ((aligned(64))); 17
};//SPDX—License—Identifier: BSD—3—Clause; Copyright(c) 2018 Intel Corporation 18

The implementation of the binomial tree barrier is shown in Listing[13.2] It stores
the PE-local epoch and the number of children numChildren in the binomial tree in
the array peData. The number of children is precomputed in the recursive func-
tion initNumChildren (lines [BHI7) called in the constructor. The items in the arrays
peData and readyEpoch are padded to avoid false sharing (lines[6l 36l and 37). The
readyEpoch array is initialized in line 211 Note that the actual value is accessed by
the first member of the paddedInt C++ pair class.

The barrier wait function increments the local PE’s epoch and caches it together
with numChildren into registers in lines [24f and In the following for loop the
PE waits until all its children (if any) have reached myEpoch. The reference to
readyEpoch@ (iPE +2') is precomputed (line 27) before the polling loop. When
all children are ready, the PE’s readyEpoch is updated with myEpoch (line BQ). The
following CPU memory fence is required to prevent possible CPU memory reorder-
ing of this update (and, in general, other operations before or after the barrier). The
reference e to readyEpoch@(0) is precomputed in line 32] before the loop that polls
e until it reaches the value of myEpoch.

410 13 Collective Communication and Computation

Listing 13.2. An implementation of a binomial tree barrier in C++

class BinomialBarrier {
BinomialBarrier();
struct EpochNumChildren {
EpochNumChildren() : epoch(0), numChildren(0) {}
int epoch, numChildren; // co—locate to avoid additional cache miss
char padding[64 — 2+sizeof(int)];
|5
template <class It>
void initNumChildren(It begin, int size) {
if(size < 2) return;
for(inti=1;i<size;i+=2) {
++(begin—>numChildren);
int child = i, childSize = i;
if(size < child + childSize) childSize = size — child;
initNumChildren(begin + child, childSize);
}
1
public:
BinomialBarrier(int p) : readyEpoch(p), peData(p) {
initNumChildren(peData.begin(), p);
for(auto && e : readyEpoch) e first = 0;
}
void wait(const int iPE, const int /= p +/) {
register const int myEpoch = ++(peData[iPE].epoch);
register const int numC = peData[iPE].numChildren;
for(int i=0; i < numC; ++i) {
auto & e = readyEpoch[iPE + (1<<i)].first;
while(e '= myEpoch) backoff();
1
readyEpoch[iPE].first = myEpoch;
atomic_thread_fence(memory_order_seq_cst);
auto & e = readyEpoch|[0].first;
while(e = myEpoch) backoff();
}
private:
typedef std::pair<volatile int, char [64—sizeof(int)]> paddedint;
vector<paddedint> readyEpoch;
vector<EpochNumChildren> peData;
};//SPDX—License—Identifier: BSD—3—Clause; Copyright(c) 2018 Intel Corporation

13.4 Synchronization 411

To benchmark the barrier implementations, we chose a diffusion-like application
that iteratively averages neighboring entries of an array:

Procedure diffuse(a : Array [0..n+ 1] of double, k : int)
b : Array [0..n+ 1] of double;
for i:=1 to k step 2 do
for j:=1tondo|
bli]:=(ali — 1] +ali] +ali+1])/3.0;
barrier;
for j:=1tondo|
aljl:=(lj = 11+b[j]+blj+1])/3.0;

barrier;

Table shows running times and speedups using 64 and 128 threads. We
used k = 103p/n iterations, i.e., we kept the number of arithmetic operations per
thread fixed. The tests were done on the four-socket machine described in Sect. [Bl
If the barrier synchronization overhead is significant compared with the amount of
computation (small values of n/p), we observe speedups of up to 2.35 compared
with the simple barrier. We also tested the standard barrier implementation from
the POSIX PThread library. Unfortunately, it does not scale at all and did not fin-
ish even after several hours. The reason is that it uses an exclusive lock to man-
age the internal structure for every barrier synchronization; see github.com/
lattera/glibc/blob/master/nptl/pthread_barrier_wait.c. On
the other hand, we did experiments with the OpenMP barrier implementation of the
Intel® C++ Compiler (version 18.0.0), which shows similar performance than our
binomial tree barrier. It turns out that it uses a similar algorithm.

Table 13.2. Running times (in milliseconds, median of nine runs) of the barrier benchmark
with 64 and 128 threads.

P n/p||simple barrier|binomial tree barrier|speedup
64 100 6826 3702 1.84
64 1000 895 580 1.54
64| 10000 335 318 1.05
64| 100000 282 279 1.01
6411000 000 2371 2341 1.01

128 100 8012 3413 2.35
128 1000 1465 790 1.85
128 10000 632 571 1.11
128| 100000 3006 2917 1.03
128]1 000 000 3945 3897 1.01

github.com/lattera/glibc/blob/master/nptl/pthread_barrier_wait.c
github.com/lattera/glibc/blob/master/nptl/pthread_barrier_wait.c

412 13 Collective Communication and Computation

13.5 (All)-Gather/Scatter

13.5.1 (All)-Gather

Given a local message m on each PE, a gather operation moves all these messages
m@0,m@1,..., m@(p—1) to PE 0 (or some other specified PE). All-gather moves
these messages to all PEs. The all-gather operation is also called gossiping or all-
to-all broadcast. These operations are sometimes needed to assemble partial results

____h gh__gh ef gh—ef gh abcdefgh —abcdefgh

cqg»d/J C(/ C(/‘ abcd -»ab/c*j abcdef{{g abc efgh

a/eb /ef ~‘»/ef Z} hbef gh abc T bcdef gh

b b'—ab ab(‘: abcd abcdef g —abcdef gh

Fig. 13.11. Hypercube all-gather on eight PEs.

into a global picture. Whenever possible, gathers should be avoided since they can
easily become a performance bottleneck. In a naive implementation of gather, all PEs
send their message directly to PE 0. This takes communication time (p — 1)(a +
nf3). We cannot do much about the term involving f3, since PE 0 needs to receive
all the messages in some way or the other. However, we can reduce the number of
startup latencies. We simply use the binomial tree reduction algorithm presented in
Sect.[[3:2using the concatenation of messages as the operator (see Fig.[[3.12). This
is correct since concatenation is associative. However, we have to redo the algorithm
analysis, since the communicated messages have nonuniform length.

Theorem 13.9. Gather using binomial tree reduction needs communication time

[logpl o+ (p—1)np.

Proof. Counting from the bottom, in level i of the reduction tree, messages of length
2'n are sent. This takes time o + 2'nf3. Summing over all levels we get

[logp]—1) [logp]—1
Y, a+2nB=[logpla+np Y 2'=[logpla+(p—1)nB.
= i=0

Using the hypercube algorithm for all-reduce in Sect. [[3.2.1] instead, we get an all-
gather with the same complexity (when p is a power of two). Figure [[3.11] gives an
example.

Corollary 13.10. All-gather using hypercube all-reduce needs communication time
alogp+(p—1)np.

13.6 All-to-All Message Exchange 413

abcdef gh
0 3
abcd ef gh g 1 s'::pz Q
ab cd ef gh @ |9 1] @
a b c de f gh 3 0 Fig. 13.12. Binomial tree gather
and scatter for p = 8.
13.5.2 Scatter
When PE 0 (or some other specified PE) has messages my, ..., m,_1 and delivers

them so that PE i gets message m;, this is called a scatter operation. This operation
can be useful for distributing data evenly to all PEs. As with gather, the presence of
a scatter operation may be an indicator of a program with poor scalability.

Scatter and gather and broadcast and reduction are, in a certain sense, duals of
each other. Indeed, by slightly modifying the binomial tree broadcast algorithm in
Sect. [[3.1.1] we can get an efficient scatter algorithm: When sending to a subtree
containing the nodes a..b, the concatenation of messages my,...,mp is sent to the
root of that subtree. Figure[I3.12] gives an example. An analysis analogous to that in
Theorem[13.9]yields execution time

[logpl o+ (p—1)np.

13.6 All-to-All Message Exchange

The most general communication operation is when every PE i has a message m;;
for every other PE j. We have seen this pattern for several sorting algorithms (bucket
sort, radix sort, sample sort, and multiway mergesort) and for bulk operations on
hash tables. We first look at the case where all messages have the same size n. In
Sect. [[3.6.1l we shall see how to achieve this task with direct delivery of data in
communication time

Taisan(n) < (p—1)(nf + a). (13.3)

For small messages, indirect delivery is better. Using a hypercube algorithm, we
obtain

Tai—an(n) <logp (ngﬁ + OC) , (13.4)

see Sect. In Sect. we consider the more general case when messages
are allowed to have different sizes. Let 7 = max;max(Y; |[m;;|, ¥ |[m;i|) denote the
maximum amount of data to be sent or received by a PE. We shall see a simple
algorithm that needs communication time

« h
Tisan(h) < 2T an (; + 2p> . (13.5)

414 13 Collective Communication and Computation
13.6.1 Uniform All-to-All with Direct Data Delivery

At first glance, all-to-all communication looks easy — simply send each message to
its destination. However, our model of communication allows only one message to
be sent at a time, and senders and receivers have to agree in which order the messages
are sent. To keep the notation short, we abbreviate ipoc € 0..p — 1 to i in this section.

There is a particularly simple solution if p is a power of two: Instepk e 1..p — 1,
PE i communicates with PE i @ k. Since

(iok)Dk=i®(kDdk) =i,

the senders and receivers agree on their communication partner. Moreover, every pair
of PEs communicates in some step — PEs i and j communicate in step i & j (since
i®(id®j)=(i®i)® j=j). We obtain an algorithm that needs communication time
(p—1)(oe+np). This is optimal if messages are to be sent directly. Moreover, in
each step the PEs are paired and the partners in each pair exchange their messages.
This is referred to as the felephone model of point-to-point communication.

With full-duplex communication, we may also arrange the PEs into longer cycles
(note that pairs are cycles of length two). The following code implements this idea:

fork:=1top—1do
send((i+k) mod p,m; (i-+k) mod ») || receive((i — k) mod PsM(i—k) mod i)

Exercise 13.10. Show the correctness of this solution.

We next give a solution in the telephone model for general p. We first show how
to achieve the communication task for odd p with p steps and then derive a solution
for even p with p — 1 steps. The solution also applies to speed-dating and speed
chess.

So assume p is odd. We first observe that the sequence 2r mod p, r € 0..p — 1,
first enumerates the even numbers 0, 2, ... p — 1 and then the odd numbers 1, 3, ...,
p — 2 less than p. Consider any round r and let k = 2r mod p. We pair PEs i and j
such that i+ j = k mod p. Then j = k—i mod p or

k- i<k
T T\ prk—i itisk

In this way, PE i will send to any PE (including itself) exactly once, and if PE i sends
to j, j will send to i, i.e., we are within the telephone model. In each step, one PE
communicates superfluously with itself. This PE has number k/2 if k is even and
number (p + k) /2 if k is odd. Since k = 2r if k is even and k = 2r — p if k is odd,
the idle PE has number r. In order to have this nice correspondence between round
number and number of idle PE, we have k enumerate the numbers less than p in the
order 0,2,4,...,p—1,1,3,....p—2.

The algorithm for even p is only slightly more complicated. We essentially run
the algorithm for the case p — 1. The only modification is that the “idle” PE commu-
nicates with PE p — 1. We obtain the following protocol:

13.6 All-to-All Message Exchange 415

p':=p—isEven(p)
forr:=0to p' —1do

k:=2r mod p’
j:=(k—1i) mod p’
if isEven(p) Ni=r then j:=p—1

ifisEven(p)Ni=p—1 then j:=r
send(j,m;j) || receive(j,mj;)

Figure [[3.13] gives an example of the resulting communication pattern for this /-
factor algorithm. The resulting communication time is (p — isEven(p))(a +nf).

r=0 g4 r=1 0 4 r=2 1 r=3 2 1 r=4 3 2

D L] le | s]

4 0 0o 1

Fig. 13.13. Speed-dating for p = 6. PEs 0 to 4 sit around a rectangular table. Initially, PE O sits
on one of the short sides of the table and the other PEs sit in counter-clockwise order along
the long sides of the table. PE 5 sits separately next to PE 0. The PEs sitting on the long sides
of the table partner with their counterpart on the other side of the table. In each round, PEs 0
to 4 move clockwise by one position. The index of the partner grows by two modulo p — 1 in
each round. For example, the partners of PE 3 are 2, 4, 1, 5, 0 in the five rounds.

13.6.2 Hypercube All-to-All

For small n, direct data delivery is wasteful since the communication time will be
dominated by startup overheads. Once more, we can reduce the number of startup
overheads to log p using a hypercube algorithm when p is a power of two. The fol-
lowing pseudocode defines the algorithm:

M= {mipmcj :j€0.p— 1} /I messages iproc has to deliver
for k:=d — 1 downto 0 do
M, :={m;j € M : iproc bitand 2* # j bitand 2* }// messages for other k-cube
send(i ® 2% My) || receive(i ® 2%, M,)
M:=M,UM\ M,

Each PE maintains a set M of messages it has to deliver. This time, we iterate from
d — 1 downward because this simplifies formulating the loop invariant: After iteration
k, all messages destined for a k-dimensional subcube are located somewhere in that
subcube. Thus, the messages m;; € M, to be sent in each iteration are those where
the kth bit of the recipient j differs from the kth bit of the local PE iproc. Figure[I3.14]
gives an example. The algorithm sends and receives p/2 messages in each iteration.
Thus, its communication complexity is

logp (ngﬁ —i—oc) .

416 13 Collective Communication and Computation

PE: 0 1 0 1 0 1
[00010203] [10111213] | 000120 2410113031 [00102030] [0111213}

[20212223] (30313233 [0203222332331213 [02122232] [0313233k
PE: 2 3 2 3 2 3

Fig. 13.14. Hypercube all-to-all with p = 4. The digit pair i; is a shorthand for m; ;. The boxes
contain the message set in the current step. The shaded messages are moved in the next step
along the communication links given by the bold lines.

This is good for small n but wasteful for large n since a message is moved log p/2
times on average.

There are compromises between moving the data with p startups and moving it
a logarithmic number of times with a logarithmic number of startups.

*Exercise 13.11. Suppose p = k¢ for integers k and d. Design an algorithm that
delivers all messages using communication time < kdo + dnpf. Hint: Arrange the
PEs as a d-dimensional grid of side length k. Generalize the hypercube algorithm for
this case. Use the direct delivery algorithm within each dimension. Generalize further
for the case where p =k -k; - - - k. Give an algorithm that needs communication time
oY ki+ Bdnp.

13.6.3 All-to-All with Nonuniform Message Sizes

We now consider the case where the messages m;; to be delivered have arbitrary
sizes. A good way to measure the difficulty of such a problem is to look for the
bottleneck communication volume — what is the maximum amount of data to be sent
or received by any PE? In the full-duplex model of point-to-point communication,

this is
h= m?xmax <Z|m,’j|,z |mj,~|> .
J J

We shall therefore also call this problem an A-relation. The uniform all-to-all algo-
rithms we have seen so far can become quite slow if we use them naively by padding
all messages to the maximum occurring message size. Even optimized implemen-
tations that deliver only the data actually needed could become slow because PEs
currently delivering short messages will have to wait for those delivering long mes-
sages. We therefore need new algorithms.

An elegant solution is to reduce the all-to-all problem with variable message
lengths to two all-to-all problems with a uniform message length. We chop each
message m;;j into p pieces m;j of size [|mjj|/p| and send piece m;j from PE i to
PE j via PE k. For the first uniform data exchange, PE i combines all messages m; j,
0 < j < p—1,into a single message m;,; and sends it to PE k. The message consists
of p fields specifying where the pieces begin plus the p pieces itself. Thus,

mij mij h
il = p+ Y Imijl §p+Z[M] §p+Z<M+1) < —+2p.
7 ; p J p p

13.6 All-to-All Message Exchange 417

Note that this bound is independent of the individual message sizes and depends only
on the global values / and p. Thus, the first data exchange can be performed in time
Tai—an(h/p 4 2p) using any uniform all-to-all operation.

For the second data exchange, PE k combines the pieces m;jx, 0 <i < p—1, into
a message m, j; and sends it to PE j. We have

mj; mj; h
| | :p+2|mijk| Sp-i-zw%-‘ Sp-l—Z(%—i—l) < ;+2p.

Once more, this can be done with a uniform all-to-all with message size i/p + 2p.
Figure [13.15 gives an example. Overall, assuming the regular all-to-all is imple-
mented using direct data delivery, we get a total communication cost

X h
allsan (1) < 2T an (1—) + 2p2> ~ 2pa+ (2h+4p)p.

This is not quite what we may want. For large A this is a factor of 2 away from
the lower bound i that we may hope to approximate. For h < p, the overhead
for rounding and communicating message sizes is an even worse penalty. There are
approaches to improve the situation, but we are not aware of a general solution —
routing h-relations in a practically and theoretically satisfactory way is still a research
problem.

For example, there is an intriguing generalization of the graph theoretical model
discussed in Sect.[I3.6.1] Suppose the messages are partitioned into packets of uni-
form size. Now /& measures the maximum communication cost in number of packets.
We can model the communication problem as a bipartite graph H = ({s1 b ,sp} U
{r1 ey rp} ,E). Node s; models the sending role of PE i and node r; models its re-
ceiving role. A packet to be sent from PE i to PE j is modeled as an edge (s;,7;).
Since messages can consist of multiple packets, parallel edges are allowed, i.e.,
we are dealing with a multigraph. Assuming packets are to be delivered directly,
scheduling communication of an A-relation is now equivalent to coloring the edges
of H. Consider a coloring x : E — 1..k where no two incident edges have the same
color. Then all the packets corresponding to edges with color ¢ can be delivered in
a single step. Conversely, we can obtain a coloring of H for any schedule for the &-
relation: If a packet x is delivered in step ¢, we can assign color c to the corresponding
edges in H.

0
Z
2 S .
s Fig. 13.15. Two-phase

PE nonuniform all-to-all for
Phase 1 Phase 2 p=3.

418 13 Collective Communication and Computation

Exercise 13.12. Prove this equivalence formally.

The maximum degree of H is A. It is known that a bipartite multigraph with max-
imum degree & can be edge-colored with & colors [@]; the maximum degree is
clearly also a lower bound. Moreover, such a coloring can be found in polynomial
time — actually, in time O(|E|logh) [77]. There are also fast parallel algorithms [201]

The discussion in the preceding paragraph suggests that delivering an A-relation
may be possible in time close to 28 for large h. However, it is not so clear how to use
an algorithm based on edge coloring in practice, since we would need to compute
the coloring in parallel and highly efficiently.

13.7 Asynchronous Collective Communication

Sometimes one wants to overlap a collective communication with other compu-
tations. For example, the double counting termination detection protocol used in
Sect. requires a reduction operation running concurrently with the applica-
tion. Most of the collective communication operations described here can be adapted
to an asynchronous scenario. We must take care, however, to use asynchronous mes-
sage send operations that do not have to wait for the actual delivery. We should also
be aware that additional delays may be introduced by PEs that do not immediately re-
act to incoming messages. One way to avoid such delays is to run the asynchronous
operations using separate threads. Another useful concept is active messages that
trigger a predefined behavior on the receiving side. For example, an asynchronous
broadcast might trigger a transfer of the message to the children in a tree data struc-
ture. One can also emulate active messages by using a message handler within the
application that can handle all possible asynchronous events by calling appropriate
callback functions.

