2

Introduction

When you want to become a sculpto you have to learn some basic techniques:
where to get the right stones, how to move them, how to handle the chisel, how to
erect scaffolding, Knowing these techniques will not make you a famous artist,
but even if you have an exceptional talent, it will be very difficult to develop into a
successful artist without knowing them. It is not necessary to master all of the basic
techniques before sculpting the first piece. But you always have to be willing to go
back to improve your basic techniques.

This introductory chapter plays a similar role in this book. We introduce basic con-
cepts that make it simpler to discuss and analyze algorithms in the subsequent chap-
ters. There is no need for you to read this chapter from beginning to end before you
proceed to later chapters. You can also skip the parts on parallel processing when
you are only considering sequential algorithms. On the first reading, we recommend
that you should read carefully to the end of Sect. and skim through the remain-
ing sections. We begin in Sect. 2.1] by introducing some notation and terminology
that allow us to argue about the complexity of algorithms in a concise way. We then
introduce machine models in Sect. that allow us to abstract from the highly vari-
able complications introduced by real hardware. The models are concrete enough to
have predictive value and abstract enough to permit elegant arguments. Section 23]
then introduces a high-level pseudocode notation for algorithms that is much more
convenient for expressing algorithms than the machine code of our abstract machine.
Pseudocode is also more convenient than actual programming languages, since we
can use high-level concepts borrowed from mathematics without having to worry
about exactly how they can be compiled to run on actual hardware. We frequently
annotate programs to make algorithms more readable and easier to prove correct.
This is the subject of Sect. Section 2.7 gives the first comprehensive example:
binary search in a sorted array. In Sect. we introduce mathematical techniques

! The above illustration of Stonehenge is from [@].

26 2 Introduction

for analyzing the complexity of programs, in particular, for analyzing nested loops
and recursive procedure calls. Additional analysis techniques are needed for average-
case analysis and parallel algorithm analysis; these are covered in Sects. and
respectively. Randomized algorithms, discussed in Sect. 2.1} use coin tosses
in their execution. Section is devoted to graphs, a concept that will play an im-
portant role throughout the book. In Sect.[2.13] we discuss the question of when an
algorithm should be called efficient, and introduce the complexity classes P and NP
and the concept of NP-completeness. Finally, as in most chapters of this book, we
close with implementation notes (Sect.[2.14) and historical notes and further findings
(Sect.2-T3).

2.1 Asymptotic Notation

The main purpose of algorithm analysis is to give performance guarantees, for ex-
ample bounds on running time, that are at the same time accurate, concise, general,
and easy to understand. It is difficult to meet all these criteria simultaneously. For
example, the most accurate way to characterize the running time 7 of an algorithm is
to view T as a mapping from the set I of all inputs to the set of nonnegative numbers
R. For any problem instance i, T'(i) is the running time on i. This level of detail is
so overwhelming that we could not possibly derive a theory about it. A useful theory
needs a more global view of the performance of an algorithm.

Hence, we group the set of all inputs into classes of “similar” inputs and summa-
rize the performance on all instances in the same class in a single number. The most
useful grouping is by size. Usually, there is a natural way to assign a size to each
problem instance. The size of an integer is the number of digits in its representation,
and the size of a set is the number of elements in that set. The size of an instance is
always a natural number. Sometimes we use more than one parameter to measure the
size of an instance; for example, it is customary to measure the size of a graph by its
number of nodes and its number of edges. We ignore this complication for now. We
use size (i) to denote the size of instance i, and I, to denote the set of instances of size
n for n € N. For the inputs of size n, we are interested in the maximum, minimum,
and average execution timesf]

worst case: T(n) =max{T(i):ic€l,};

best case: T(n) =min{T(i):i€l,};
1

average case: T(n) = — Z T(i).

L&

We are most interested in the worst-case execution time, since it gives us the
strongest performance guarantee. A comparison of the best and the worst case tells
us how much the execution time varies for different inputs in the same class. If the

2 We shall make sure that {T(i) : i € I,} always has a proper minimum and maximum, and
that 7, is finite when we consider averages.

2.1 Asymptotic Notation 27

discrepancy is big, the average case may give more insight into the true performance
of the algorithm. Section2.9] gives an example.

We shall perform one more step of data reduction: We shall concentrate on
growth rate or asymptotic analysis. Functions f(n) and g(n) have the same growth
rate if there are positive constants ¢ and d such that ¢ < f(n)/g(n) < d for all suf-
ficiently large n, and f(n) grows faster than g(n) if, for all positive constants ¢, we
have f(n) > ¢- g(n) for all sufficiently large n. For example, the functions n%, n>+7n,
5n% —7Tn, and n> /10 + 10%n all have the same growth rate. Also, they grow faster than
n3/2, which in turn grows faster than nlogn. The growth rate talks about the behavior
for large n. The word “asymptotic” in “asymptotic analysis” also stresses the fact
that we are interested in the behavior for large n.

Why are we interested only in growth rates and the behavior for large n? We are
interested in the behavior for large n because the whole purpose of designing efficient
algorithms is to be able to solve large instances. For large n, an algorithm whose
running time has a smaller growth rate than the running time of another algorithm
will be superior. Also, our machine model is an abstraction of real machines and
hence can predict actual running times only up to a constant factor. A pleasing side
effect of concentrating on growth rate is that we can characterize the running times
of algorithms by simple functions. However, in the sections on implementation, we
shall frequently take a closer look and go beyond asymptotic analysis. Also, when
using one of the algorithms described in this book, you should always ask yourself
whether the asymptotic view is justified.

The following definitions allow us to argue precisely about asymptotic behavior.
Let f(n) and g(n) denote functions that map nonnegative integers to nonnegative real
numbers:

O(f(n))={g(m):3c>0:Tmp e Ny :Vn>np:g(n) <c-f(n)},
Q(f(n))={g(n):Fc>0:Tnp e Ny :Vn>np:g(n) >c-f(n)},
O(f(n)) =O(f(n)) NQ(f(n)),

o(F(m)) = g(n) : Ve > 0:3mp € Ny : ¥ = mo < g(m) < c- £(m)}.
o(f(n))={gmn):¥Ye>0:Inp e Ny :Vn>np:g(n) >c-f(n)}.

The left-hand sides should be read as “big O of f”, “big omega of f”, “theta of
f7, “little o of f7, and “little omega of f”, respectively. A remark about notation is
in order here. In the definitions above, we use “f(n)” and “g(n)” with two different
meanings. In “O(f(n))” and “{g(n) : ...}”, they denote the functions f and g and the
“n” emphasizes that these are functions of the argument n, and in “g(n) < c- f(n)”,
they denote the values of the functions at the argument n.

Let us see some examples. O(nz) is the set of all functions that grow at most
quadratically, o (nz) is the set of functions that grow less than quadratically, and o(1)
is the set of functions that go to 0 as n goes to infinity. Here “1” stands for the
function n — 1, which is 1 everywhere, and hence f € o(1) if f(n) < c-1 for any
positive ¢ and sufficiently large n, i.e., f(n) goes to zero as n goes to infinity. Gen-
erally, O(f(n)) is the set of all functions that “grow no faster than” f(n). Similarly,

28 2 Introduction

Q(f(n)) is the set of all functions that “grow at least as fast as” f(n). For example,
the Karatsuba algorithm for integer multiplication has a worst-case running time in
O(n1'58), whereas the school algorithm has a worst-case running time in Q(n2) , SO
that we can say that the Karatsuba algorithm is asymptotically faster than the school
algorithm. The “little 0™ notation o(f(n)) denotes the set of all functions that “grow
strictly more slowly than” f(n). Its twin @(f(n)) is rarely used, and is only shown
for completeness.

The growth rate of most algorithms discussed in this book is either a polynomial
or a logarithmic function, or the product of a polynomial and a logarithmic func-
tion. We use polynomials to introduce our readers to some basic manipulations of
asymptotic notation.

Lemma 2.1. Let p(n) =):5'{:0 an' denote any polynomial and assume ay > 0. Then
p(n) € ©(n*).

Proof. It suffices to show that p(n) € O(n*) and p(n) € Q(n*). First observe that for
n>1,

k k
p(n) < Y lailn’ <n*Y |ail,
i=0 i=0

and hence p(n) < (Y5 ai|)n* for all positive n. Thus p(n) € O(n*).
Let A = Y*~|a;|. For positive n, we have
p(n) > aqn* —An*~! = %nk—i—nk*l (%n —A)
and hence p(n) > (a;/2)n* for n > 2A/a;. We choose ¢ = a;/2 and ny = 2A/a; in
the definition of Q(n*), and obtain p(n) € Q(n*). O

Exercise 2.1. Right or wrong? (a) n® + 10%1 € O(n?), (b) nlogn € O(n), (c) nlogn €
Q(n), (d) logn € o(n).

Asymptotic notation is used a lot in algorithm analysis, and it is convenient to stretch
mathematical notation a little in order to allow sets of functions (such as O (nz)) to be
treated similarly to ordinary functions. In particular, we shall always write 7 = O(f)
instead of & € O(f), and O(h) = O(f) instead of O(h) C O(f). For example,

3n*+7n=0(n*) =0(n’).

Never forget that sequences of “equalities” involving O-notation are really member-
ship and inclusion relations and, as such, can only be read from left to right.

If 4 is a function, F and G are sets of functions, and o is an operator such as +, -,
or /, then F o G is a shorthand for {fog: f € F,g € G}, and ho F stands for {h}oF.
So f(n) +o(f(n)) denotes the set of all functions f(n) + g(n) where g(n) grows
strictly more slowly than f(n), i.e., the ratio (f(n) +g(n))/f(n) goes to 1 as n goes
to infinity. Equivalently, we can write (14 0(1)) f(n). We use this notation whenever
we care about the constant in the leading term but want to ignore lower-order terms.

2.2 The Sequential Machine Model 29

Lemma 2.2. The following rules hold for O-notation:

cf(n) =0O(f(n)) for any positive constant c,
f(n)+8(n) =Q(f(n)),
f(n)+g(n) = O(f(n)) if g(n) = O(f(n)),
O(f(n))-O(g(n)) = O(f(n) - g(n)).

Exercise 2.2. Prove Lemma[2.2]
Exercise 2.3. Sharpen Lemma.Tland show that p(n) = ayn* +o(n*).

Exercise 2.4. Prove that nf = o(c") for any integer k and any ¢ > 1. How does n!°¢102"
compare with #¥ and ¢"?

2.2 The Sequential Machine Model

In 1945, John von Neumann (Fig. 2.1) introduced
a computer architecture] which was simple,
yet powerful. The limited hardware technology of
the time forced him to come up with a design that
concentrated on the essentials; otherwise, realization
would have been impossible. Hardware technology
has developed tremendously since 1945. However,
the programming model resulting from von Neu-
mann’s design is so elegant and powerful that it is still
the basis for most of modern programming. Usually, ~Fig- 2.1. John von Neumann,
programs written with von Neumann’s model in mind P Dec. 28, 1903 in Budapest,
also work well on the vastly more complex hardware died Feb. 8, 1957 in Washing-
s . ton, DC.
of today’s machines.

The variant of von Neumann’s model used in algorithmic analysis is called the
RAM (random access machine) model. It was introduced by Shepherdson and Stur-
gis [@] in 1963. It is a sequential machine with uniform memory, i.e., there is a
single processing unit, and all memory accesses take the same amount of time. The

(main) memory, or store, consists of infinitely many cells S[0], S[1], S[2], ...; at any
point in time, only a finite number of them will be in use. In addition to the main
memory, there are a small number of registers Ry, ..., Ry.

The memory cells store “small” integers, also called words. In our discussion of
integer arithmetic in Chap. Il we assumed that “small” meant one-digit. It is more
reasonable and convenient to assume that the interpretation of “small” depends on
the size of the input. Our default assumption is that integers whose absolute value
is bounded by a polynomial in the size of the input can be stored in a single cell.
Such integers can be represented by a number of bits that is logarithmic in the size
of the input. This assumption is reasonable because we could always spread out the
contents of a single cell over logarithmically many cells with a logarithmic overhead

30 2 Introduction

in time and space and obtain constant-size cells. The assumption is convenient be-
cause we want to be able to store array indices in a single cell. The assumption is
necessary because allowing cells to store arbitrary numbers would lead to absurdly
overoptimistic algorithms. For example, by repeated squaring, we could generate a
number with 2" bits in n steps. Namely, if we start with the number 2 = 2!, squaring
it once gives 4 = 22 = 22', squaring it twice gives 16 = 24 = 22, and squaring it n
times gives 22",

Our model supports a limited form of parallelism. We can perform simple oper-
ations on a logarithmic number of bits in constant time.

A RAM can execute (machine) programs. A program is simply a sequence of
machine instructions, numbered from O to some number ¢. The elements of the se-
quence are called program lines. The program is stored in a program store. Our RAM
supports the following machine instructions:

* R;:=S[Rj] loads the contents of the memory cell indexed by the contents of R;
into register R;.

* S[Rj]:=R; stores the contents of register R; in the memory cell indexed by the
contents of R;.

* R;:=R; ® Ry executes the binary operation © on the contents of registers R; and
R), and stores the result in register R;. Here, ® is a placeholder for a variety of
operations. The arithmetic operations are the usual +, —, and x; they interpret
the contents of the registers as integers. The operations div and mod stand for
integer division and the remainder, respectively. The comparison operations <,
<, >, and > for integers return truth values, i.e., either true (= 1) or false (=
0). The logical operations A and V manipulate the truth values 0 and 1. We also
have bitwise Boolean operations | (OR), & (AND), and & (exclusive OR, XOR).
They interpret contents as bit strings. The shift operators >> (shift right) and <<
(shift left) interpret the first argument as a bit string and the second argument
as a nonnegative integer. We may also assume that there are operations which
interpret the bits stored in a register as a floating-point number, i.e., a finite-
precision approximation of a real number.

* R;:=0OR; executes the unary operation ® on the contents of register R; and stores
the result in register R;. The operators —, — (logical NOT), and ~ (bitwise NOT)
are available.

* R;:=C assigns the constant value C to R;.

e JZ k,R; continues execution at program line k, if register R; is 0, and at the next
program line otherwise (conditional branch). There is also the variant JZ R, R;,
where the target of the jump is the program line stored in R;.

e J k continues execution at program line k (unconditional branch). Similarly to
JZ, the program line can also be specified by the content of a register.

A program is executed on a given input step by step. The input for a computation
is stored in memory cells S[1] to S[R;] and execution starts with program line 1. With
the exception of the branch instructions JZ and J, the next instruction to be executed
is always the instruction in the next program line. The execution of a program ter-

2.2 The Sequential Machine Model 31

minates if a program line is to be executed whose number is outside the range 1..¢.
Recall that £ is the number of the last program line.

We define the execution time of a program on an input in the most simple way:
Each instruction takes one time step to execute. The total execution time of a program
is the number of instructions executed.

It is important to remember that the RAM model is an abstraction. One should
not confuse it with physically existing machines. In particular, real machines have
a finite memory and a fixed number of bits per register (e.g., 32 or 64). In contrast,
the word size and memory of a RAM scale with input size. This can be viewed as
an abstraction of the historical development. Microprocessors have had words of 4,
8, 16, and 32 bits in succession, and now often have 64-bit words. Words of 64 bits
can index a memory of size 2%*. Thus, at current prices, memory size is limited by
cost and not by physical limitations. This statement was also true when 32-bit words
were introduced.

Our complexity model is a gross oversimplification: Modern processors attempt
to execute many instructions in parallel. How well they succeed depends on factors
such as data dependencies between successive operations. As a consequence, an op-
eration does not have a fixed cost. This effect is particularly pronounced for memory
accesses. The worst-case time for a memory access to the main memory can be hun-
dreds of times higher than the best-case time. The reason is that modern processors
attempt to keep frequently used data in caches — small, fast memories close to the
processors. How well caches work depends a lot on their architecture, the program,
and the particular input. App.[Bldiscusses hardware architecture in more detail.

We could attempt to introduce a very accurate cost model, but this would miss the
point. We would end up with a complex model that would be difficult to handle. Even
a successful complexity analysis would lead to a monstrous formula depending on
many parameters that change with every new processor generation. Although such
a formula would contain detailed information, the very complexity of the formula
would make it useless. We therefore go to the other extreme and eliminate all model
parameters by assuming that each instruction takes exactly one unit of time. The
result is that constant factors in our model are quite meaningless — one more reason
to stick to asymptotic analysis most of the time. We compensate for this drawback
by providing implementation notes, in which we discuss implementation choices and
shortcomings of the model. Two important shortcomings of the RAM model, namely
the lack of a memory hierarchy and the limited parallelism ,are discussed in the next
two subsections.

2.2.1 External Memory

The organization of the memory is a major difference between an RAM and a real
machine: a uniform flat memory in a RAM and a complex memory hierarchy in a real
machine. In Sects.[5.12,[6.31[7.7) and[IT.3]we shall discuss algorithms that have been
specifically designed for huge data sets which have to be stored on slow memory,
such as disks. We shall use the external-memory model to study these algorithms.

32 2 Introduction

The external-memory model is like the RAM model except that the fast memory
is limited to M words. Additionally, there is an external memory with unlimited size.
There are special I/O operations, which transfer B consecutive words between slow
and fast memory. The reason for transferring a block of B words instead of a single
word is that the memory access time is large for a slow memory in comparison with
the transfer time for a single word. The value of B is chosen such that the transfer
time for B words is approximately equal to the access time. For example, the external
memory could be a hard disk; M would then be the size of the main memory, and
B would be a block size that is a good compromise between low latency and high
bandwidth. With current technology, M = 8 GB and B = 2 MB are realistic values.
One I/O step would then take around 10 ms, which is 2- 107 clock cycles of a 2 GHz
machine. With another setting of the parameters M and B, one can model the smaller
access time difference between a hardware cache and main memory.

2.3 Pseudocode

Our RAM model is an abstraction and simplification of the machine programs exe-
cuted on microprocessors. The purpose of the model is to provide a precise definition
of running time. However, the model is much too low-level for formulating complex
algorithms. Our programs would become too long and too hard to read. Instead, we
formulate our algorithms in pseudocode, which is an abstraction and simplification
of imperative programming languages such as C, C++, Java, C#, Rust, Swift, Python,
and Pascal, combined with liberal use of mathematical notation. We now describe the
conventions used in this book, and derive a timing model for pseudocode programs.
The timing model is quite simple: Basic pseudocode instructions take constant time,
and procedure and function calls take constant time plus the time to execute their
body. We justify the timing model by outlining how pseudocode can be translated
into equivalent RAM code. We do this only to the extent necessary for understand-
ing the timing model. There is no need to worry about compiler optimization tech-
niques, since constant factors are ignored in asymptotic analysis anyway. The reader
may decide to skip the paragraphs describing the translation and adopt the timing
model as an axiom. The syntax of our pseudocode is akin to that of Pascal],
because we find this notation typographically nicer for a book than the more widely
known syntax of C and its descendants C++ and Java.

2.3.1 Variables and Elementary Data Types

A variable declaration “v = x : T” introduces a variable v of type T and initializes it
to the value x. For example, “answer =42 : N” introduces a variable answer assum-
ing nonnegative integer values and initializes it to the value 42. When the type of a
variable is clear from the context, we shall sometimes omit it from the declaration.
A type is either a basic type (e.g., integer, Boolean value, or pointer) or a composite
type. We have predefined composite types such as arrays, and application-specific
classes (see below). When the type of a variable is irrelevant to the discussion, we

2.3 Pseudocode 33

use the unspecified type Element as a placeholder for an arbitrary type. We take the
liberty of extending numeric types by the values —oo and e whenever this is conve-
nient. Similarly, we sometimes extend types by an undefined value (denoted by the
symbol L), which we assume to be distinguishable from any “proper” element of the
type T. In particular, for pointer types it is useful to have an undefined value. The
values of the pointer type “Pointer to 7 are handles to objects of type T. In the
RAM model, this is the index of the first cell in a region of storage holding an object

of type T.
A declaration “a : Array [i..j] of T” introduces an array a consisting of j —i+ 1
elements of type T, stored in ali|, a[i + 1], ..., a[j]. Arrays are implemented as con-

tiguous pieces of memory. To find an element alk], it suffices to know the starting
address of a and the size of an object of type 7. For example, if register R, stores
the starting address of an array a0..k], the elements have unit size, and R; contains
the integer 42, the instruction sequence “R| :=R, + R;; Ry :=S[R]” loads a[42] into
register R,. The size of an array is fixed at the time of declaration; such arrays are
called static. In Sect. 3.4, we show how to implement unbounded arrays that can
grow and shrink during execution.

A declaration “c : Class age : N, income : N end” introduces a variable ¢ whose
values are pairs of integers. The components of ¢ are denoted by c.age and c.income.
For a variable ¢, addressof ¢ returns a handle to c, i.e., the address of c. If p is an
appropriate pointer type, p :=addressof ¢ stores a handle to ¢ in p and *p gives us
back c. The fields of ¢ can then also be accessed through p—age and p—income.
Alternatively, one may write (but nobody ever does) (xp).age and (xp).income.

Arrays and objects referenced by pointers can be allocated and deallocated by
the commands allocate and dispose. For example, p :=allocate Array [1..n] of T al-
locates an array of n objects of type 7. That is, the statement allocates a contiguous
chunk of memory of size n times the size of an object of type 7', and assigns a handle
to this chunk (= the starting address of the chunk) to p. The statement dispose p frees
this memory and makes it available for reuse. With allocate and dispose, we can cut
our memory array S into disjoint pieces that can be referred to separately. These
functions can be implemented to run in constant time. The simplest implementation
is as follows. We keep track of the used portion of S by storing the index of the first
free cell of S in a special variable, say free. A call of allocate reserves a chunk of
memory starting at free and increases free by the size of the allocated chunk. A call of
dispose does nothing. This implementation is time-efficient, but not space-efficient.
Any call of allocate or dispose takes constant time. However, the total space con-
sumption is the total space that has ever been allocated and not the maximum space
simultaneously used, i.e., allocated but not yet freed, at any one time. It is not known
whether an arbitrary sequence of allocate and dispose operations can be realized
space-efficiently and with constant time per operation. However, for all algorithms
presented in this book, allocate and dispose can be realized in a time- and space-
efficient way.

We borrow some composite data structures from mathematics. In particular, we
use tuples, sequences, and sets. Pairs, triples, and other tuples are written in round
brackets, for example (3,1), (3,1,4), and (3,1,4,1,5). Since tuples contain only a

34 2 Introduction

constant number of elements, operations on them can be broken into operations on
their constituents in an obvious way. Sequences store elements in a specified order;
for example, “s = (3,1,4,1) : Sequence of 7" declares a sequence s of integers and
initializes it to contain the numbers 3, 1, 4, and 1 in that order. Sequences are a natural
abstraction of many data structures, such as files, strings, lists, stacks, and queues.
In Chap.[3] we shall study many ways of representing sequences. In later chapters,
we shall make extensive use of sequences as a mathematical abstraction with little
further reference to implementation details. The empty sequence is written as ().

Sets play an important role in mathematical arguments, and we shall also use
them in our pseudocode. In particular, you will see declarations such as “M =
{3,1,4} : Set of N that are analogous to declarations of arrays or sequences. Sets
are usually implemented as sequences.

2.3.2 Statements

The simplest statement is an assignment x := E, where x is a variable and E is an
expression. An assignment is easily transformed into a constant number of RAM
instructions. For example, the statement a :=a + bc is translated into “R; :=Rj, * R,;
R,:=R,+R,”, where R,, Rj, and R, stand for the registers storing a, b, and c,
respectively. From C, we borrow the shorthands ++ and —— for incrementing and
decrementing variables. We also use parallel assignment to several variables. For
example, if @ and b are variables of the same type, “(a,b):=(b,a)” swaps the contents
of a and b.

The conditional statement “if C then / else J”, where C is a Boolean expression
and / and J are statements, translates into the instruction sequence

eval(C); JZ sElse, Re; trans(I); J sEnd; trans(J),

where eval(C) is a sequence of instructions that evaluate the expression C and leave
its value in register R., trans(I) is a sequence of instructions that implement state-
ment /, trans(J) implements J, sElse is the address of the first instruction in trans(J),
and sEnd is the address of the first instruction after trans(J). The sequence above first
evaluates C. If C evaluates to false (= 0), the program jumps to the first instruction
of the translation of J. If C evaluates to true (= 1), the program continues with the
translation of 7 and then jumps to the instruction after the translation of J. The state-
ment “if C then I” is a shorthand for “if C then I else ;”, i.e., an if-then—else with an
empty “else” part.

Our written representation of programs is intended for humans and uses less
strict syntax than do programming languages. In particular, we usually group state-
ments by indentation and in this way avoid the proliferation of brackets observed in
programming languages such as C that are designed as a compromise between read-
ability for humans and for computers. We use brackets only if the program would be
ambiguous otherwise. For the same reason, a line break can replace a semicolon for
the purpose of separating statements.

The loop “repeat [until C” translates into trans(I); eval(C); JZ sl, R., where sI
is the address of the first instruction in trans(I). We shall also use many other types

2.3 Pseudocode 35

of loops that can be viewed as shorthands for various repeat loops. In the following
list, the shorthand on the left expands into the statements on the right:

while C do 7 if C then repeat / until -C
fori:=atobdo I i:=a;whilei<bdol;i++
for i:=a to o while C do / i:=a; whileCdo I; i++
foreache c sdo / fori:=1to |s|do e:=s]i]; I

Many low-level optimizations are possible when loops are translated into RAM code.
These optimizations are of no concern to us. For us, it is only important that the
execution time of a loop can be bounded by summing the execution times of each of
its iterations, including the time needed for evaluating conditions.

2.3.3 Procedures and Functions

A subroutine with the name foo is declared in the form “Procedure foo(D) I”’, where
I is the body of the procedure and D is a sequence of variable declarations specify-
ing the parameters of foo. A call of foo has the form foo(P), where P is a parameter
list. The parameter list has the same length as the variable declaration list. Parameter
passing is either “by value” or “by reference”. Our default assumption is that basic
objects such as integers and Booleans are passed by value and that complex objects
such as arrays are passed by reference. These conventions are similar to the con-
ventions used by C and guarantee that parameter passing takes constant time. The
semantics of parameter passing is defined as follows. For a value parameter x of type
T, the actual parameter must be an expression E of the same type. Parameter passing
is equivalent to the declaration of a local variable x of type T initialized to E. For a
reference parameter x of type T, the actual parameter must be a variable of the same
type and the formal parameter is simply an alternative name for the actual parameter.

As with variable declarations, we sometimes omit type declarations for parame-
ters if they are unimportant or clear from the context. Sometimes we also declare pa-
rameters implicitly using mathematical notation. For example, the declaration Pro-
cedure bar({aj,...,a,)) introduces a procedure whose argument is a sequence of n
elements of unspecified type.

Most procedure calls can be compiled into machine code by simply substitut-
ing the procedure body for the procedure call and making provisions for parameter
passing; this is called inlining. Value passing is implemented by making appropriate
assignments to copy the parameter values into the local variables of the procedure.
Reference passing to a formal parameter x : T is implemented by changing the type
of x to Pointer to T, replacing all occurrences of x in the body of the procedure
by (*x) and initializing x by the assignment x := addressof y, where y is the actual
parameter. Inlining gives the compiler many opportunities for optimization, so that
inlining is the most efficient approach for small procedures and for procedures that
are called from only a single place.

Functions are similar to procedures, except that they allow the return state-
ment to return a value. Figure shows the declaration of a recursive func-
tion that returns n! and its translation into RAM code. The substitution approach

36 2 Introduction

Function factorial(n) : 7
if n = 1 then return 1 else return n - factorial(n — 1)

factorial: /I the first instruction of factorial
Ry :=S[R,—1] // load n into register R,,. Abbreviation of Rynp :=R, — 1; Ry :=S[Rymp)
JZ thenCase, R, // jump to then case, if n is 0
S[R;] = aRecCall // else case; return address for recursive call
SRy +1]:=R,—1 /I parameter is n— 1
Ry :=R,+2 /l increase stack pointer
J factorial /I start recursive call
aRecCall : /I return address for recursive call
Riesult :=S[Rr — 1] % Ryesul /I store nfactorial(n— 1) in result register
J return /I goto return
thenCase : /I code for then case
Rieguir:=1 // put 1 into result register
return: /I code for return
Ry:=R,—2 /I free activation record
J S[R/] // jump to return address

Fig. 2.2. A recursive function factorial and the corresponding RAM code. The RAM code
returns the function value in the register R.qu;.- To keep the presentation short, we take the
liberty of directly using subexpressions, where, strictly speaking, sequences of assignments
using temporary registers would be needed.

fails for recursive procedures and functions that directly or indirectly call them-
selves — substitution would never terminate. Realizing recursive procedures in RAM
code requires the concept of a recursion stack. Explicit subroutine calls over a
stack are also used for large procedures that are called multiple times where in-
lining would unduly increase the code size. The recursion stack is a reserved part
of the memory. Register R, always points to the first free entry in this stack.
The stack contains a sequence of activation records, one

R, for each active procedure call. The activation record for
3 a procedure with k parameters and ¢ local variables has
aRecCall size 1+ k+ £. The first location contains the return ad-
7 dress, i.e., the address of the instruction where execution
is to be continued after the call has terminated, the next

aRecCall .
5 k locations are reserved for the parameters, and the final
¢ locations are for the local variables. A procedure call is

afterCall

now implemented as follows. First, the calling procedure
caller pushes the return address and the actual parameters
stack of a call factorial(5) onto .the stac}(, increases R, accord'%ngly, and jumps to the
when the recursion has {Ist instruction of the called routine called. The called
reached factorial(3). routine reserves space for its local variables by increas-
ing R, appropriately. Then the body of called is executed.
During execution of the body, any access to the ith for-

Fig. 2.3. The recursion

2.3 Pseudocode 37

mal parameter (0 < i < k) is an access to S[R, — ¢ — k+i] and any access to the ith
local variable (0 < i < £) is an access to S[R, — £+ i]. When called executes a re-
turn statement, it decreases R, by 1 4 k + ¢ (observe that called knows k and ¢) and
execution continues at the return address (which can be found at S[R,]). Thus con-
trol is returned to caller. Note that recursion is no problem with this scheme, since
each incarnation of a routine will have its own stack area for its parameters and local
variables. Figure 23] shows the contents of the recursion stack of a call factorial(5)
when the recursion has reached factorial(3). The label afterCall is the address of
the instruction following the call factorial(5), and aRecCall is defined in Fig.

Exercise 2.5 (sieve of Eratosthenes). Translate the following pseudocode for find-
ing all prime numbers up to n into RAM machine code. There is no need to translate
the output command, in which the value in the box is output as a number. Argue
correctness first.

a=(1,...,1) : Array [2..n] of {0,1} // if a[i] is false, i is known to be nonprime

for i:=2to |\/n] do /I nonprimes < n have a factor < |/n|
if a[i] then /I iis prime
for j:=2itonstepido a[j]:=0 /I all multiples of i are nonprime

for i:=2to n do if a[i] then output(*[i]is prime”)

2.3.4 Object Orientation

We also need a simple form of object-oriented programming so that we can separate
the interface and the implementation of data structures. We introduce our notation
by way of example. The definition

Class Complex(x,y : Number) of Number
re = x : Number
im =Yy : Number
Function abs : Number return v/ re? + im*
Function add(c' : Complex) : Complex
return Complex(re + c'.re,im + c.im)

gives a (partial) implementation of a complex number type that can use arbitrary
numeric types such as Z, Q, and R for the real and imaginary parts. Our class names
(here “Complex”) will usually begin with capital letters. The real and imaginary parts
are stored in the member variables re and im, respectively. Now, the declaration
“c: Complex(2,3) of R” declares a complex number c initialized to 2 + 3i, where i
is the imaginary unit. The expression c.im evaluates to the imaginary part of ¢, and
c.abs returns the absolute value of ¢, a real number.

The type after the of allows us to parameterize classes with types in a way similar
to the template mechanism of C++ or the generic types of Java. Note that in the light
of this notation, the types “Set of Element” and “Sequence of Element” mentioned
earlier are ordinary classes. Objects of a class are initialized by setting the member
variables as specified in the class definition.

38 2 Introduction
2.4 Parallel Machine Models

We classify parallel machine models into two broad classes: shared-memory ma-
chines and distributed-memory machines. In both cases, we have p processing ele-
ments (PEs). In the former case, these PEs share a common memory and all commu-
nication between PEs is through the shared memory. In the latter case, each PE has
its own private memory, the PEs are connected by a communication network, and all
communication is through the network. We introduce shared-memory machines in
Sect. 2.4 T]and discuss distribute- memory machines in Sect.

2.4.1 Shared-Memory Parallel Computing

In a shared-memory machine, the PEs share a common memory (Fig.2.4). Each PE
knows its number iproc (usually from 1..p or 0..p — 1). The theoretical variant of this
model is known as the PRAM (parallel random access machine). PRAMs come in
several flavors. The main distinction is whether concurrent access to the same mem-
ory cell is allowed. This leads to the submodels EREW-PRAM, CREW-PRAM, and
CRCW-PRAM where “C’stands for “concurrent” (concurrent access allowed), “E”
stands for “exclusive” (concurrent access forbidden), “R” stands for “read” and “W”
stands for “write”. Thus a CREW-PRAM supports concurrent reads but forbids con-
current writes. Real-world shared-memory machines support something resembling
concurrent read, so that we do not need to bother with the complications introduced
by exclusive reads. We therefore concentrate on the CREW and CRCW. Concurrent
writing makes the model more powerful, but we have be careful with the semantics
of concurrent writing. To illustrate the pitfalls of concurrent memory access, let us
consider a simple example: Two PEs a and b share the same counter variable ¢, say
because they want to count how often a certain event happens. Suppose the current
value of ¢ is 41 and both @ and b want to increment c at the same time. Incrementing
means first loading the old value into a register, and then incrementing the register
and storing it back in memory. Suppose both PEs read the value 41, increment this
value to 42 and then write it back — all at the same time. Afterwards, ¢ = 42, although
the programmer probably intended ¢ = 43. Different semantics of concurrent writ-
ing lead to several subflavors of CRCW-PRAMs. The two most widely used ones

processing unit PE: 1 PE: 1
memory M
é | [network]|
RAM external PRAM distributed memory
_memory J

Fig. 2.4. Machine models used in this book.

2.4 Parallel Machine Models 39

are “common’” and “arbitrary”. The common CRCW-PRAM only allows concurrent
write access if all PEs writing to the same memory cell are writing the same value.
There is no such restriction in arbitrary CRCW-PRAMs. If several different values
are written to the same cell in the same time step, one of these values is chosen arbi-
trarily. We shall try to avoid algorithms requiring the CRCW model, since concurrent
write access to the same memory cells causes problems in practice. In particular, it
becomes difficult to ensure correctness, and performance may suffer.

PRAM models assume globally synchronized time steps — every PE executes
exactly one machine instruction in every time step. This makes it relatively easy to
write and understand PRAM programs. Unfortunately, this assumption is untenable
in practice — the execution of instructions (in particular memory access instructions)
happens in several stages and it depends on the current state of the computation how
long it takes to finish the instruction. Moreover, even instructions accessing memory
at the same time may see different values in the same memory cell owing to the
behavior of caches. More realistic models of shared memory therefore introduce
additional mechanisms for explicitly controlling concurrent memory access and for
synchronizing PEs.

A very general such mechanism is transactions (or critical sections). A transac-
tion ¢ consists of a piece of code that is executed atomically. Atomic means indivis-
ible — during the execution of ¢, no other PE writes to the memory cells accessed by
t. For example, if the PEs a and b in the example above were to execute transactions

begin transaction c:=c+ 1 end transaction

then the hardware or runtime system would make sure that the two transactions were
executed one after the other, resulting in the correct value ¢ = 43 after executing
both transactions. Some processor architectures support transactions in hardware,
while others only support certain atomically executed instructions that can be used to
implement higher-level concepts. In principle, these can be used to support general
transactions in software. However, this is often considered too expensive, so one
often works with less general concepts. See Sect. for some details of actual
hardware implementations of transactional memory.

Perhaps the most important atomic instruction for concurrent memory access is
compare-and-swap (CAS).

Function CAS(i,expected, desired) : {1,0}
begin transaction
if S[i] = expected then S[i] :=desired; return 1 /I success
else expected := S[i]; return 0 /I failure
end transaction

A call of CAS specifies a value expected to be present in memory cell S[i] and the
value that it wants to write. If the expectation is true, the operation writes the desired
value into the memory cell and succeeds (returns 1). If not, usually because some
other PE has modified S[i] in the mean time, the operation writes the actual value of
STi] into the variable expected and fails (returns 0). CAS can be used to implement

40 2 Introduction

transactions acting on a single memory cell. For example, atomically adding a value
to a memory cell can be done as follows:

Function ferchAndAdd(i, A)
expected := Si]
repeat desired := expected + A until CAS(i,expected, desired)
return desired

The function reads the value of S[i] and stores the old and the incremented value
in expected and desired, respectively. It then calls CAS(i, expected, desired). If the
value of S[i] has not changed since it was stored in expected, the call succeeds, and
the incremented value is stored in S[i] and returned. Otherwise, the current value of
STi] is stored in expected and the call fails. Then another attempt to increment the
variable is made.

Regardless of whether hardware transactions or atomic instructions are used,
when many PEs try to write to the same memory cell at once, some kind of se-
rialization will take place and performance will suffer. This effect is called write
contention. Asymptotically speaking, it will take time Q(p) if all PEs are involved.
Note that this is far from the behavior of a CRCW-PRAM, where concurrent writing
is assumed to work in constant time.

Let us look at a simple example where this makes a difference: Assume each PE
has a Boolean value and we want to compute the logical OR of all these values. On
a common CRCW-PRAM, we simply initialize a global variable g to false, and each
PE with a local value of true writes true to g. Within the theoretical model, this works
in constant time. However, when we try to do this on a real-world machine using
transactions, we may observe time Q(p) when all local values are true. We shall
later see more complicated algorithms achieving time O(log p) on CREW machines.

In order to get closer to the real world, additional models of PRAMs have been
proposed that assume that the cost of memory access is proportional to the number
of PEs concurrently accessing the same memory cell. For example, QRQW (queue-
read-queue-write) means that contention has to be taken into account for both reading
and writing [126]. Since modern machines support concurrent reading by placing
copies of the accessed data in the machine caches, it also makes sense to consider
CRQW (concurrent-read-queue-write) models. In this book, we shall sometimes use
the aCRQW-PRAM model, where the “a” stands for “asynchronous”, i.e., there is no
step-by-step synchronization between the PEs For the cost model, this means that
all instructions take constant time, except for write operations, whose execution time
is proportional to the number of PEs trying to access that memory cell concurrently.

3 There is previous work on asynchronous PRAMs] that is somewhat different, however,
in that it subdivides computations into synchronized phases. Our aCRQW model performs
only local synchronization. Global synchronization requires a separate subroutine that can
be implemented using O(log p) local synchronizations (see Sect.[[3.4.2).

2.4 Parallel Machine Models 41
2.4.2 Distributed-Memory Parallel Computing

Another simple way to extend the RAM model is to connect several RAMs with a
communication network (Fig. 2.4). The network is used to exchange messages. We
assume that messages have exactly one sender and one receiver (point-to-point com-
munication) and that exchanging a message of length ¢ takes time o + £f3 regardless
which PEs are communicating. In particular, several messages can be exchanged at
once except that no PE may send several messages at the same time or receive sev-
eral messages at the same time. However, a PE is allowed to send one message and
to receive another message at the same time. This mode of communication is called
(full-duplex) single-ported communication. The function call send(i, m) sends a mes-
sage m to PE i and receive(i,m) receives a message from PE i. When the parameter
i is dropped, a message from any PE can be received and the number of the actual
sender is the return value of the receive function. For every call send(i,m), PE i must
eventually execute a matching receive operation. The send operation will only com-
plete when the matching receive has completed, i.e., PE i now has a copy of message
mH Thus sends and receives synchronize the sender and the receiver. The integra-
tion of data exchange and synchronization is an important difference with respect to
shared-memory parallel programming. We will see that the message-passing style of
parallel programming often leads to more transparent programs despite the fact that
data exchange is so simple in shared-memory programming. Moreover, message-
passing programs are often easier to debug than shared-memory programs.

Let us consider a concrete example. Suppose each PE has stored a number x in a
local variable and we want to compute the sum of all these values so that afterwards
PE 0 knows this sum. The basic idea is to build a binary tree on top of the PEs and
to add up the values by layer. Assume that PEs are numbered from O to p — 1 and
that p is a power of two. In the first round, each odd numbered PE sends his value
to the PE numbered one smaller and then stops. The even numbered PEs sum the
number received to the number they hold. In the second round, the even numbered
PEs whose number is not divisible by four send to the PE whose number is smaller by
two. Continuing in this way, the total sum is formed in time O(log p). The following
lines of pseudocode formalize this idea. They work for arbitrary p.

Function reduceAdd(x) /I let i denote the local PE number
for (d:=1;, d<p;, dx=2) I

if (i bitand d) = 0 then 2

if i+d < p then receive(i+d,x'); x+=x B

else send(i —d,x); return 4
return x /I only reachedby PEO

Initially all PEs are active. The layer counter d is a power of two and is also inter-
preted as a bit string. Tt starts at d = 1 = 2°. Let us first assume that p is a power of
two. PEs with an odd PE number (i bitand d # 0) exit from the for-loop and send

4 Most algorithms in this book use synchronous communication. However, asynchronous
send operations can also have advantages since they allow us do decouple communication
and cooperation. An example can be found in Sect.[6.4]on parallel priority queues.

42 2 Introduction

time

N b OO

Input: 2 4 3 5 3 4 4 55 7
PE: 01 2 3 456 7 89

Fig. 2.5. Parallel summation using a tree

their value to PE i — 1. PEs with an even PE number (i bitand d = 0) issue a receive
request receive(i + d,x’) (note that i +d < p for all even PEs) and add the value
received to their own value. At this point, the odd-numbered PEs have terminated
and the even-numbered PEs have increased the value of d to 2. In the second round,
exactly the same reduction happens on the next to last bit, i.e., PEs whose number
ends with 00 issue a receive and PEs whose number ends with 10 issue a send and
terminate. Generally, in a round with d = 2k k > 0, the PEs whose PE numbers end
with 10% send their value to PE i — d and terminate. The PEs whose PE numbers end
with 0¥F! receive and add the received value to their current value. When d = p, the
for-loop terminates and only PE O remains active. It returns x, which now contains
the desired global sum.

The program is also correct when p is not a power of two since we have made
sure that no PE tries to receive from a nonexistent PE and all sending PEs have a
matching receiving PE. Figure 2.3] shows an example computation. In this example,
processor 8 issues a receive(9,x’) in round 1, sits idle in rounds 2 and 3, and sends
its value to PE 0 in round 4.

On a (synchronous) PRAM, we can do something very similar — it is even
slightly easier. Assume the inputs are stored in an array x[0..p — 1]. We replace
“receive(i+d,x'); x+=x" by “x[i] +=x[i +d]”, drop lines 4 and 5, and obtain the
final result in x[0]. However, if we use this code on an asynchronous shared-memory
machine (e.g., in our aCRQW PRAM model), it is incorrect. We have to add addi-
tional synchronization code to make sure that an addition is only performed when
its input values are available. The resulting code will be at least as complex as the
message-passing code. Of course, we could use the function ferchAndAdd mentioned
in from the preceding section to realize correct concurrent access to a global counter.
However, this will take time O(p) owing to write contention, and, indeed, it is likely
that on a large machine it would be faster to perform one global synchronization
followed by adding up the values in x[0..p — 1] sequentially.

2.4.3 Parallel Memory Hierarchies

The models presented in Sects.[2.2.1H2.4.2leach address an important aspect of real-
world machines not present in the RAM model. However, they are still a gross simpli-

2.4 Parallel Machine Models 43

fication of reality. Modern machines have a memory hierarchy with multiple levels
and use many forms of parallel processing (see Fig. [2.6). Appendix [B] describes a
concrete machine that we used for the experiments reported in this book. We next
briefly discuss some important features found in real-world machines.

Many processors have 128-512-bit SIMD registers that allow the parallel execu-
tion of a single instruction on multiple data objects (SIMD).

They are superscalar, i.e., they can execute multiple independent instructions
from a sequential instruction stream in parallel.

Simultaneous multithreading allows processors to better utilize parallel execution
units by running multiple threads of activity on a single processor core sharing the
same first-level (L1) cache.

Even mobile devices nowadays have multicore processors, i.e., multiple proces-
sor cores, that can independently execute programs. There are further levels of on-
chip cache. The further up in this hierarchy, the more PEs share the same cache. For
example, each PE may have its own L1 and L2 caches but eight cores on one chip
might share a rather large L3 cache. Most servers have several multicore processors
accessing the same shared memory. Accessing the memory chips directly connected
to the processor chip is usually faster than accessing memory connected to other
processors. This effect is called nonuniform memory access (NUMA).

SIMR superscalar

SSDH main memory

coe eee more compute nodes

network
disks

[X X) tape

@00 [)

Fig. 2.6. Example of a parallel memory hierarchy

44 2 Introduction

Coprocessors, in particular graphics processing units (GPUs), have even more
parallelism on a single chip. GPUs have their own peculiarities complicating the
model. In particular, large groups of threads running on the same piece of hardware
can only execute in SIMD mode, i.e., in the same time step, they all have to execute
the same instruction.

High-performance computers consist of multiple server-type systems intercon-
nected by a fast, dedicated network.

Finally, more loosely connected computers of all types interact through various
kinds of network (the internet, radio networks, ...) in distributed systems that may
consist of millions of nodes.

Storage devices such as solid state disks (SSDs), hard disks, or tapes may be
connected to different levels of this hierarchy of processors. For example, a high-
performance computer might have solid state disks connected to each multiprocessor
board while its main communication network has ports connected to a large array of
hard disks. Over the internet, it might do data archiving to a remote tape library.

Attempts to grasp this complex situation using a single overarching model can
easily fall into a complexity trap. It is not very difficult to define more general and
accurate models. However, the more accurate the model gets, the more complicated
it gets to design and analyze algorithms for it. A specialist may succeed in doing all
this (at least for selected simple problems), but it would still then be very difficult
to understand and apply the results. In this book, we avoid this trap by flexibly and
informally combining simple models such as those shown in Fig.[2.4lin a case-by-
case fashion. For example, suppose we have many shared-memory machines con-
nected by a fast network (as is typical for a high-performance computer). Then we
could first design a distributed-memory algorithm and then replace its local com-
putations by shared-memory parallel algorithms. The sequential computations of a
thread could then be made cache-efficient by viewing them as a computation in the
external-memory model. These isolated considerations can be made to work on the
overall system by making appropriate modifications to the model parameters. For
example, the external-memory algorithm may use only 1/16 of the L3 cache if there
are 16 threads running in parallel on each processor sharing the same L3 cache.

2.5 Parallel Pseudocode

We now introduce two different ways of writing parallel pseudocode.

2.5.1 Single-Program Multiple-Data (SPMD)

Most of our parallel algorithms will look very similar to sequential algorithms. We
design a single program that is executed on all PEs. This does not mean that all PEs
execute the same sequence of instructions. The program may refer to the local ID
iproc and the total number p of PEs. In this way, each incarnation of the program may
behave differently. In particular, the different PEs may work on different parts of the
data. In the simplest case, each PE performs the same sequence of instructions on a

2.5 Parallel Pseudocode 45

disjoint part of the data and produces a part of the overall result. No synchroniza-
tion is needed between the PEs. Such an algorithm is called embarrasingly parallel.
Making large parts of a computation embarassingly parallel is a major design goal.
Of course, some kind of interaction between the PEs is needed in most algorithms.
The PEs may interact using primitives from the shared memory model, such as CAS,
or from the distributed-memory model such as send/receive. Often, we are even able
to abstract from the concrete model by using constructs that can be implemented in
both models.

In our SPMD programs each PE has its private, local version of every variable.
We write v@ j to express a remote access to the copy of v at PE j. We shall even use
this notation for distributed memory algorithms when it is clear how to translate it
into a pair of procedure calls send(i,v) on PE j and receive(j,...) on PE i.

2.5.2 Explicitly Parallel Programs

Sometimes it is more elegant to augment a sequential program with explicit parallel
constructs. In particular, writing do|| in a for-loop indicates that the computations
for each loop index can be done independently and in parallel. The runtime system
or the programming language can then distribute the loop iterations over the PEs.
If all these operations take the same time, each PE will be responsible for n/p loop
iterations. Otherwise, one of the load-balancing algorithms presented in Chap. [[4]
can be used to distribute the loop iterations. This declarative style of parallelization
also extends to initializing arrays.

Threads and Tasks. So far, we have implicitly assumed that there is a one-to-one
correspondence between computational activities (threads) and pieces of hardware
(processor cores or hardware-supported threads). Sometimes, however, a more flexi-
ble approach is appropriate. For example, allowing more threads than PEs can in-
crease efficiency when some of the threads are waiting for resources. Moreover,
when threads represent pieces of work (fasks) of different size, we can leave it to
the runtime system of our programming language to do the load balancing.

In our pseudocode, we separate statements by the separator “ || ” to indicate that
all these statements can be executed in parallel; it is up to the runtime system how
it exploits this parallelism. We refer to Sect. for load balancing algorithms that
make this decision. A parallel statement finishes when all its constituent subtasks
have finished. For example, for a parallel implementation of the recursive multipli-
cation algorithm presented in Sect.[[.4 we could write

aObO::ao-bo H a0b1 ::ao~b1 || albO::m ~b0 || albl =da] ~b1

to compute all the partial products in parallel. Note that in a recursive multiplication
algorithm for n-digit numbers, this would result in up to n? tasks. Our most frequent
use of the || operator is of the form send(i,a) || receive(j,b) to indicate concurrent
send and receive operations exploiting the full-duplex capability of our distributed-
memory model (see Sect. 2.4.2)).

46 2 Introduction

Locks. These are an easy way to manage concurrent data access. A lock protects a set
S of memory cells from concurrent access. Typically S is the state of a data structure
or a piece of it. We discuss the most simple binary lock first. A lock can be held
by at most one thread, and only the thread holding the lock can access the memory
cells in S. For each lock, there is a corresponding global lock variable {5 € {0,1};
it has the value 1 if some thread holds the lock and has the value O otherwise. This
variable can be modified only by the procedures lock and unlock. A thread u can
set (or acquire) lock {g by calling lock({s). This call will wait for any other thread
currently holding the lock and returns when it has managed to acquire the lock for
thread u. A thread holding a lock may release it by calling unlock({s), which resets
ls to 0. We refer to Sect. [13.4.1l for possible implementations. There are also more
general locks distinguishing between read and write access — multiple readers are
allowed but a writer needs exclusive access. Section[C.2] gives more information.

The simplicity of locks is deceptive. It is easy to create situations of cyclic wait-
ing. Consider a situation with two threads. Thread 1 first locks variable A and then
variable B. Thread 2 first locks variable B and then variable A. Suppose both threads
reach their first lock operation at the same time. Then thread 1 acquires the lock on A
and thread 2 acquires the lock on B. Then both of them proceed to their second lock
operation and both will start to wait. Thread 1 waits for thread 2 to release the lock
on B, and thread 2 waits for thread 1 to release the lock on A. Hence, they will both
wait forever. This situation of cyclic waiting is called a deadlock.

Indeed, an interesting area of research are algorithms and data structures that
do not need locks at all (non-blocking, lock-free, wait-free) and thus avoid many
problems connected to locks. The hash table presented in Sects. .6 2HA.6 3] is lock-
free as long as it does not need to grow.

2.6 Designing Correct Algorithms and Programs

An algorithm is a general method for solving problems of a certain kind. We describe
algorithms using natural language and mathematical notation. Algorithms, as such,
cannot be executed by a computer. The formulation of an algorithm in a program-
ming language is called a program. Designing correct algorithms and translating a
correct algorithm into a correct program are nontrivial and error-prone tasks. In this
section, we learn about assertions and invariants, two useful concepts in the design
of correct algorithms and programs.

2.6.1 Assertions and Invariants

Assertions and invariants describe properties of the program state, i.e., properties
of single variables and relations between the values of several variables. Typical
properties are that a pointer has a defined value, an integer is nonnegative, a list
is nonempty, or the value of an integer variable length is equal to the length of a
certain list L. Figure 2.7] shows an example of the use of assertions and invariants

2.6 Designing Correct Algorithms and Programs 47

Function power(a : R; ng : N) : R
assert ny > 0 and =(a=0Ang =0) // Tt is not so clear what 0° should be
p=a:R;, r=1:R; n=np:N /I we have p''r = a"
while n > 0 do
invariant p"r = a0

if nis odd then n——; r:=r-p // invariant violated between assignments

else (n,p):=(n/2,p-p) /I parallel assignment maintains invariant
assert r = a'" /I This is a consequence of the invariant and n =0
return r

Fig. 2.7. An algorithm that computes integer powers of real numbers

in a function power(a,ng) that computes @™ for a real number a and a nonnegative
integer nyg.

We start with the assertion assert 79 > 0 and —(a = 0 Ang = 0). This states that
the program expects a nonnegative integer ng and that a and ng are not allowed to be
both 01 We make no claim about the behavior of our program for inputs that violate
this assertion. This assertion is therefore called the precondition of the program.
It is good programming practice to check the precondition of a program, i.e., to
write code which checks the precondition and signals an error if it is violated. When
the precondition holds (and the program is correct), a postcondition holds at the
termination of the program. In our example, we assert that r = @"0. It is also good
programming practice to verify the postcondition before returning from a program.
We shall come back to this point at the end of this section.

One can view preconditions and postconditions as a contract between the caller
and the called routine: If the caller passes parameters satisfying the precondition, the
routine produces a result satisfying the postcondition.

For conciseness, we shall use assertions sparingly, assuming that certain “ob-
vious” conditions are implicit from the textual description of the algorithm. Much
more elaborate assertions may be required for safety-critical programs or for formal
verification.

Preconditions and postconditions are assertions that describe the initial and the
final state of a program or function. We also need to describe properties of interme-
diate states. A property that holds whenever control passes a certain location in the
program is called an invariant. Loop invariants and data structure invariants are of
particular importance.

2.6.2 Loop Invariants

A loop invariant holds before and after each loop iteration. In our example, we claim
that p"r = @0 before each iteration. This is true before the first iteration. The ini-
tialization of the program variables takes care of this. In fact, an invariant frequently

> The usual convention is 0° = 1. The program is then also correct for a = 0 and 1o = 0.

48 2 Introduction

tells us how to initialize the variables. Assume that the invariant holds before exe-
cution of the loop body, and n > 0. If n is odd, we decrement n and multiply r by
p- This reestablishes the invariant (note that the invariant is violated between the as-
signments). If n is even, we halve n and square p, and again reestablish the invariant.
When the loop terminates, we have p"r = a0 by the invariant, and n = 0 by the
condition of the loop. Thus r = @0 and we have established the postcondition.

The algorithm in Fig.2.7land many more algorithms described in this book have
a quite simple structure. A few variables are declared and initialized to establish
the loop invariant. Then, a main loop manipulates the state of the program. When the
loop terminates, the loop invariant together with the termination condition of the loop
implies that the correct result has been computed. The loop invariant therefore plays
a pivotal role in understanding why a program works correctly. Once we understand
the loop invariant, it suffices to check that the loop invariant is true initially and after
each loop iteration. This is particularly easy if the loop body consists of only a small
number of statements, as in the example above.

2.6.3 Data Structure Invariants

More complex programs encapsulate their state in objects and offer the user an ab-
stract view of the state. The connection between the abstraction and the concrete
representation is made by an invariant. Such data structure invariants are declared
together with the data type. They are true after an object is constructed, and they are
preconditions and postconditions of all methods of a class.

For example, we shall discuss the representation of sets by sorted arrays. Here, set
is the abstraction and sorted array is the concrete representation. The data structure
invariant will state that the data structure uses an array @ and an integer n, that n
is the size of the set stored, that the set S stored in the data structure is equal to
{a[l],...,a[n]}, and that a[1] < a[2] < ... < a[n]. The methods of the class have to
maintain this invariant, and they are allowed to leverage the invariant; for example,
the search method may make use of the fact that the array is sorted.

2.6.4 Certifying Algorithms

We mentioned above that it is good programming practice to check assertions. It is
not always clear how to do this efficiently; in our example program, it is easy to check
the precondition, but there seems to be no easy way to check the postcondition. In
many situations, however, the task of checking assertions can be simplified by com-
puting additional information. This additional information is called a certificate or
witness, and its purpose is to simplify the check of an assertion. When an algorithm
computes a certificate for the postcondition, we call the algorithm a certifying algo-
rithm. We shall illustrate the idea by an example. Consider a function whose input is
a graph G = (V,E). Graphs are defined in Sect. The task is to test whether the
graph is bipartite, i.e., whether there is a labeling of the nodes of G with the colors
blue and red such that any edge of G connects nodes of different colors. As specified
so far, the function returns true or false — true if G is bipartite, and false otherwise.

2.7 An Example — Binary Search 49

With this rudimentary output, the postcondition cannot be checked. However, we
may augment the program as follows. When the program declares G bipartite, it also
returns a two-coloring of the graph. When the program declares G nonbipartite, it
also returns a cycle of odd length in the graph (as a sequence e; to e of edges).
For the augmented program, the postcondition is easy to check. In the first case, we
simply check whether all edges connect nodes of different colors, and in the second
case, we check that the returned sequence of edges is indeed an odd-length cycle in
G. An odd-length cycle proves that the graph is nonbipartite. Most algorithms in this
book can be made certifying without increasing the asymptotic running time.

2.7 An Example — Binary Search

Binary search is a very useful technique for searching in an ordered set of elements.
We shall use it over and over again in later chapters.

The simplest scenario is as follows. We are given a sorted array «[1..n] of pairwise
distinct elements, i.e., a[1] < a[2] < ... < a[n], and an element x. We want to find the
index k with a[k — 1] < x < a[k]; here, a[0] and a[n+ 1] should be interpreted as virtual
elements with values —co and +-oo, respectively. We can use these virtual elements in
the invariants and the proofs, but cannot access them in the program.

Binary search is based on the principle of divide-and-conquer. We choose an
index m € [1..n] and compare x with a[m]. If x = a[m], we are done and return k = m.
If x < a[m], we restrict the search to the part of the array before a[m], and if x > a[m],
we restrict the search to the part of the array after a[m|. We need to say more clearly
what it means to restrict the search to a subarray. We have two indices ¢ and r and
have restricted the search for x to the subarray a[¢ + 1] to a[r — 1]. More precisely,
we maintain the invariant

) 0</l{<r<n+1 and alf]<x<alr].

This is true initially, with £ =0 and r = n+ 1. Once ¢ and r become consecutive
indices, we may conclude that x is not contained in the array. Figure shows the
complete program.

We now prove correctness of the program. We shall first show that the loop invari-
ant holds whenever the loop condition “/+ 1 < r” is checked. We do so by induction
on the number of iterations. We have already established that the invariant holds ini-
tially, i.e., if £ =0 and r = n+ 1. This is the basis of the induction. For the induction
step, we have to show that if the invariant holds before the loop condition is checked
and the loop condition evaluates to true, then the invariant holds at the end of the
loop body. So, assume that the invariant holds before the loop condition is checked
and that /+ 1 < r. Then we enter the loop, and ¢+ 2 < r since £ and r are integral.
We compute m as | (r+¢)/2]. Since £+ 2 < r, we have £ < m < r. Thus m is a legal
array index, and we can access a[m]. If x = a[m], we stop. Otherwise, we set either
r=m or £ = m and hence have ¢ < r and a[¢] < x < a[r]. Thus the invariant holds
at the end of the loop body and therefore before the next test of the loop condition.
Hence (I) holds whenever the loop condition is checked.

50 2 Introduction

Function binarySearch(x : Element, a : Array [1..n] of Element) : 1..n+1
(4,r):=(0,n+1)

assert (I) /I (I) holds here.
while / +1 < rdo
invariant (1): 0 </{ <r<n+1Aa[l] <x<alr] /I (1) is the loop invariant.
assert (I)and /+1 < r /I Invariant (I) holds here. Also £+ 1 < r.
m:=[(r+1¢)/2] Ne<m<r
s:=compare(x,a[m)) /I —1ifx < a[m], 0if x = a[m], +1 if x > a[m]
if s = 0 then return m Il x = a[m]
if s <0 then r:=m /I all] <x < alm] = alr]
if s > 0then (:=m I all] = alm] < x < alr]
assert (I) // Invariant (I) holds here.
assert (I)and /+1=r /l Invariant (I) holds here. Also £+ 1 =r.
return r I alr—1] < x < alr]

Fig. 2.8. Binary search for x in a sorted array a. Returns an index k with alk — 1] < x < a[k].

It is now easy to complete the correctness proof. If we do not enter the loop, we
have {+1 > r. Since ¢ < r by the invariant and ¢ and r are integral, we have {4+ 1 =r.
Thus a[r — 1] < x < a[r] by the second part of the invariant. We have now established
correctness: The program returns either an index k with a[k] = x or an index k with
alk—1] < x < alk].

We next argue termination. We observe first that if an iteration is not the last
one, then we either increase ¢ or decrease r. Hence, r — ¢ decreases. Thus the search
terminates. We want to show more. We want to show that the search terminates in a
logarithmic number of steps. We therefore study the quantity » — ¢ — 1. This is the
number of indices i with ¢ < i < r, and hence a natural measure of the size of the
current subproblem. We shall show that each iteration at least halves the size of the
problem. Indeed, in a round r — ¢ — 1 decreases to something less than or equal to

max{r—[(r+£€)/2] = 1,|(r+£)/2] —¢—1}
<max{r—((r+4£0)/2—-1/2)=1,(r+£)/2—-(—1}
=max{(r—¢—1)/2,(r—0)/2—-1}=(r—£—1)/2,

and hence is at least halved. We start with r —¢—1=n-+1—0— 1= n, and hence
have r— ¢ —1< |n/2"| after h iterations.

Let us use k to denote the number of times the comparison between x and a[m]
is performed If x occurs in the array, the k-th comparison yields that x = a[m], which
ends the search. Otherwise testing the loop condition in the k + 1-th iteration yields
that » < £+ 1, and the search ends with this test. So when the loop condition is
tested for the k-th time we must have £+ 1 < r. Thus r — ¢ — 1 > 1 after the k — 1-th
iteration, and hence 1 < n/ 2k=1 which means k < 1+ logn. We conclude that, at
most, 1 4 logn comparisons are performed. Since the number of comparisons is a
natural number, we can sharpen the bound to 1+ |logn].

2.7 An Example — Binary Search 51

Theorem 2.3. Binary search locates an element in a sorted array of size n in at most
1+ [logn| comparisons between elements. The computation time is O(logn).

Exercise 2.6. Show that the above bound is sharp, i.e., for every n, there are instances
where exactly 1 + |logn| comparisons are needed.

Exercise 2.7. Formulate binary search with two-way comparisons, i.e., distinguish
between the cases x < a[m] and x > a[m].

We next discuss two important extensions of binary search. First, there is no need
for the values a[i] to be stored in an array. We only need the capability to compute
ali], given i. For example, if we have a strictly increasing function f and arguments
i and j with f(i) < x < f(j), we can use binary search to find k € i + 1..j such that
f(k—1) <x < f(k). In this context, binary search is often referred to as the bisection
method.

Second, we can extend binary search to the case where the array is infinite. As-
sume we have an infinite array a[l..c0] and some x, and we want to find the smallest
k such that x < a[k]. If x is larger than all elements in the array, the procedure is
allowed to diverge. We proceed as follows. We compare x with a[2°], a[2!], a[2?],
a[2%], ..., until the first i with x < a[2] is found. This is called an exponential search.
If x = a[2'] or i < 1 (note that in the latter case, either x < a[l] or a[1] < x < a[2] or
x = a[2]), we are done. Otherwise, i > 1 and a[2/"!] < x < a[2], and we complete
the task by binary search on the subarray a[2/~! +1..2/ — 1]. This subarray contains
2i —2i=1 _1=2/"1_1 elements. Note that one comparison is carried out if x < a[1].

Theorem 2.4. The combination of exponential and binary search finds x > a[l] in an
unbounded sorted array in at most 2 [logk| comparisons, where alk — 1] < x < alk].

Proof. 1If a[l] < x < a[2], two comparisons are needed. So, we may assume k > 2,
and hence the exponential search ends with i > 1. We need i + 1 comparisons to find
the smallest i such that x < a[2] and [log(2" =21 —1)|+ 1 = |log(2 ' —1)| +1
= i — 1 comparisons for the binary search. This gives a total of 2i comparisons. Since
k>2"1 wehavei< 1+ logk, and the claim follows. Note that i < [logk] since i is
integral. a

Binary search is certifying. It returns an index k with alk — 1] < x < a[k]. If
x = alk], the index proves that x is stored in the array. If alk — 1] < x < a[k] and
the array is sorted, the index proves that x is not stored in the array. Of course, if the
array violates the precondition and is not sorted, we know nothing. There is no way
to check the precondition in logarithmic time.

We have described binary search as an iterative program. It can also, and maybe
even more naturally, be described as a recursive procedure; see Fig. As above,
we assume that we have two indices ¢ and r into an array a with index set 1..n such
that 0 < ¢ <r<n+1andalf] <x<alr]. If r = £+ 1, we stop. This is correct by the
assertion a[l] < x < a[r]. Otherwise, we compute m = | (¢ +r)/2]. Then £ <m < r.
Hence we may access a[m] and compare x with this entry (in a three-way fashion). If
x = a[m], we found x and return m. This is obviously correct. If x < a[m], we make

52 2 Introduction

Function binSearch(x : Element, {,r : 0..n+1, a : Array [1..n] of Element) : 1..n+1

assert 0 </ <r<n-+1Aall] <x<alr] /I The precondition
if {41 = r then return r /I x is not in the array and a[r — 1] < x < a[r]
m:=[(r+1¢)/2] Ne<m<r
s:= compare(x,alm)) /I —1ifx < a[m], 0if x = a[m], +1 if x > a[m]
if s = 0 then return m Il x = a[m]

if s < 0 then return binSearch(x,l,m,a)
if s > 0 then return binSearch(x,m,r,a)

Fig. 2.9. A recursive function for binary search

the recursive call for the index pair (¢,m). Note that a[¢] < x < a[m] and hence the
precondition of the recursive call is satisfied. If x > a[m], we make the recursive call
for the index pair (m, 7).

Observe that at most one recursive call is generated, and that the answer to the
recursive call is also the overall answer. This situation is called fail recursion. Tail re-
cursive procedures are easily turned into loops. The body of the recursive procedure
becomes the loop body. Each iteration of the loop corresponds to a recursive call;
going to the next recursive call with new parameters is realized by going to the next
round in the loop, after changing variables. The resulting program is our iterative
version of binary search.

2.8 Basic Algorithm Analysis

In this section, we introduce a set of simple rules for determining the running time
of pseudocode. We start with a summary of the principles of algorithm analysis as
we established them in the preceding sections. We abstract from the complications
of a real machine to the simplified RAM model. In the RAM model, running time is
measured by the number of instructions executed. We simplify the analysis further
by grouping inputs by size and focusing on the worst case. The use of asymptotic
notation allows us to ignore constant factors and lower-order terms. This coarsening
of our view also allows us to look at upper bounds on the execution time rather than
the exact worst case, as long as the asymptotic result remains unchanged. The total
effect of these simplifications is that the running time of pseudocode can be analyzed
directly. There is no need to translate the program into machine code first.

We now come to the set of rules for analyzing pseudocode. Let 7'(1) denote the
worst-case execution time of a piece of program I. The following rules then tell us
how to estimate the running time for larger programs, given that we know the running
times of their constituents:

e Sequential composition: T(I;I") =T (I)+T(I').
Conditional instructions: T (if C then [else I') = O(T (C) +max(T (1), T(I'))).

2.8 Basic Algorithm Analysis 53

e Loops: T(repeat] until C) = O(Xfi"l) T(I,C, i)), where k(n) is the maximum
number of loop iterations on inputs of length n, and T'(,C,i) is the time needed
in the ith iteration of the loop, including the test C.

We postpone the treatment of subroutine calls to Sect.[2.8.2] Of the rules above, only
the rule for loops is nontrivial to apply; it requires evaluating sums.

2.8.1 “Doing Sums”

We introduce some basic techniques for evaluating sums. Sums arise in the analysis
of loops, in average-case analysis, and also in the analysis of randomized algorithms.

For example, the insertion sort algorithm introduced in Sect.[5.1lhas two nested
loops. The loop variable i of the outer loop runs from from 2 to n. For any i, the inner
loop performs at most i — 1 iterations. Hence, the total number of iterations of the
inner loop is at most

n n—1 nin—
;(l—l)zgiz (5 1)—®(n2),

where the second equality comes from (A:12)). Since the time for one execution of
the inner loop is ®(1), we get a worst-case execution time of @(nz).

All nested loops with an easily predictable number of iterations can be analyzed
in an analogous fashion: Work your way outwards by repeatedly finding a closed-
form expression for the currently innermost loop. Using simple manipulations such
as Y;ca; =cY,;ai, Yi(ai+b;)) =Y;ai+Y;bi, or Y sa; = —a; + Y} | a;, one can
often reduce the sums to simple forms that can be looked up in a catalog of sums.
A small sample of such formulae can be found in Appendix[A.4] Since we are usu-
ally interested only in the asymptotic behavior, we can frequently avoid doing sums
exactly and resort to estimates. For example, instead of evaluating the sum above
exactly, we may argue more simply as follows:

0=
-~
|
—
~—
IN
S
I
N
(S8}
I
®)
—
S
[\S]
S~—

I
S}
I
-

i-1)> Y n/2=[n/2]-n/2=0(n%).
i=[n/2)

-

U
)

2.8.2 Recurrences

In our rules for analyzing programs, we have so far neglected subroutine calls. Non-
recursive subroutines are easy to handle, since we can analyze the subroutine sepa-
rately and then substitute the bound obtained into the expression for the running time
of the calling routine. For recursive programs, however, this approach does not lead
to a closed formula, but to a recurrence relation.

54 2 Introduction

For example, for the recursive variant of the school method of multiplication, we
obtained T (1) = 1 and T (n) = 4T ([n/2]) 4 4n for the number of primitive opera-
tions. For the Karatsuba algorithm, the corresponding equations were T (1) = 3n* for
n<3and T (n)=3T([n/2]+ 1)+ 8nforn > 3.1In general, a recurrence relation (or
recurrence) defines a function in terms of the values of the same function on smaller
arguments. Explicit definitions for small parameter values (the base case) complete
the definition. Solving recurrences, i.e., finding nonrecursive, closed-form expres-
sions for the functions defined by them, is an interesting subject in mathematics.
Here we focus on the recurrence relations that typically emerge from divide-and-
conquer algorithms. We begin with a simple case that will suffice for the purpose of
understanding the main ideas. We have a problem of size n = b* for some integer .
If £ > 1, we invest linear work cn dividing the problem into d subproblems of size
n/b and in combining the results. If k = 0, there are no recursive calls, we invest
work a in computing the result directly, and are done.

Theorem 2.5 (master theorem (simple form)). For positive constants a, b, ¢, and
d, and integers n that are nonnegative powers of b, consider the recurrence

r(n):{a ifn=1,

en+d-r(n/b) ifn>1.

Then, O(n) ifd <b,
r(n) =< O(nlogn) ifd =,
O(nowd) ifd > b,

Figure illustrates the main insight behind Theorem We consider the
amount of work done at each level of recursion. We start with a problem of size n,
i.e., at the zeroth level of the recursion we have one problem of size n. At the first
level of the recursion, we have d subproblems of size n/b. From one level of the
recursion to the next, the number of subproblems is multiplied by a factor of d and
the size of the subproblems shrinks by a factor of b. Therefore, at the ith level of the
recursion, we have d’ problems, each of size n/b. Thus the total size of the problems

at the ith level is equal to ‘
N d\'

The work performed for a problem (excluding the time spent in recursive calls) is ¢
times the problem size, and hence the work performed at any level of the recursion
is proportional to the total problem size at that level. Depending on whether d/b is
less than, equal to, or larger than 1, we have different kinds of behavior.

If d < b, the work decreases geometrically with the level of recursion and the
topmost level of recursion accounts for a constant fraction of the total execution
time. If d = b, we have the same amount of work at every level of recursion. Since
there are logarithmically many levels, the total amount of work is ®(nlogn). Finally,
if d > b, we have a geometrically growing amount of work at each level of recursion
so that the /ast level accounts for a constant fraction of the total running time. We
formalize this reasoning next.

2.8 Basic Algorithm Analysis 55

d=2,b=4 - - >
v‘vvlvvlvv,v

d=b=2

d—3.h— _ :AA AA:: = AA:¢AA AA: _

D e = o TN ::@:: R s o T

Fig. 2.10. Examples of the three cases of the master theorem. Problems are indicated by hor-
izontal line segments with arrows at both ends. The length of a segment represents the size
of the problem, and the subproblems resulting from a problem are shown in the line below it.
The topmost part of figure corresponds to the case d = 2 and b = 4, i.e., each problem gen-
erates two subproblems of one-fourth the size. Thus the total size of the subproblems is only
half of the original size. The middle part of the figure illustrates the case d = b = 2, and the
bottommost part illustrates the case d =3 and b = 2.

Proof. We start with a single problem of size n = b*. We call this level zero of the
recursionﬁ At level 1, we have d problems, each of size n/b = bF1. At level 2, we
have d? problems, each of size n/b* = b*~2. At level i, we have d' problems, each
of size n/b' = b*~'. At level k, we have d* problems, each of size n/b* = b** =1,
Each such problem has a cost of a, and hence the total cost at level k is ad*.

Let us next compute the total cost of the divide-and-conquer steps at levels O to
k— 1. At level i, we have d’ recursive calls each for subproblems of size bF1. Each
call contributes a cost of ¢ -5, and hence the cost at level i is d' - ¢ - b*~*. Thus the
combined cost over all levels is

' ki A ra\
i;)d cc-b"'=c-b Z(E) _Cn,z()<5> .

i=0
We now distinguish cases according to the relative sizes of d and b.

Case d = b. We have a cost of ad* = ab* = an = ®(n) for the bottom of the recursion
and cost of cnk = cnlog,n = O(nlogn) for the divide-and-conquer steps.

Case d < b. We have a cost of ad* < ab* = an = O(n) for the bottom of the recursion.
For the cost of the divide-and-conquer steps, we use the summation formula (A.T4)
for a geometric series, namely Y g<;q' = (1 — q*)/(1—q)forqg>0and g +# 1, and
obtain

% In this proof, we use the terminology of recursive programs in order to provide intuition.
However, our mathematical arguments apply to any recurrence relation of the right form,
even if it does not stem from a recursive program.

56 2 Introduction

Lrd\ 1= (d/b) 1
an(Z) =cn- T—d/b <cn-1_d/b—0(n)

i=0

and
k—1 i k
d\' 1@t
Cn'i;) (z) —Cn'm >Cn—Q(n).
Case d > b. First, note that

dk _ (blogbd)k _ bklogbd _ (bk)logbd _ nlogbd.

Hence the bottom of the recursion has a cost of an'%¢ = @ (n'°%). For the divide-
and-conquer steps we use the geometric series again and obtain

/o) =1 d =bt (b)) N o egyd
=T a1 a1 _®(d)_®(”) O

There are many generalizations of the master theorem: We might break the re-
cursion earlier, the cost of dividing and conquering might be nonlinear, the size of
the subproblems might vary within certain bounds or vary stochastically, the num-
ber of subproblems might depend on the input size, etc. We refer the reader to the
books ,@] and the papers [@, @, | for further information. The recur-
rence T (n) = 3n? for n < 3 and T(n) < 3T([n/2] + 1)+ 8n for n > 4, governing
Karatsuba’s algorithm, is not covered by our master theorem, which neglects round-
ing issues. We shall now state, without proof, a more general version of the master
theorem. Let r(n) satisfy

ifn<
r(n) <9 < no, @.1)
en*+d-r([n/b] +e,) ifn> no,

wherea >0,b>1,¢c>0,d > 0, and s > 0 are real constants, and the ¢, for n > ng,
are integers such that — [n/b] < e, < e for some integer e > 0. In the recurrence
governing Karatsuba’s algorithm, we have ng =3,a=27,c=8,s=1,d =3,b =2,
and e, = 1 forn > 4.

Theorem 2.6 (master theorem (general form)).
If r(n) satisfies the recurrence (2.1), then

o(n*) ford < b’ ie.,log,d <s,
r(n) =14 O(n’logn) ford =1, ie, log,d =s 22)
o(n'°d) ford > b’ i.e., log,d > s.

Exercise 2.8. Consider the recurrence

1 itn=1,
Cln) = {C(Ln/ZJ)-l—C(f”/z])""c” itn>1.

Show that C(n) = O(nlogn).

2.9 Average-Case Analysis 57

*Exercise 2.9. Suppose you have a divide-and-conquer algorithm whose running
time is governed by the recurrence T(1) = a, T(n) < cn+ [/n |T([n/[v/n]]).
Show that the running time of the program is O(nloglogn). Hint: Define a function
S(n) by S(n) = T (n)/n and study the recurrence for S(n).

Exercise 2.10. Access to data structures is often governed by the following recur-
rence: T(1) = a, T(n) = ¢+ T(n/2). Show that T (n) = O(logn).

2.8.3 Global Arguments

The algorithm analysis techniques introduced so far are syntax-oriented in the fol-
lowing sense: In order to analyze a large program, we first analyze its parts and then
combine the analyses of the parts into an analysis of the large program. The combi-
nation step involves sums and recurrences.

We shall also use a quite different approach, which one might call semantics-
oriented. In this approach we associate parts of the execution with parts of a combi-
natorial structure and then argue about the combinatorial structure. For example, we
might argue that a certain piece of program is executed at most once for each edge of
a graph or that the execution of a certain piece of program at least doubles the size of
a certain structure, that the size is 1 initially and at most n at termination, and hence
the number of executions is bounded logarithmically.

2.9 Average-Case Analysis

In this section we shall introduce you to average-case analysis. We shall do so by
way of three examples of increasing complexity. We assume that you are familiar
with basic concepts of probability theory such as discrete probability distributions,
expected values, indicator variables, and the linearity of expectations. The use of the
language and tools of probability theory suggests the following approach to average
case analysis. We view the inputs as coming from a probability space, e.g., all inputs
from a certain size with the uniform distribution, and determine the expexted com-
plexity for an instance sampled randomly from this space. Section reviews the
basic probability theory.

2.9.1 Incrementing a Counter

We begin with a very simple example. Our input is an array a[0..n — 1] filled with
digits O and 1. We want to increment the number represented by the array by 1:
i:=0
while (i < n and ali] = 1) do ali] = 0; i++;
ifi <nthenali] =1

58 2 Introduction

How often is the body of the while-loop executed? Clearly, n times in the worst case
and O times in the best case. What is the average case? The first step in an average-
case analysis is always to define the model of randomness, i.e., to define the under-
lying probability space. We postulate the following model of randomness: Each digit
is 0 or 1 with probability 1/2, and different digits are independent. Alternatively, we
may say that all bit strings of length n are equally likely. The loop body is executed k
times, if either k <nand a[0] =a[l] =...=alk— 1] =1 and alk] =0 or if k = n and
all digits of a are equal to 1. The former event has probability 2~ (1) and the latter
event has probability 27". Therefore, the average number of executions is equal to

Y k< Y kb =2,

0<k<n k>0

where the last equality is the same as (A.13).

2.9.2 Left-to-Right Maxima

Our second example is slightly more demanding. Consider the following simple pro-
gram that determines the maximum element in an array a|[l..n]:

m:=all]; for i:=2 to n do if a[i] > m then m:=dli]

How often is the assignment m :=ali] executed? In the worst case, it is executed in
every iteration of the loop and hence n — 1 times. In the best case, it is not executed
at all. What is the average case? Again, we start by defining the probability space.
We assume that the array contains n distinct elements and that any order of these
elements is equally likely. In other words, our probability space consists of the n!
permutations of the array elements. Each permutation is equally likely and therefore
has probability 1/n!. Since the exact nature of the array elements is unimportant,
we may assume that the array contains the numbers 1 to n in some order. We are
interested in the average number of left-to-right maxima. A left-to-right maximum in
a sequence is an element which is larger than all preceding elements. So, (1,2,4,3)
has three left-to-right-maxima and (3,1,2,4) has two left-to-right-maxima. For a
permutation 7 of the integers 1 to n, let M, (1) be the number of left-to-right-maxima.
What is E[M,,]? We shall describe two ways to determine the expectation. For small
n, it is easy to determine E[M,] by direct calculation. For n = 1, there is only one
permutation, namely (1), and it has one maximum. So E[M;] = 1. For n = 2, there
are two permutations, namely (1,2) and (2, 1). The former has two maxima and the
latter has one maximum. So E[M;]| = 1.5. For larger n, we argue as follows.

‘We write M,, as a sum of indicator variables I; to I,,,i.e., M,, = I, +...+1,, where
I is equal to 1 for a permutation 7 if the kth element of 7 is a left-to-right maximum.
For example, 13((3,1,2,4)) = 0 and 14((3,1,2,4)) = 1. We have

EM,| =E[l, +L+...+1,]
=E[L]+E[L]+...+E[L)]
= prob(/; = 1) +prob(ly = 1) + ...+ prob(l, = 1),

2.9 Average-Case Analysis 59

where the second equality is the linearity of expectations (A.3)) and the third equality
follows from the I;’s being indicator variables. It remains to determine the probabil-
ity that I; = 1. The kth element of a random permutation is a left-to-right maximum
if and only if the kth element is the largest of the first k elements. In a random per-
mutation, any position is equally likely to hold the maximum, so that the probability
we are looking for is prob(f; = 1) = 1 /k and hence

EM,]= Y prob(lr=1)= Y

1<k<n 1<k<n

| =

So,E[My] =14+1/24+1/3+1/4=(1246+443)/12=25/12. Thesum ¥ ;, 1 /k
will appear several times in this book. It is known under the name “nth harmonic
number” and is denoted by H,. It is known that Inn < H, < 1 +Inn, i.e., H, ~ Inn;
see (A.I3). We conclude that the average number of left-to-right maxima is much
smaller than their maximum number.

Exercise 2.11. Show that Y7, + < Inn -+ 1. Hint: Show first that Y}_, 1 < /"1 dx.

We now describe an alternative analysis. We introduce A, as a shorthand for
E[M,] and set Ag = 0. The first element is always a left-to-right maximum, and each
number is equally likely as the first element. If the first element is equal to , then only
the numbers i 4 1 to n can be further left-to-right maxima. They appear in random
order in the remaining sequence, and hence we shall see an expected number of A;,,_;
further maxima. Thus

An_1+<ZAn,->/n or nA,=n+ Y A

1<i<n 0<i<n—1

A simple trick simplifies this recurrence. The corresponding equation for n — 1 in-
stead of nis (n—1)A,_1 =n—14Y,<;<, »A;. Subtracting the equation for n — 1
from the equation for n yields

MAn—(n—1DAn1 =144, or Ay=1/n+A, 1,

and hence A,, = H,,.

2.9.3 Linear Search

We come now to our third example; this example is even more demanding. Consider
the following search problem. We have items 1 to n, which we are required to arrange
linearly in some order; say, we put item i in position ¢;. Once we have arranged the
items, we perform searches. In order to search for an item x, we go through the
sequence from left to right until we encounter x. In this way, it will take ¢; steps to
access item i.

Suppose now that we also know that we shall access the items with fixed prob-
abilities; say, we shall search for item i with probability p;, where p; > 0 for all i,
1 <i<mn,and Y, p; = 1. In this situation, the expected or average cost of a search

60 2 Introduction

is equal to Y, p;i¢;, since we search for item i with probability p; and the cost of the
search is ¢;.

What is the best way of arranging the items? Intuition tells us that we should
arrange the items in order of decreasing probability. Let us prove this.

Lemma 2.7. An arrangement is optimal with respect to the expected search cost if it
has the property that p; > p; implies {; < {;. If p1 > p» > ... > pp, the placement
Ui =i results in the optimal expected search cost Opt =Y ; pji.

Proof. Consider an arrangement in which, for some i and j, we have p; > p; and
¢; > ¢}, i.e., item i is more probable than item j and yet placed after it. Interchanging
items 7 and j changes the search cost by

—(pili+pit;) + (pilj+piti) = (pj — pi)(li = £;) <0,

i.e., the new arrangement is better and hence the old arrangement is not optimal.

Let us now consider the case p; > p> > ... > p,. Since there are only n! possible
arrangements, there is an optimal arrangement. Also, if i < j and item i is placed after
item j, the arrangement is not optimal by the argument in the preceding paragraph.
Thus the optimal arrangement puts item in position ¢; = i and its expected search
costis Y, pji.

If p1 > p2 > ... > pp, the arrangement ¢; = i for all i is still optimal. However,
if some probabilities are equal, we have more than one optimal arrangement. Within
blocks of equal probabilities, the order is irrelevant. a

Can we still do something intelligent if the probabilities p; are not known to us?
The answer is yes, and a very simple heuristic does the job. It is called the move-
to-front heuristic. Suppose we access item i and find it in position ¢;. If ¢; = 1, we
are happy and do nothing. Otherwise, we place the item in position 1 and move the
items in positions 1 to ¢; — 1 by one position to the rear. The hope is that, in this
way, frequently accessed items tend to stay near the front of the arrangement and
infrequently accessed items move to the rear. We shall now analyze the expected
behavior of the move-to-front heuristic.

We assume for the analysis that we start with an arbitrary, but fixed, initial ar-
rangement of the n items and then perform search rounds. In each round, we access
item i with probability p; independently of what happened in the preceding rounds.
Since the cost of the first access to any item is essentially determined by the initial
configuration, we shall ignore it and assign a cost of 1 to it[] We now compute the
expected cost in round t. We use Cyirr to denote this expected cost. Let ¢; be the
position of item i at the beginning of round 7. The quantities ¢,...,#, are random
variables that depend only on the accesses in the first # — 1 rounds; recall that we
assume a fixed initial arrangement. If we access item 7 in round #, we incur a cost of
1+ 7, whereﬁ

7 The cost ignored in this way is at most n(n — 1). One can show that the expected cost in
round ¢ ignored in this way is no more than n? /t.
8 We define the cost as 1+ Z;, so that Z; = 0 is the second case.

2.9 Average-Case Analysis 61

7. ¢;—1 if i was accessed before round ¢,
"o otherwise.

Of course, the random variables Zi,...,Z, also depend only on the sequence of ac-
cesses in the first 1 — 1 rounds. Thus

Cymtr = Zpi(l +E[Z]) =1+ ZPiE[Zi]~

We next estimate the expectation E[Z;]. For this purpose, we define for each j # i an
indicator variable

1 if jis located before i at the beginning of round ¢
L= and at least one of the two items was accessed before round ¢,

0 otherwise.

Then Z; <Y, i j7é,~1,~ ;- Indeed, if 7 is accessed for the first time in round ¢, Z; = 0. If i
was accessed before round 7, then /;; = 1 for every j that precedes i in the list, and
hence Z; =Y ;. i 1ij. Thus E[Z;] < ¥;. ;4 E[l;;]. We are now left with the task of
estimating the expectations E[J;;].

If there was no access to either i or j before round #, /;; = 0. Otherwise, consider
the last round before round ¢ in which either i or j was accessed. The (conditional)
probability that this access was to item j and not to item i is p;/(p; + p;). There-
fore, E[l;j] = prob(ljj = 1) < p;/(pi+ p;), and hence E[Z) < ¥;; ;i p;/(pi+ pj)-
Summation over i yields

Cwrr = 1+) pE[Z] <1+ PP

i ijiiti Pt P
Observe that for each i and j with i # j, the term p;p;/(pi+ pj) = p;pi/(pj+ pi)
appears twice in the sum above. In order to proceed with the analysis, we assume
p1 > p2 >+ > pn. We use this assumption in the analysis, but the algorithm has no
knowledge of this. With }; p; = 1, we obtain

Cuire <142 M:zp,(m y P_)

g PP jeiPitDpj
<Lpi (1 +2) 1) <) pi2i=2Y pii=20pt.
i JiJ<i i ;

Theorem 2.8. If the cost of the first access to each item is ignored, the expected
search cost of the move-to-front-heuristic is at most twice the cost of the optimal
fixed arrangement.

62 2 Introduction

2.10 Parallel-Algorithm Analysis

Analyzing a sequential algorithm amounts to estimating the execution time Tieq (/)
of a program for a given input instance / on a RAM. Now, we want to find the
execution time T, (7, p) as a function of both the input instance and the number of
available processors p of some parallel machine. As we are now studying a function
of two variables, we should expect some complications. However, the basic tools
introduced above — evaluating sums and recurrences, using asymptotics, . ..— will be
equally useful for the analysis of parallel programs. We begin with some quantities
derived from Tieq and Ty, that will help us to understand the results of the analysis.

The (absolute) speedup
Tieq (1)
S(1,p) = (2.3)
([7) Tpar(l 7p)

gives the factor of speed improvement compared with the best known sequential
program for the same problem. Sometimes the relative speedup Tpar(, 1) /Tpar (I, p)
is considered, but this is problematic because it does not tell us anything about how
useful parallelization was. Of course, we would like to have a large speedup. But
how large is good? Ideally, we would like to have S = p — perfect speedu;ﬂ Even
S = 0(p) - linear speedup — is good. Since speedup O(p) means “good”, it makes
sense to normalize speedup to the efficiency

S(I
E(l,p):= —(I;l’), (2.4)

so that we are now looking for constant efficiency. When do we call a parallel algo-
rithm good or efficient? A common definition is to say that a parallel algorithm is
efficient if it achieves constant efficiency for all sufficiently large inputs. The input
size for which it achieves constant efficiency may grow with the number of proces-
sors. The isoefficiency function I(p) measures this growth [191]. Let ¢ be a constant.
For any number p of processors, let I(p) be the smallest n such that E(I, p) > ¢ for
all instances I of size at least n. The isoefficiency function measures the scalability
of an algorithm — the more slowly it grows as a function of p, the more scalable the
algorithm is.

Brent’s Principle. Brent’s principle is a general method for converting inefficient
parallel programs into efficient parallel programs for a smaller number of pro-
cessors. It is best illustrated by an example. Assume we want to sum n num-
bers that are given in a global array. Clearly, Tieq(n) = ©(n). With n = p and the
fast parallel sum algorithm presented in Sect. we obtain a parallel execu-
tion time O(logp) and efficiency O(1/logp) — this algorithm is inefficient. How-
ever, when n >> p we can use a simple trick to get an efficient parallelization. We
first use p copies of the sequential algorithm on subproblems of size n/p, and then

9 There are situations where we can do even better. S > p can happen if parallel execution
mobilizes more resources. For example, on the parallel machine the input might fit into the
aggregate cache of all PEs while a single PE needs to access the main memory a lot.

2.11 Randomized Algorithms 63

use the parallel algorithm with p processors to sum the p partial sums. Each PE
adds n/p numbers sequentially and requires time @(n/p). The summation of the
p partial results takes time ®(logp). Thus the overall parallel execution time is
Thar = ©(n/p +1logp). We obtain speedup S = O(n/(n/p+1logp)) and efficiency
E=0(n/(p(n/p+logp))) =0(1/(1+(plogp)/n)). For E to be constant, we need
plog(p)/n=0(1), i.e., n = Q(plog p). Hence, the isoefficiency of the algorithm is
I(p) = O(plogp).

Work and Span. The work, work(I), of a parallel algorithm performed on an in-
stance [is the number of operations executed by the algorithm. Its span, span(/), is
the execution time 7'(I,o0) if an unlimited number of processors is available. These
two quantities allow us to obtain a rather abstract view of the efficiency and scal-
ability of a parallel algorithm. Clearly, T'(, p) > span(l) and T (1,p) > work(I)/p
are obvious lower bounds on the parallel execution time. So even with an infinite
number of processors, the speed-up cannot be better than span(/) /Tyeq(I) (Amdahl’s
law). On the other hand, we can achieve T (I, p) = O(work(I)/p+ span(])) if we
manage to schedule the computations in such a way that no PE is unnecessarily idle.
In Sect. we shall see that this is often possible. In this case, the algorithm is
efficient provided that work(/) = O(Tieq(!)) and span(!) = O(work()/p). Indeed,

T(1,p) = O(work(I)/p + span(I))
= O(work(1)/p) since span(l) = O(work(1)/p)
=O(Tieq(1)) since work (/) = O(Tzeq(1)).

For the array-sum example discussed above, we have work(n) = ®(n) and
span(n) = O(logn), i.e., the algorithm is efficient if logn = O(n/p), i.e., when
p =0(n/logn) or n = Q(plogp). Analyzing work and span allows us to consider
scalability in a way similar to what we can with the isoefficiency function.

2.11 Randomized Algorithms

Suppose you are offered to participate in a TV game show. There are 100 boxes that
you can open in an order of your choice. Box i contains an amount m; of money.
This amount is unknown to you but becomes known once the box is opened. No two
boxes contain the same amount of money. The rules of the game are very simple:

* At the beginning of the game, the presenter gives you 10 tokens.

* When you open a box and the amount in the box is larger than the amount in all
previously opened boxes, you have to hand back a token [

e When you have to hand back a token but have no tokens, the game ends and you
lose.

* When you manage to open all of the boxes, you win and can keep all the money.

10 The amount in the first box opened is larger than the amount in all previously opened boxes,
and hence the first token goes back to the presenter in the first round.

64 2 Introduction

There are strange pictures on the boxes, and the presenter gives hints by suggesting
the box to be opened next. Your aunt, who is addicted to this show, tells you that
only a few candidates win. Now, you ask yourself whether it is worth participating
in this game. Is there a strategy that gives you a good chance of winning? Are the
presenters’s hints useful?

Let us first analyze the obvious algorithm — you always follow the presenter.
The worst case is that he makes you open the boxes in order of increasing value.
Whenever you open a box, you have to hand back a token, and when you open the
11th box you are dead. The candidates and viewers would hate the presenter and
he would soon be fired. Worst-case analysis does not give us the right information
in this situation. The best case is that the presenter immediately tells you the best
box. You would be happy, but there would be no time to place advertisements, so
the presenterr would again be fired. Best-case analysis also does not give us the right
information in this situation.

We next observe that the game is really the left-to-right maxima question of the
preceding section in disguise. You have to hand back a token whenever a new maxi-
mum shows up. We saw in the preceding section that the expected number of left-to-
right maxima in a random permutation is H,, the nth harmonic number. For n = 100,
H, < 6. So if the presenter were to point to the boxes in random order, you would
have to hand back only 6 tokens on average. But why should the presenter offer you
the boxes in random order? He has no incentive to have too many winners.

The solution is to take your fate into your own hands: Open the boxes in random
order. You select one of the boxes at random, open it, then choose a random box from
the remaining ones, and so on. How do you choose a random box? When there are k
boxes left, you choose a random box by tossing a die with k sides or by choosing a
random number in the range 1 to k. In this way, you generate a random permutation
of the boxes and hence the analysis in the previous section still applies. On average
you will have to return fewer than 6 tokens and hence your 10 tokens will suffice.
You have just seen a randomized algorithm. We want to stress that, although the
mathematical analysis is the same, the conclusions are very different. In the average-
case scenario, you are at the mercy of the presenter. If he opens the boxes in random
order, the analysis applies; if he does not, it does not. You have no way to tell, except
after many shows and with hindsight. In other words, the presenter controls the dice
and it is up to him whether he uses fair dice. The situation is completely different
in the randomized-algorithms scenario. You control the dice, and you generate the
random permutation. The analysis is valid no matter what the presenter does.

We give a second example. Suppose that you are given an urn with white and
red balls and your goal is to get a white ball. You know that at least half of the
balls in the urn are white. Any deterministic strategy may be unlucky and look at
all the red balls before it finds a white ball. It is much better to consider the balls in
random order. Then the probability of picking a white ball is at least 1/2 and hence
an expected number of two draws suffices to get a white ball. Note that as long as
you draw a red ball, the percentage of white balls in the urn is at least 50% and hence
the probability of drawing a white ball stays at least 1/2. The second example is an
instance of the following scenario. You are given a large set of candidates and want

2.11 Randomized Algorithms 65

to find a candidate that is good in some sense. You know that half of the candidates
are good, but you have no idea which ones. Then you should examine the candidates
in random order.

We come to a third example. Suppose, Alice and Bob are connected over a slow
telephone line. Alice has an integer x and Bob has an integer y, each with six decimal
digits. They want to determine whether they have the same number. As communica-
tion is slow, their goal is to minimize the amount of information exchanged. Local
computation is not an issue.

In the obvious solution, Alice sends her number to Bob, and Bob checks whether
the numbers are equal and announces the result. This requires them to transmit 6
digits. Alternatively, Alice could send the number digit by digit, and Bob would
check for equality as the digits arrive and announce the result as soon as he knew
it, i.e., as soon as corresponding digits differ or all digits had been transmitted. In
the worst case, all 6 digits have to be transmitted. We shall now show how to use
randomization for this task.

There are 21 two digit prime numbers, namely

11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.

The protocol is now as follows. Alice chooses a random prime p from the list and
sends p and x mod p to Bob. Note that x mod p is a 2-digit number, and hence Alice
sends four digits. Bob computes y mod p and compares it to x mod p. If the two
remainders are different, he declares that x and y are different, otherwise he declares
that x and y are the same. What is the probability that Bob declares an incorrect
result? If x and y are equal, his answer is always correct. If x and y are different,
their difference is a non-zero number which is less than 1 million in absolute value
and hence is divided by at most six numbers on the list, since the product of any
six numbers on the list exeeds 1 million. Thus the probability that Bob declares
an incorrect result is at most 6/21. Alice and Bob can reduce the probability of an
incorrect result by computing the remainders with respect to more primes. Of course,
this would also increase the number of bits sent. Can one live with incorrect answers?
Yes, if the probability of an incorrect answer is sufficiently small. We continue this
example in Section Z.11.2

Exercise 2.12. Find out how many 3-digit primes there are? You should be able to
find the answer in Wikipedia. Assume that x and y are less than 10°°. How many
3-digit primes can divide x — y, if x # y? What is the probability that Bob declares an
incorrect result in the protocol above?

2.11.1 The Formal Model

Formally, we equip our RAM with an additional instruction: R; := randInt(C) which
assigns a random integer between 0 and C — 1 to R;. All C of these values are equally
likely, and the value assigned is independent of the outcome of all previous random
choices. In pseudocode, we write v:=randInt(C), where v is an integer variable. The

66 2 Introduction

cost of making a random choice is one time unit. Algorithms not using randomization
are called deterministic.

The running time of a randomized algorithm will generally depend on the random
choices made by the algorithm. So the running time on an instance 7 is no longer a
number, but a random variable depending on the random choices. We may eliminate
the dependency of the running time on random choices by equipping our machine
with a timer. At the beginning of the execution, we set the timer to a value T (n),
which may depend on the size n of the problem instance, and stop the machine once
the timer goes off. In this way, we can guarantee that the running time is bounded by
T (n). However, if the algorithm runs out of time, it does not deliver an answer.

The output of a randomized algorithm may also depend on the random choices
made. How can an algorithm be useful if the answer on an instance i may depend
on the random choices made by the algorithm — if the answer may be “Yes” today
and “No” tomorrow? If the two cases are equally probable, the answer given by the
algorithm has no value. However, if the correct answer is much more likely than the
incorrect answer, the answer does have value.

2.11.2 *An Advanced Example

We continue with the third example from the introduction. Suppose, Alice and Bob
are connected over a slow telephone line. Alice has an integer x and Bob has an
integer y, each with n bits. They want to determine whether they have the same num-
ber. As communication is slow, their goal is to minimize the amount of information
exchanged. Local computation is not an issue.

In the obvious solution, Alice sends her number to Bob, and Bob checks whether
the numbers are equal and announces the result. This requires them to transmit n dig-
its. Alternatively, Alice could send the number digit by digit, and Bob would check
for equality as the digits arrived and announce the result as soon as he knew it, i.e., as
soon as corresponding digits differed or all digits had been transmitted. In the worst
case, all n digits have to be transmitted. We shall now show that randomization leads
to a dramatic improvement. After transmission of only O(logn) bits, equality and
inequality can be decided with high probability. Alice and Bob follow the following
protocol. Each of them prepares an ordered list of prime numbers. The list consists
of the L smallest primes py, p, ..., pr with a value of at least 2k We shall say more
about the choice of L and k below. Clearly, Alice and Bob generate the same list.
Then Alice chooses an index i, 1 <i < L, at random and sends i and x mod p; to
Bob. Bob computes y mod p;. If x mod p; # y mod p;, he declares that the numbers
are different. Otherwise, he declares the numbers the same. Clearly, if the numbers
are the same, Bob will say so. If the numbers are different and x mod p; # y mod p;,
he will declare them different. However, if x # y and yet x mod p; =y mod p;, he
will erroneously declare the numbers equal. What is the probability of an error?

An error occurs if x # y but x = y mod p;. The latter condition is equivalent to
pi dividing the difference D = x — y. This difference is at most 2" in absolute value.
Since each prime p; has a value of at least 2%, our list contains at most n/k primes

2.11 Randomized Algorithms 67

that dividd!] the difference, and hence the probability of error is at most (n/k)/L. We
can make this probability arbitrarily small by choosing L large enough. If, say, we
want to make the probability less than 0.000001 = 10~%, we choose L = 10°(n/k).

What is the appropriate choice of k? For sufficiently large k, about 2% /In(2%) =
1.4477 -2 /k prime are contained in the interval [2€..25*1 —1]. Hence, if 2 /k >
10%1/k, the list will contain only k + 1-bit integers. The condition 2% > 10%# is
equivalent to k > logn 4 6log10. With this choice of k, the protocol transmits
logL+k =logn+121og 10 bits. This is exponentially better than the naive protocol.

What can we do if we want an error probability less than 10722 We could redo
the calculations above with L = 10'%(n/k). Alternatively, we could run the protocol
twice and declare the numbers different if at least one run declares them different.
This two-stage protocol errs only if both runs err, and hence the probability of error
is at most 1076-1076 = 1012,

Exercise 2.13. Compare the efficiency of the two approaches for obtaining an error
probability of 10712,

Exercise 2.14. In the protocol described above, Alice and Bob have to prepare
ridiculously long lists of prime numbers. Discuss the following modified protocol.
Alice chooses a random k + 1-bit integer p (with leading bit 1) and tests it for primal-
ity. If p is not prime, she repeats the process. If p is prime, she sends p and x mod p
to Bob.

Exercise 2.15. Assume you have an algorithm which errs with a probability of at
most 1/4 and that you run the algorithm k times and output the majority output.
Derive a bound on the error probability as a function of k. Do a precise calculation
for k =2 and k = 3, and give a bound for large k. Finally, determine k such that the
error probability is less than a given €.

2.11.3 Las Vegas and Monte Carlo Algorithms

Randomized algorithms come in two main varieties, the Las Vegas and the Monte
Carlo variety. A Las Vegas algorithm always computes the correct answer but its
running time is a random variable. Our solution for the game show is a Las Vegas
algorithm (if the player is provided with enough tokens); it always finds the box
containing the maximum; however, the number of tokens to be returned (the number
of left-to-right maxima) is a random variable. A Monte Carlo algorithm always has
the same running time, but there is a nonzero probability that it will give an incorrect
answer. The probability that the answer is incorrect is at most 1/4. Our algorithm

I Let d be the number of primes in our list that divide D. Then 2" > |D| > (2%)¢ = 2% and
hence d < n/k.

12 For any integer x, let 7(x) be the number of primes less than or equal to x. For example,
7(10) = 4 because there are four prime numbers (2, 3, 5, and 7) less than or equal to
10. Then x/(Inx +2) < 7(x) < x/(Inx—4) for x > 55. See the Wikipedia entry “Prime
numbers” for more information.

68 2 Introduction

for comparing two numbers over a telephone line is a Monte Carlo algorithm. In
Exercise[2.13] it is shown that the error probability of a Monte Carlo algorithm can
be made arbitrarily small by repeated execution.

Exercise 2.16. Suppose you have a Las Vegas algorithm with an expected execution
time #(n), and that you run it for 4¢(n) steps. If it returns an answer within the allotted
time, this answer is returned, otherwise an arbitrary answer is returned. Show that the
resulting algorithm is a Monte Carlo algorithm.

Exercise 2.17. Suppose you have a Monte Carlo algorithm with an execution time
m(n) that gives a correct answer with probability p and a deterministic algorithm
that verifies in time v(n) whether the Monte Carlo algorithm has given the correct
answer. Explain how to use these two algorithms to obtain a Las Vegas algorithm
with expected execution time (m(n) +v(n))/(1 — p).

We now come back to our game show example. You have 10 tokens available
to you. The expected number of tokens required is less than 6. How sure should
you be that you will go home a winner? We need to bound the probability that M,
is larger than 11, because you lose exactly if the sequence in which you order the
boxes has 11 or more left-to-right maxima. Markov’s inequality allows you to bound
this probability. It states that, for a nonnegative random variable X and any constant
¢ > 1, prob(X > ¢-E[X]) < 1/c; see (A3 for additional information. We apply the
inequality with X = M,, and ¢ = 11/6. We obtain

11
prob(M, > 11) < prob (Mn > FE[M”]> < 1

and hence the probability of winning is more than 5/11.

2.12 Graphs

Graphs are an extremely useful concept in algorithmics. We use them whenever we
want to model objects and relations between them; in graph terminology, the objects
are called nodes, and the relations between nodes are called edges or arcs. Some
obvious applications are road maps and communication networks, but there are also
more abstract applications. For example, nodes could be tasks to be completed when
building a house, such as “build the walls” or “put in the windows”, and edges could
model precedence relations such as “the walls have to be built before the windows
can be put in”. We shall also see many examples of data structures where it is natural
to view objects as nodes and pointers as edges between the object storing the pointer
and the object pointed to.

When humans think about graphs, they usually find it convenient to work with
pictures showing nodes as small disks and edges as lines and arrows. To treat
graphs algorithmically, a more mathematical notation is needed: A directed graph
G = (V,E) is a pair consisting of a node set (or vertex set) V and an edge set (or arc

2.12 Graphs 69

set) E C'V x V. We sometimes abbreviate “directed graph” to digraph. For example,
Fig. 2111 shows a graph G with node set {s,7,u,v,w,x,y,z} and edges (s,t), (¢t,u),
(u,v), (v,w), (w,x), (x,5), 2), (z,5), (s,v), (z,w), (y,1), and (x,u). Throughout this
book, we use the convention n = |V| and m = |E| if no other definitions for n or m
are given. An edge ¢ = (u,v) € E represents a connection from u to v. We call u and
v the source and target, respectively, of e. We say that e is incident to u and v and
that v and u are adjacent. The special case of a self-loop (v,v) is disallowed unless
specifically mentioned otherwise. Modeling E as a set of edges also excludes multi-
ple parallel edges between the same two nodes. However, sometimes it is useful to
allow parallel edge, i.e., in a multigraph, E is a multiset where elements can appear
multiple times.

The outdegree of a node v is the number of edges leaving it, and its indegree
is the number of edges entering it. Formally, outdegree(v) = |{(v,u) € E}| and
indegree(v) = |{(u,v) € E}|. For example, node w in graph G in Fig. ZI1] has in-
degree two and outdegree one.

A bidirected graph is a digraph where, for any edge (u,v), the reverse edge (v, u)
is also present. An undirected graph can be viewed as a streamlined representation of
a bidirected graph, where we write a pair of edges (u,v), (v,u) as the two-element set
{u,v}. Figure2.TTlincludes a three-node undirected graph and its bidirected counter-
part. Most graph-theoretic terms for undirected graphs have the same definition as for
their bidirected counterparts, and so this section will concentrate on directed graphs
and only mention undirected graphs when there is something special about them.
For example, the number of edges of an undirected graph is only half the number
of edges of its bidirected counterpart. Nodes of an undirected graph have identical
indegree and outdegree, and so we simply talk about their degree. Undirected graphs
are important because directions often do not matter and because many problems are
easier to solve (or even to define) for undirected graphs than for general digraphs.

A graph G' = (V' E’) isa subgraph of Gif V' CV and E' C E. Given G = (V,E)
and a subset V' C V, the subgraph induced by V' is defined as G' = (V/,EN
(V! x V")). In Fig. 211l the node set {v,w} in G induces the subgraph H =
({v,w},{(v,w)}). A subset E' C E of edges induces the subgraph (V,E").

self loop

= | o K3g ':
\V); i i 1 ;
i undirected :@ bidirecte NN

=

Fig. 2.11. Some graphs.

70 2 Introduction

Often, additional information is associated with nodes or edges. In particular,
we shall often need edge weights or costs ¢ : E — R that map edges to some nu-
meric value. For example, the edge (z,w) in graph G in Fig. 2.11] has a weight
¢((z,w)) = —2. Note that an edge {«,v} of an undirected graph has a unique edge
weight, whereas, in a bidirected graph, we can have ¢((u,v)) # ¢((v,u)).

We have now seen rather many definitions on one page of text. If you want to see
them at work, you may jump to Chap.[§]to see algorithms operating on graphs. But
things are also becoming more interesting here.

An important higher-level graph-theoretic concept is the notion of a path. A path
p = (vo,...,v) is a sequence of nodes in which consecutive nodes are connected
by edges in E, i.e., (vo,vi) €E, (vi,»2) €E, ..., (vi_1,v) € E; p has length k and
runs from vy to v¢. Sometimes a path is also represented by its sequence of edges.
For example, (u,v,w) = ((u,v), (v,w)) is a path of length 2 in Fig. 2.1l A sequence
p={vo,v1,...,v) is a path in an undirected graph if it is a path in the corresponding
bidirected graph and v;_; # v;+; for 1 <i <k, i.e.,itis not allowed to use an edge and
then immediately go back along the same edge. The sequence (u, w,v,u,w,v) is a path
of length 5 in the graph U in Fig. 211} A path is simple if its nodes, except maybe
for vp and vy, are pairwise distinct. In Fig. 2111 (z,w,x,u,v,w,x,y) is a nonsimple
path in graph G. Clearly, if there is a path from u to v in some graph, there is also a
simple path from u to v.

Cycles are paths of length at least 1 with a common first and last node. Cy-
cles in undirected graphs have a length of at least three since consecutive edges
must be distinct in a path in an undirected graph. In Fig. 2111 the sequences
(u,v,w,x,y,z,w,x,u) and (u, w,v,u, w,v,u) are cycles in G and U respectively. A sim-
ple cycle visiting all nodes of a graph is called a Hamiltonian cycle. For example, the
cycle (s,t,u,v,w,x,y,z,s) in graph G in Fig.2TTlis Hamiltonian. The cycle (w,u,v,w)
in U is also Hamiltonian.

The concepts of paths and cycles allow us to define even higher-level concepts. A
digraph is strongly connected if, for any two nodes u and v, there is a path from u to
v. Graph G in Fig. 211l is strongly connected. A strongly connected component of a
digraph is a maximal node-induced strongly connected subgraph. If we remove edge
(w,x) from G in Fig.2.11] we obtain a digraph without any cycles. A digraph without
any cycles is called a directed acyclic graph (DAG). In a DAG, every strongly con-
nected component consists of a single node. An undirected graph is connected if the
corresponding bidirected graph is strongly connected. The connected components
are the strongly connected components of the corresponding bidirected graph. Any
two nodes in the same connected component are connected by a path, and there are
no edges connecting nodes in distinct connected components. For example, graph U
in Fig.2.TTlhas connected components {u,v,w}, {s,¢}, and {x}. The node set {u, w}
induces a connected subgraph, but it is not maximal and hence is not a component.

Exercise 2.18. Describe 10 substantially different applications that can be modeled
using graphs; car and bicycle networks are not considered substantially different. At
least five should be applications not mentioned in this book.

2.12 Graphs 71

Exercise 2.19. A planar graph is a graph that can be drawn on a sheet of paper such
that no two edges cross each other. Argue that street networks are not necessarily
planar. Show that the graphs Ks and K3 3 in Fig. 2. 1T]are not planar.

2.12.1 A First Graph Algorithm

It is time for an example algorithm. We shall describe an algorithm for testing
whether a directed graph is acyclic. We use the simple observation that a node v
with outdegree O cannot lie on any cycle. Hence, by deleting v (and its incoming
edges) from the graph, we obtain a new graph G’ that is acyclic if and only if G is
acyclic. By iterating this transformation, we either arrive at the empty graph, which
is certainly acyclic, or obtain a graph G* in which every node has an outdegree of at
least 1. In the latter case, it is easy to find a cycle: Start at any node v and construct
a path by repeatedly choosing an arbitrary outgoing edge until you reach a node v/
that you have seen before. The constructed path will have the form (v,...,V/,... V'),
i.e., the part (V/,...,V') forms a cycle. For example, in Fig. 211 graph G has no
node with outdegree 0. To find a cycle, we might start at node z and follow the path
(z,w,x,u,v,w) until we encounter w a second time. Hence, we have identified the cy-
cle (w,x,u,v,w). In contrast, if the edge (w,x) is removed, there is no cycle. Indeed,
our algorithm will remove all nodes in the order w, v, u, t, s, z, y, x. In Chap.[8l we
shall see how to represent graphs such that this algorithm can be implemented to run
in linear time O(|V |+ |E|); see also Exercise[83] We can easily make our algorithm
certifying. If the algorithm finds a cycle, the graph is certainly cyclic. Also it is easily
checked whether the returned sequence of nodes is indeed a cycle. If the algorithm
reduces the graph to the empty graph, we number the nodes in the order in which
they are removed from G. Since we always remove a node v of outdegree 0 from
the current graph, any edge out of v in the original graph must go to a node that
was removed previously and hence has received a smaller number. Thus the ordering
proves acyclicity: Along any edge, the node numbers decrease. Again this property
is easily checked.

Exercise 2.20. Exhibit a DAG with n nodes and n(n — 1)/2 edges for every n.

2.12.2 Trees

An undirected graph is a tree if there is exactly one path between any pair of nodes;
see Fig.[2.12] for an example. An undirected graph is a forest if there is at most one
path between any pair of nodes. Note that each connected component of a forest is a
tree.

Lemma 2.9. The following properties of an undirected graph G are equivalent:

(a) G is a tree;
(b) G is connected and has exactly n — 1 edges;
(c) G is connected and contains no cycles.

72 2 Introduction

undirected undirected rooted directed expression

Bty o
OO O 0 wa® OO

Fig. 2.12. Different kinds of trees. From left to right, we see an undirected tree, an undirected
rooted tree, a directed out-tree, a directed in-tree, and an arithmetic expression.

Proof. In a tree, there is a unique path between any two nodes. Hence the graph is
connected and contains no cycles. Conversely, if there are two nodes that are con-
nected by more than one path, the graph contains a cycle. Consider distinct paths p
and g connecting the same pair of nodes. If the first edge of p is equal to the first
edge of g, delete these edges from p and g to obtain p’ and ¢’. The paths p’ and
¢’ are distinct and connect the same pair of nodes. Continuing in this way and also
applying the argument to last edges, we end up with two paths connecting the same
pair of nodes and having distinct first and last edges. Thus the concatenation of the
first path with the reversal of the second forms a cycle. We have now shown that (a)
and (c) are equivalent.

We next show the equivalence of (b) and (c). Assume that G = (V,E) is con-
nected, and let m = |E|. We perform the following experiment: We start with the
empty graph and add the edges in E one by one. Addition of an edge can reduce
the number of connected components by at most one. We start with n components
and must end up with one component. Thus m > n — 1. Assume now that there is
an edge ¢ = {u,v} whose addition does not reduce the number of connected compo-
nents. Then u and v are already connected by a path, and hence addition of e creates
a cycle. If G is cycle-free, this case cannot occur, and hence m = n — 1. Thus (c)
implies (b). Assume next that G is connected and has exactly n — 1 edges. Again,
add the edges one by one and observe that every addition must reduce the number of
connected components by one, as otherwise we would not end up with a single com-
ponent after n — 1 additions. Thus no addition can close a cycle, as such an addition
would not reduce the number of connected components. Thus (b) implies (c). O

Lemma [2.9] does not carry over to digraphs. For example, a DAG may have many
more than n — 1 edges. A directed graph is an out-tree with a root node r if there is
exactly one path from r to any other node. It is an in-tree with a root node r if there
is exactly one path from any other node to r. Figure[2.12]shows examples. The depth
of a node in a rooted tree is the length of the path to the root. The height of a rooted
tree is the maximum of the depths of its nodes.

We can make an undirected tree rooted by declaring one of its nodes to be the
root. Computer scientists have the peculiar habit of drawing rooted trees with the root
at the top and all edges going downwards. For rooted trees, it is customary to denote
relations between nodes by terms borrowed from family relations. Edges go between

2.13 P and NP 73

a unique parent and its children. Nodes with the same parent are siblings. Nodes
without children are leaves. Nonroot, nonleaf nodes are interior nodes. Consider a
path such that u is between the root and another node v. Then u is an ancestor of
v, and v is a descendant of u. A node u and its descendants form the subtree rooted
at u. For example, in Fig. r is the root; s, ¢, and v are leaves; s, ¢, and u are
siblings because they are children of the same parent r; u is an interior node; r and
u are ancestors of v; s, , u, and v are descendants of r; and v and u form a subtree
rooted at u.

2.12.3 Ordered Trees

Trees are ideally suited for representing hierarchies. For example, consider the ex-
pression a+2/b. We know that this expression means that « and 2/b are to be added.
But deriving this from the sequence of characters (a,+,2, /,b) is difficult. For exam-
ple, the rule that division binds more tightly than addition has to be applied. There-
fore compilers isolate this syntactical knowledge in parsers that produce a more
structured representation based on trees. Our example would be transformed into the
expression tree given in Fig. Such trees are directed and, in contrast to graph-
theoretic trees, they are ordered, i.e., the children of each node are ordered. In our
example, a is the first, or left, child of the root, and / is the right, or second, child of
the root.

Expression trees are easy to evaluate by a simple recursive algorithm. Figure 2. 13|
shows an algorithm for evaluating expression trees whose leaves are numbers and
whose interior nodes are binary operators (say +, —, -, /).

We shall see many more examples of ordered trees in this book. Chapters[@and[7]
use them to represent fundamental data structures, and Chap. [12] uses them to sys-
tematically explore solution spaces.

Function eval(r) : R
if 7 is a leaf then return the number stored in r
else /I r is an operator node
vy :=eval(first child of r)
vy :=eval(second child of r)
return v operator(r) v, /I apply the operator stored in r

Fig. 2.13. Recursive evaluation of an expression tree rooted at r

2.13 P and NP

When should we call an algorithm efficient? Are there problems for which there is no
efficient algorithm? Of course, drawing the line between “efficient” and “inefficient”
is a somewhat arbitrary business. The following distinction has proved useful: An

74 2 Introduction

algorithm &7 runs in polynomial time, or is a polynomial-time algorithm, if there is
a polynomial p(n) such that its execution time on inputs of size n is O(p(n)). If not
otherwise mentioned, the size of the input will be measured in bits. A problem can be
solved in polynomial time if there is a polynomial-time algorithm that solves it. We
equate “efficiently solvable” with “polynomial-time solvable”. A big advantage of
this definition is that implementation details are usually not important. For example,
it does not matter whether a clever data structure can accelerate an O(n?) algorithm
by a factor of n. All chapters of this book, except for Chap. are about efficient
algorithms. We use P to denote the class of problems solvable in polynomial time.

There are many problems for which no efficient algorithm is known. Here, we
mention only six examples:

e The Hamiltonian cycle problem: Given an undirected graph, decide whether it
contains a Hamiltonian cycle.

e The Boolean satisfiability problem: Given a Boolean expression in conjunctive
form, decide whether it has a satisfying assignment. A Boolean expression in
conjunctive form is a conjunction C; ACy A ... ACy of clauses. A clause is a
disjunction ¢; V ¢, V...V ¢, of literals, and a literal is a variable or a negated
variable. For example, v V —v3 V =g is a clause.

e The clique problem: Given an undirected graph and an integer k, decide whether
the graph contains a complete subgraph (= a clique) on k nodes. A graph is com-
plete if every pair of nodes is connected by an edge. The graph Ks in Fig. R2.11lis
an example.

* The knapsack problem: Given n pairs of integers (w;, p;) and integers M and P,
decide whether there is a subset I C [1..n] such that ¥';c;w; <M and Y ;¢; p; > P.
Informally, item 7 has volume w; and value p; and we want to know whether we
can pack a knapsack of volume M such that its value is at least P. This problem
will be heavily used as an example in Chap.

e The traveling salesman problem: Given an edge-weighted undirected graph and
an integer C, decide whether the graph contains a Hamiltonian cycle of cost at
most C. See Sect. for more details.

e The graph-coloring problem: Given an undirected graph and an integer k, decide
whether there is a coloring of the nodes with k colors such that any two adjacent
nodes are colored differently. This problem will also be used as an example in
Chap.

The fact that we know no efficient algorithms for these problems does not imply
that none exist. It is simply not known whether efficient algorithms exist or not. In
particular, we have no proof that such algorithms do not exist. In general, it is very
hard to prove that a problem cannot be solved in a given time bound. We shall see
some simple lower bounds in Sect. Most algorithmicists believe that the six
problems above have no efficient solution.

Complexity theory has found an interesting surrogate for the absence of lower-
bound proofs. It clusters algorithmic problems into large groups that are equivalent
with respect to some complexity measure. In particular, there is a large class of equiv-
alent problems known as NP-complete problems. Here, NP is an abbreviation for

2.13 P and NP 75

“nondeterministic polynomial time”. If the term “nondeterministic polynomial time”
does not mean anything to you, ignore it and carry on. The six problems mentioned
above are NP-complete, and so are many other natural problems.

*More on NP-Completeness

We shall now give formal definitions of the class NP and the class of NP-complete
problems. We refer the reader to books about the theory of computation and com-
plexity theory 122, [121, 294, 32d] for a thorough treatment.

We assume, as is customary in complexity theory, that inputs are encoded in some
fixed finite alphabet X. Think of the ASCII or Unicode alphabet or their binary en-
codings. In the latter case, X = {0,1}. We use £* to denote all words (sequences of
characters) over the alphabet X. The size of aword x =q; ...a, € X* isits length n. A
decision problem is a subset L C X*. We use 7, (read “chi”) to denote the character-
istic function of L, i.e., xz(x) = 1 if x € Land ;. (x) = 0 if x & L. A decision problem
is polynomial-time solvable if and only if its characteristic function is polynomial-
time computable. We use P to denote the class of polynomial-time-solvable decision
problems.

A decision problem L is in NP if and only if there is a predicate Q(x,y) (a subset
Q C (Z*)?) and a polynomial p such that

(a) foranyx € X%, x € Lif and only if there is ay € X* with |y| < p(|x|) and O(x,y),
and
(b) Q is computable in polynomial time.

We call y satisfying (a) a witness for x or a proof of membership for x. For our
example problems, it is easy to show that they belong to NP. In the case of the
Hamiltonian cycle problem, the witness is a Hamiltonian cycle in the input graph. A
witness for a Boolean formula is an assignment of truth values to variables that make
the formula true. The solvability of an instance of the knapsack problem is witnessed
by a subset of elements that fit into the knapsack and achieve the profit bound P.

Exercise 2.21. Prove that the clique problem, the traveling salesman problem, and
the graph-coloring problem are in NP.

It is widely believed that P is a proper subset of NP. There are good arguments
for this belief, as we shall see in a moment; however, there is no proof. In fact, the
problem of whether P is equal to NP or properly contained in it is considered one of
the major open problems in computer science and mathematics. A proof that the two
classes are equal would have dramatic consequences: Thousands of problems which
are currently believed to have no efficient algorithm would suddenly have one. A
proof that the two classes are not equal would probably have no dramatic effect on
computing, as most algorithmicists work under the assumption that these classes
are distinct, but it would probably have a dramatic effect on theoretical computer
science, logic, and mathematics, as the proof would probably introduce a new kind of
argument. If P is properly contained in NP, NP-complete problems have no efficient
algorithm.

76 2 Introduction

A decision problem L is polynomial-time reducible (or simply reducible) to a
decision problem L’ if there is a polynomial-time-computable function g such that
for all x € £*, we have x € L if and only if g(x) € L'. If L is reducible to L’ and L' € P,
then L € P. Assume we have an algorithm for the reduction g with a polynomial
time bound p(n) and an algorithm for j;/ with a polynomial time bound ¢(n). An
algorithm for ;. operates as follows. On input of x, it first computes g(x) using the
first algorithm and then tests g(x) € L’ using the second algorithm. The running time
is at most p(|x|) +¢(|g(x)|). Since Turing machines can write at most one symbol in
each step, we have |g(x)| < |x|+ p(|x|). Thus the running time is bounded by p(|x|) +
q(|x| + p(|x])); this is polynomial in |x|. A similar argument shows that reducibility
is transitive.

A decision problem L is NP-hard if every problem in NP is polynomial-time re-
ducible to it. A problem is NP-complete if it is NP-hard and in NP. At first glance,
it might seem prohibitively difficult to prove any problem NP-complete — one would
have to show that every problem in NP was polynomial-time reducible to it. How-
ever, in 1971, Cook and Levin independently managed to do this for the Boolean
satisfiability problem ,]. From that time on, it was “easy”. Assume you want
to show that a problem L is NP-complete. You need to show two things: (1) L € NP,
and (2) there is some known NP-complete problem L' that can be reduced to it. Tran-
sitivity of the reducibility relation then implies that all problems in NP are reducible
to L. With every new NP-complete problem, it becomes easier to show that other
problems are NP-complete. There is a Wikipedia page for the list of NP-complete
problems. We next give one example of a reduction.

Lemma 2.10. The Boolean satisfiability problem is polynomial-time reducible to the
clique problem.

Proof. Let F =CiA...ANCy, where C; = ;1 V...V £, and £y = xg(”‘, be a formula in
conjunctive form. Here, x; is a variable and B; € {0, 1}. A superscript 0 indicates a
negated variable. Consider the following graph G. Its nodes V represent the literals in
our formula, i.e., V ={(i,k) : 1 <i<mand 1 <k < h;}. Two nodes (i,k) and (j,k')
are connected by an edge if and only if i # j and either xj # x i or By = Bjw. In
words, the representatives of two literals are connected by an edge if they belong to
different clauses and an assignment can satisfy them simultaneously. We claim that
F is satisfiable if and only if G has a clique of size m.

Assume first that there is a satisfying assignment ¢. The assignment must satisfy
at least one literal in every clause, say literal £;, in clause C;. Consider the subgraph
of G induced by the node set {(i,k;) : 1 <i<m}. This is a clique of size m. Assume
otherwise; say, (i,k;) and (j,k;) are not connected by an edge. Then, xj, = x jk; and
Bix, # B jk;- But then the literals Lix; and £ jk; are complements of each other, and o
cannot satisfy them both.

Conversely, assume that there is a clique M of size m in G. We can construct a
satisfying assignment ¢. For each i, | <i < m, M contains exactly one node (i,k;).
We construct a satisfying assignment o by setting o (xy,) = Bi,. Note that a is well
defined because x, = xi; implies By, = Bj;; otherwise, (i,k;) and (j,k;) would not
be connected by an edge. o clearly satisfies F. a

2.14 Implementation Notes 77

Exercise 2.22. Show that the Hamiltonian cycle problem is polynomial-time re-
ducible to the traveling salesman problem.

Exercise 2.23. Show that the clique problem is polynomial-time reducible to the
graph-coloring problem.

All NP-complete problems have a common destiny. If anybody should find a
polynomial-time algorithm for one of them, then NP = P. Since so many people
have tried to find such solutions, it is becoming less and less likely that this will ever
happen: The NP-complete problems are mutual witnesses of their hardness.

Does the theory of NP-completeness also apply to optimization problems? Op-
timization problems are easily turned into decision problems. Instead of asking for
an optimal solution, we ask whether there is a solution with an objective value bet-
ter than or equal to k, where & is an additional input. Here, better means greater in
a maximization problem and smaller in a minimization problem. Conversely, if we
have an algorithm to decide whether there is a solution with a value better than or
equal to k, we can use a combination of exponential and binary search (see Sect.2.7)
to find the optimal objective value.

An algorithm for a decision problem returns yes or no, depending on whether the
instance belongs to the problem or not. It does not return a witness. Frequently, wit-
nesses can be constructed by applying the decision algorithm repeatedly to instances
derived from the original instance. Assume we want to find a clique of size k, but
have only an algorithm that decides whether a clique of size k exists. We first test
whether G has a clique of size k. If not, there is no clique of size k. Otherwise, we
select an arbitrary node v and ask whether G’ = G\ v has a clique of size k. If so, we
search recursively for a clique of size k in G'. If not, we know that v must be part
of the clique. Let V' be the set of neighbors of v. We search recursively for a clique
Cy_1 of size k — 1 in the subgraph spanned by V’. Then vUC;_; is a clique of size k
in G.

2.14 Implementation Notes

Our pseudocode is easily converted into actual programs in any imperative program-
ming language. We shall give more detailed comments for C++ and Java below. The
Eiffel programming language [225] has extensive support for assertions, invariants,
preconditions, and postconditions.

Our special values L, —oo, and oo are available for floating-point numbers. For
other data types, we have to emulate these values. For example, we could use the
smallest and largest representable integers for —co and oo, respectively. Undefined
pointers are often represented by a null pointer null. Sometimes we use special values
for convenience only, and a robust implementation should avoid using them. You will
find examples in later chapters.

Randomized algorithms need access to a random source. You have a choice be-
tween a hardware generator that generates true random numbers and an algorith-
mic generator that generates pseudorandom numbers. We refer the reader to the
Wikipedia page “Random number” for more information.

78 2 Introduction

There has been a lot of research on parallel programming languages and soft-
ware libraries for sequential languages. However, most users are conservative and
use only a small number of tools that are firmly established and have wide industrial
support in order to achieve high performance in a portable way. We shall take the
same attitude in the implementation notes in this book. Moreover, some advanced,
recently introduced, or rarely used features of firmly established tools may not de-
liver the performance you might expect, and should be used with care. However, we
would like to point out that higher-level tools or features may be worth considering if
you can validate your expectation that they will achieve sufficient performance and
portability for your application.

2.14.1 C++

Our pseudocode can be viewed as a concise notation for a subset of C++. The mem-
ory management operations allocate and dispose are similar to the C++ operations
new and delete. C++ calls the default constructor for each element of an array, i.e.,
allocating an array of n objects takes time Q(n), whereas allocating an array n of
ints takes constant time. In contrast, we assume that al/ arrays which are not explic-
itly initialized contain arbitrary values (garbage). In C++, you can obtain this effect
using the C functions malloc and free. However, this is a deprecated practice and
should only be used when array initialization would be a severe performance bot-
tleneck. If memory management of many small objects is performance-critical, you
can customize it using the allocator class of the C++ standard library.

Our parameterizations of classes using of is a special case of the C++ template
mechanism. The parameters added in brackets after a class name correspond to the
parameters of a C++ constructor.

Assertions are implemented as C macros in the include file assert . h. By de-
fault, violated assertions trigger a runtime error and print their position in the pro-
gram text. If the macro NDEBUG is defined, assertion checking is disabled.

For many of the data structures and algorithms discussed in this book, excellent
implementations are available in software libraries. Good sources are the standard
template library STL [255], the Boost [[S(] C++ libraries, and the LEDA [194, 217]
library of efficient algorithms and data structures.

C++ (together with C) is perhaps the most widely used programming language
for nonnumericalJ parallel computing because it has good, widely portable compil-
ers and allows low-level tuning. However, only the recent C++11 standard begins
to define some support for parallel programming. In Appendix [C] we give a short
introduction to the parallel aspects of C++11. We also say a few words about shared-
memory parallel-programming tools used together with C++ such as OpenMP, Intel
TBB, and Cilk.

In Appendix [Dl we introduce MPI, a widely used software library for message-
passing-based programming. It supports a wide variety of message-passing routines,
including collective communication operations (see also Chap.[13)).

13 For numerical parallel computing, Fortran was traditionally the most widely used language.
But even that is changing.

2.15 Historical Notes and Further Findings 79

2.14.2 Graphics Processing Units (GPUs)

GPUs are often used for general-purpose parallel processing (general-purpose com-
puting on graphics processing units, GPGPU). GPUs can be an order of magnitude
more efficient than classical multicore processors with a comparable number of tran-
sistors. This is achieved using massive parallelism — the number of (very lightweight)
threads used can be three orders of magnitude larger than for a comparable multicore
processor. GPU programs therefore need highly scalable parallel algorithms. Further
complications are coordination with the host CPU (heterogeneity), explicit manage-
ment of several types of memory, and threads working in SIMD mode. In this book,
we focus on simpler hardware but many of the algorithms discussed are also rele-
vant for GPUs. For NVIDIA GPUs there is a C++ extension (part of the Compute
Unified Device Architecture, CUDA) that allows rather high-level programming. A
more portable but lower-level system is the C extension OpenCL (Open Computing
Language).

2.14.3 Java

Java has no explicit memory management. Rather, a garbage collector periodically
recycles pieces of memory that are no longer referenced. While this simplifies pro-
gramming enormously, it can be a performance problem. Remedies are beyond the
scope of this book. Generic types provide parameterization of classes. Assertions are
implemented with the assert statement.

Implementations for many data structures and algorithms are available in the
package java.util.

Java supports multithreaded programming of a shared-memory machine, includ-
ing locks, support for atomic instructions, and data structures supporting concur-
rent access; see the documentation of the libraries beginning with java.util.
concurrent. However, some high-level concepts such as parallel loops, collective
operations, and efficient task-oriented programming are missing. There is also no di-
rect support for message-passing programming. There are several software libraries
and compilers addressing these deficits; see] for an overview. However, it is
perhaps too early to say whether any of these techniques will gain a wide user base
with efficient, widely portable implementations. More fundamentally, when an ap-
plication is sufficiently performance-sensitive for one to consider parallelization, it
is worth remembering that Java often incurs a significant performance penalty com-
pared with using C++. This overhead can be worse for a multithreaded code than for
a sequential code, since additional cache faults may expose a bottleneck in the mem-
ory subsystem and garbage collection incurs additional overheads and complications
in a parallel setting.

2.15 Historical Notes and Further Findings

Shepherdson and Sturgis [293] defined the RAM model for use in algorithmic analy-
sis. The RAM model restricts cells to holding a logarithmic number of bits. Dropping

80 2 Introduction

this assumption has undesirable consequences; for example, the complexity classes
P and PSPACE collapse]. Knuth] has described a more detailed abstract
machine model.

A huge number of algorithms have been developed for the PRAM model. J4jd’s
textbook] is a good introduction.

There are many variants of distributed-memory models. One can take a more de-
tailed look at concrete network topologies and differentiate between nearby and far-
away PEs. For example, Leighton’s textbook] describes many such algorithms.
We avoid these complications here because many networks can actually support our
simple model to a reasonable approximation and because we shy away from the
complications and portability problems of detailed network models.

One can also take a more abstract view. The bulk synchronous parallel (BSP)
model] divides the computation into globally synchronized phases of local com-
putation on the one hand and of global message exchange on the other hand. Dur-
ing a local computation phase, each PE can post send requests. During a message
exchange phase, all these messages are delivered. In the terminology of this book,
BSP programs are message-passing programs that use only the nonuniform all-to-
all method described in Sect.[13.6.3 for communication. Let 4 denote the maximum
number of machine words sent or received by any PE during a message exchange.
Then the BSP model assumes that this message exchange takes time ¢+ gh, where
¢ and g are machine parameters. This assumption simplifies the analysis of BSP al-
gorithms. We do not adopt the BSP model here, since we want to be able to describe
asynchronous algorithms and because, with very little additional effort for the anal-
ysis, we get more precise results, for example, when other collective communication
operations presented in Chap. [I3|are used.

A further abstraction looks only at the communication volume of a parallel algo-
rithm, for example, by summing the A-values occurring in the communication steps
in the BSP model [274]. This makes sense on large parallel systems, where global
communication becomes the bottleneck for processing large data sets.

For modeling cache effects in shared-memory systems, the parallel external-
memory (PEM) model [IE] is useful. The PEM is a combination of the PRAM model
and the external-memory model. PEs have local caches of size M each and access
the shared main memory in cache lines of size B.

Floyd] introduced the method of invariants to assign meaning to programs
and Hoare ,] systematized their use. The book] is a compendium of
sums and recurrences and, more generally, discrete mathematics.

Books on compiler construction (e.g., 232, @]) will tell you more about the
compilation of high-level programming languages into machine code.

