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Sorted Sequences

All of us spend a significant part of our time on searching, and so do computers:

They look up telephone numbers, balances of bank accounts, flight reservations, bills

and payments, . . . . In many applications, we want to search dynamic collections of

data. New bookings are entered into reservation systems, reservations are changed or

canceled, and bookings turn into actual flights. We have already seen one solution

to the problem, namely hashing. However, it is often desirable to keep a dynamic

collection sorted. The “manual data structure” used for this purpose is a filing-

card box. We can insert new cards at any position, we can remove cards, we can go

through the cards in sorted order, and we can use some kind of binary search to find

a particular card. Large libraries used to have filing-card boxes with hundreds of

thousands of cards.1

Formally, we wish to maintain a set S of elements e, which are equipped with keys
key(e) from a linearly ordered set Key. As before we write e≤ e′ if key(e)≤ key(e′).
This induces a linear preorder on S. Not only should searches be possible, but inser-
tions and deletions as well. This leads to the following basic operations of a sorted

sequence:

• S.locate(k : Key): return min{e ∈ S : key(e)≥ k}
(i.e., return an element e with key(e)≥ k as small as possible).

• S.remove(k : Key): S :=S \ {e ∈ S : key(e) = k}
• S.insert(e : Element): S :=(S \ {e′ ∈ S : key(e′) = key(e)})∪{e}

The operation locate(k) locates key k in S, i.e., it finds an element with key k

if it exists, and finds an element of S with a minimum key larger than S otherwise.
If k is larger than all keys that appear in S, no element is returned. The operation
insert(e) inserts an element e with a new key or replaces an element e′ in S that has
the same key as e. Note that this way of specifying insert implies that all elements in
S have pairwise different keys. We shall reconsider this issue in Exercise 7.10. The
operation delete(k) removes the element with key k, if S has such an element. We
shall show that these operations can be implemented to run in time O(logn), where

1 The above photograph is from the library catalog of the University of Graz (Dr. M. Gossler).
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Fig. 7.1. A sorted sequence as a doubly linked list plus a navigation data structure.

n denotes the size of the sequence. How do sorted sequences compare with the data
structures discussed in earlier chapters? They are more flexible than sorted arrays,
because they efficiently support insert and remove. They are slower but also more
powerful than hash tables, since locate(k) also works when there is no element with
key k in S. Priority queues are a special case of sorted sequences; they can only locate
and remove the smallest element.

Our basic realization of a sorted sequence consists of a sorted doubly linked list
with an additional navigation data structure supporting locate. Figure 7.1 illustrates
this approach. Recall that a doubly linked list for n elements consists of n+ 1 items,
one for each element and one additional “dummy item”. We use the dummy item
to store a special key value ∞, which is larger than all keys that might possibly ap-
pear in an element of S. We can then define the result of locate(k) as the handle
to the smallest list item e ≥ k. If k is larger than all keys in S, locate(k) will re-
turn a handle to the dummy item. In Sect. 3.2.1, we saw that doubly linked lists
support a large set of operations; most of them can also be implemented efficiently
for sorted sequences. For example, we “inherit” constant-time implementations for
first, last, succ, and pred. We shall see constant-amortized-time implementations for
remove(h : Handle) (note that here the object to be removed is given as a handle to
a list item), insertBefore, and insertAfter, and logarithmic-time algorithms for con-
catenating and splitting sorted sequences. The indexing operator [ · ] and finding the
position of an element in the sequence also take logarithmic time. Before we delve
into a description of the navigation data structure, let us look at some concrete appli-
cations of sorted sequences.

Best-first heuristics. Assume that we want to pack some items into a set of bins.
The items arrive one at a time and have to be put into a bin immediately. Each item
i has a weight w(i), and all bins have the same maximum capacity. The goal is to
minimize the number of bins used. One successful heuristic solution to this problem
is to put item i into the bin that fits best, i.e., the bin whose remaining capacity is
the smallest among all bins that have a residual capacity at least as large as w(i)
[73]. To implement this algorithm, we can keep the bins in a sequence S sorted by
their residual capacity. To place an item i, we call S.locate(w(i)), remove the bin that
we have found, reduce its residual capacity by w(i), and reinsert it into S. See also
Exercise 12.9. Note that for this application we must allow distinct elements (bins)
with identical keys, see Exercise 7.10.
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Sweep-line algorithms. Assume that you have a set of horizontal and vertical line
segments in the plane and want to find all points where two segments intersect.
A sweep-line algorithm moves a vertical line over the plane from left to right and
maintains, in a sorted sequence S, the set of horizontal line segments that intersect
the sweep line. When the left endpoint of a horizontal segment is reached, it is in-
serted into S, with its y-coordinate as key, and when its right endpoint is reached, it is
removed from S. (In the case where there are overlapping horizontal segments with
identical y-coordinates, the sorted sequence must admit different elements with iden-
tical keys.) When a vertical line segment s is reached at a position x, we determine
its vertical range [y,y′], call S.locate(y), and, starting from the position thus found,
scan S to the right until we reach an element with key y′ or larger.2 Exactly those hor-
izontal line segments that are discovered during the scan have an intersection with s.
The sweep-line algorithm can be generalized to arbitrary line segments [42], curved
objects, and many other geometric problems [85].

Database indexes. A key problem in databases is to make large collections of data
efficiently searchable. So-called B-trees, which are a variant of the (a,b)-tree data
structure to be described in detail in Sect. 7.2, belong to the most important data
structures used for databases.

The most popular navigation data structures belong to the class of search trees.
Generally speaking, a search tree is a rooted ordered tree whose leaves correspond to
the items in the doubly linked list. Internal nodes do not hold elements, but contain
only keys to support navigation, and possibly other auxiliary information.3 We shall
frequently use the name of the navigation data structure to refer to the entire sorted-
sequence data structure. Search tree algorithms will be introduced in three steps.
As a warm-up, in Sect. 7.1 we consider (unbalanced) binary search trees, in which
inner nodes have two children. They support locate in O(logn) time under certain
favorable circumstances. Since binary search trees that guarantee this time bound
are somewhat difficult to maintain under insertions and removals, we then switch to
a generalization, namely (a,b)-trees, which allow search tree nodes of larger degree
than 2. Section 7.2 explains how (a,b)-trees can be used to implement all three basic
operations in logarithmic worst-case time. In Sects. 7.3 and 7.5, we augment search
trees with additional mechanisms that support further operations. Section 7.4 takes a
closer look at the (amortized) cost of update operations. Parallelizing search trees is
briefly discussed in Sect. 7.6. As with priority queues, we shall concentrate on bulk
operations that access many elements at once.

7.1 Binary Search Trees

Navigating a search tree is a bit like asking your way around in a foreign city. You
ask a question, follow the advice given, ask again, follow the advice again, and so
on, until you reach your destination.

2 This range query operation is also discussed in Sect. 7.3.
3 There are also variants of search trees where the elements are stored in all nodes of the tree.
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Fig. 7.2. Left: the sequence 〈2,3,5,7,11,13,17,19〉 represented by a binary search tree. In
each node, we show the splitter key at the top and the pointers to the children at the bot-
tom. Right: rotation in a binary search tree. The triangles indicate subtrees. Observe that the
ancestor relationship between nodes u and v is interchanged.

A binary search tree is an ordered tree whose leaves store the elements of a sorted
sequence in sorted order from left to right. In order to locate a key k, we would like
to start at the root of the tree and follow the unique path to the appropriate leaf. How
do we identify the correct path? To this end, the interior nodes of a search tree store
keys (not elements!) that guide the search; we call these keys splitter keys or splitters.
Every nonleaf node in a binary search tree with n≥ 2 leaves has exactly two children,
a left child and a right child. The splitter key s associated with a nonleaf node v has
the property that all elements stored in the left subtree of v have a key less than or
equal to s, while all elements stored in the right subtree of v have a key larger than s.

Assume now that we are given a binary search tree T and a search key k. It is
not hard to find the path to the correct leaf, i.e., the leaf with the entry e′ that has
the smallest key k′ ≥ k. Start at the root, and repeat the following step until a leaf is
reached: If k≤ s for the splitter key in the current node, go to the left child, otherwise
go to the right child. If the data structure contains an element e with key k, it is quite
easy to see that the process reaches the leaf that contains e. However, we also have
to cover the case where no element with key k exists, and k′ = key(e′) > k. An easy
case analysis shows that in this case the search procedure has the following invariant:
Either the subtree rooted at the current node contains e′ or this subtree contains the
immediate predecessor of e′, in its rightmost leaf. The search ends in a leaf with an
element e′′ and a key k′′ = key(e′′), which is then compared with k. Because of the
invariant, there are only two possibilities: If k≤ k′′, then e′′ is the desired element e′;
if k > k′′, then e′ is the immediate successor of e′′ in the doubly linked list. Figure 7.2
(left) shows an example of a binary search tree. You may want to test the behavior
of the search procedure with keys such as 1, 9, 13, and 25. Recall that the height
of a tree is the length of its longest root–leaf path. The height therefore tells us the
maximum number of search steps needed to locate a search key k.

Exercise 7.1. Prove that, for every sorted sequence with n ≥ 1 elements, there is a
binary search tree with n+ 1 leaves and height ⌈log(n+ 1)⌉.
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Fig. 7.3. Naive insertion into a binary search tree. A triangle indicates an entire subtree.
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Fig. 7.4. Naively inserting elements in sorted order leads to a degenerate tree.

A binary search tree with n+1 leaves and height ⌈log(n+ 1)⌉ is called perfectly bal-

anced. The resulting logarithmic search time is a dramatic improvement compared
with the Ω(n) time needed for scanning a list. The bad news is that it is expensive
to keep perfect balance when elements are inserted and removed. To understand this
better, let us consider the “naive” insertion routine depicted in Fig. 7.3. We locate
the key k of the new element e before its successor e′, insert e into the list, and then
introduce a new node v with left child e, right child e′, and splitter key k. The old
parent u of e′ now points to v. In the worst case, every insertion operation will locate
a leaf at the maximum depth so that the height of the tree increases with each inser-
tion. Figure 7.4 gives an example: The tree may degenerate into a list, and we are
back to scanning.

An easy solution to this problem is a healthy portion of optimism; perhaps it will
not come to the worst. Indeed, if we insert n elements in random order, the expected
height of the search tree is ≈ 2.99logn [91]. We shall not prove this here, but will
outline a connection to quicksort to make the result plausible. As an example, con-
sider the tree in Fig. 7.2 (left), with the splitters 10 and 15 replaced by 7 and 13,
respectively. This tree can be built by naive insertion. We first insert 17; this splits
the set into subsets {2,3,5,7,11,13} and {19}. From the elements in the left subset,
we first insert 7; this splits the left subset into {2,3,5} and {11,13}. In quicksort
terminology, we would say that 17 is chosen as the splitter in the top-level call and
that 7 is chosen as the splitter in the next recursive call for the left subarray. So build-
ing a binary search tree and quicksort are completely analogous processes; the same
comparisons are made, but at different times. Every element of the set is compared
with 17. In quicksort, these comparisons take place when the set is split in the top-
level call. In building a binary search tree, these comparisons take place when the
elements of the set are inserted. So the comparison between 17 and 11 takes place in
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the top-level call of quicksort and when 11 is inserted into the tree, respectively. We
have seen (Theorem 5.6) that the expected number of comparisons in a randomized
quicksort of n elements is O(n logn). By the above correspondence, the expected
number of comparisons in building a binary tree by inserting n elements in random
order is also O(n logn). Thus an insertion requires O(logn) comparisons on aver-
age. Even more is true. With high probability, each single insertion requires O(logn)
comparisons, and the expected height is ≈ 2.99logn.

Can we guarantee that the height stays logarithmic in the worst case? The answer
is yes, and there are many different ways to achieve logarithmic height. We shall
survey these techniques in Sect. 7.8, and discuss two solutions in detail in Sect. 7.2.
We shall first discuss a solution which allows nodes of varying degree, and then show
how to balance binary trees using rotations.

Exercise 7.2. Figure 7.2 (right) indicates how the shape of a binary tree can be
changed by transformations called (left and right) rotations. Apply rotations to sub-
trees of the tree in Fig. 7.2 so that the node labeled 11 becomes the root of the tree.

Exercise 7.3. Explain how to implement an implicit binary search tree, i.e., the tree is
stored in an array using the same mapping of the tree structure to array positions as in
the binary heaps discussed in Sect. 6.1. What are the advantages and disadvantages
compared with a pointer-based implementation? Compare searching in an implicit
binary tree with binary search in a sorted array.

7.2 (a,b)-Trees and Red–Black Trees

An (a,b)-tree is a search tree where all interior nodes, except for the root, have an
outdegree between a and b. Here, a and b are constants. The root has degree 1 for
a trivial tree with a single leaf. Otherwise, the root has a degree between 2 and b.
For a ≥ 2 and b ≥ 2a− 1, the flexibility in node degrees allows us to efficiently
maintain the invariant that all leaves have the same depth, as we shall see in a short
while. Consider a node with outdegree d. With such a node we associate an array
c[1..d] of pointers to children and a sorted array s[1..d−1] of d−1 splitter keys. The
splitters guide the search. To simplify the notation, we additionally define s[0] =−∞

1332 7 11 175 19

2 3 7

176

12 13 19

∞

r

ℓ

h
ei

g
h
t
=

2

Fig. 7.5. Representation of 〈2,3,5,7,11,13,17,19〉 by a (2,4)-tree. The tree has height 2.
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and s[d] = ∞. The keys of the elements e contained in the subtree rooted at the ith
child c[i], 1 ≤ i ≤ d, lie between the (i− 1)th splitter (exclusive) and the ith splitter
(inclusive), i.e., we have s[i−1]< key(e)≤ s[i]. Figure 7.5 shows a (2,4)-tree storing
the sequence 〈2,3,5,7,11,13,17,19〉.

Lemma 7.1. An (a,b)-tree for n elements has height at most 1+ ⌊loga(n+ 1)/2⌋,
provided n≥ 1.

Proof. The tree has n+ 1 leaves, where the “+1” accounts for the dummy leaf with
key ∞. If n = 0, the root has degree 1 and there is a single leaf. So, assume n ≥ 1.
Let h be the height of the tree. Since the root has degree at least 2 and all other nodes
have degree at least a, the number of leaves is at least 2ah−1. So n+ 1 ≥ 2ah−1, or
h≤ 1+ loga(n+ 1)/2. Since the height is an integer, the bound follows. ⊓⊔

Exercise 7.4. Prove that the height of an (a,b)-tree for n elements is at least
⌈logb(n+ 1)⌉. Prove that this bound and the bound given in Lemma 7.1 are tight.

Searching in an (a,b)-tree is only slightly more complicated than searching in
a binary tree. Let k be the search key and let k′ be the smallest key in the doubly
linked list that is at least as large as k. Instead of performing a single comparison at a
nonleaf node, we have to find the correct child from among up to b choices, i.e., the
child c[i] with the property that s[i− 1]< k ≤ s[i]. Using binary search on the sorted
sequence of the splitters, we need at most ⌈logb⌉ comparisons for each node on the
search path. Correctness of the search procedure is proven using the same invariant
as in the case of binary search: If key k is present in the tree, the search ends at the
leaf with key k; otherwise, the subtree rooted at the current node either contains the
element with key k′ or contains the immediate predecessor of this element, in its
rightmost leaf. Figure 7.6 gives pseudocode for initializing (a,b)-trees and for the
locate operation. Recall that we use the search tree as a way to locate items of a
doubly linked list and that the dummy list item is considered to have key value ∞.
This dummy item is the rightmost leaf in the search tree. Hence, there is no need to
treat the special case of root degree 0, and the handle of the dummy item can serve
as a return value when one is locating a key larger than all values in the sequence.

Exercise 7.5. Prove that the total number of comparisons in a search is bounded
by ⌈logb⌉(1+ loga((n+ 1)/2)). Assuming in addition that b ≤ 2a, show that this
number is O(logb)+O(logn). What is the constant in front of the logn term?

To insert an element e with key k = key(e), we first descend the tree recursively
to locate k. This leads to a sequence element e′ with key k′. Either k′ is the smallest
key ≥ k in the sequence or k′ is the largest key strictly smaller than k. The latter
situation can arise only if k is not present in the sequence. If k = key(e′), we simply
replace e′ by e in the list item. Note that this choice ensures that each key occurs
at most once in the sorted sequence. If k < k′, we have to insert a new list item for
e immediately before the item for e′. This case applies in particular if k′ = ∞. We
can avoid treating the case k > k′ separately, as follows: If this happens, we create
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Class ABHandle : Pointer to ABItem or Item

// an ABItem (Item) is an item in the navigation data structure (doubly linked list)

Class ABItem(splitters : Sequence of Key, children : Sequence of ABHandle)
d = |children| : 1..b // Degree
s = splitters : Array [1..b−1] of Key

c = children : Array [1..b] of ABHandle

Function locateLocally(k : Key) : N

return min{i ∈ 1..d : k ≤ s[i]}
Function locateRec(k : Key, h : N) : ABHandle

i := locateLocally(k)
if h = 1 then

if c[i]→e≥ k then return c[i]
else return c[i]→next

else return c[i]→locateRec(k,h−1) //

13

117

1 2 43

12

13

i

k = 12

h = 1 h > 1

Class ABTree(a≥ 2 : N, b≥ 2a−1 : N) of Element

ℓ= 〈〉 : List of Element

r : ABItem(〈〉,〈ℓ.head〉)
height = 1 : N //

r

ℓ
∞

// Locate the item with the smallest key k′ ≥ k

Function locate(k : Key) : ABHandle return r.locateRec(k,height)

Fig. 7.6. (a,b)-trees. An ABItem is constructed from a sequence of keys and a sequence of
handles to the children. The outdegree d is the number of children. We allocate space for the
maximum possible outdegree b. There are two functions local to ABItem: locateLocally(k)
locates key k among the splitters and locateRec(k,h) assumes that the ABItem has height h

and descends h levels down the tree. The constructor for ABTree creates a tree for the empty
sequence. The tree has a single leaf, the dummy element, and the root has degree 1. Locating
a key k in an (a,b)-tree is solved by calling r.locateRec(k,h), where r is the root and h is the
height of the tree.

a new item for e, swap it with the e′-item in the linked list, and redirect the pointer
to the e′-item in the navigation data structure to the e-item. Then the e′-item can be
inserted immediately before the e-item, just as in the first case. Since we found e′

when localizing k, and the splitter keys in the tree have not changed, we know that
localizing k′ in the changed structure would lead to the e-item. Now we focus on the
case where the new e-item has to be inserted before the e′-item. If e′ was the ith child
c[i] of its parent node v, then e becomes the new child c[i] and k = key(e) becomes the
corresponding splitter s[i]. The old children c[i..d] and their corresponding splitters
s[i..d− 1] are shifted one position to the right. If the degree d of v was smaller than
b before, d can be incremented by 1, and we are finished.

The difficult part is when a node v already has a degree d = b and now would get a
degree b+ 1. Let s′[1..b] denote the array of splitters of this illegal node, c′[1..b+ 1]
its child array, and u the parent of v (if it exists). The solution is to split v in the
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middle (see Fig. 7.7). More precisely, we create a new node t to the left of v and
reduce the degree of v to d = ⌈(b+ 1)/2⌉ by moving the b+ 1− d leftmost child
pointers c′[1..b+ 1− d] and the corresponding keys s′[1..b− d] to this new node.
The old node v keeps the d rightmost child pointers c′[b+ 2− d..b+ 1] and the
corresponding splitters s′[b+ 2− d..b], but moved to the left by b+ 1− d positions.

c1c1 c2c2 c3c3 c4c4 c5c5

u u

vv t

k

k

Fig. 7.7. Node splitting: The node v of degree b+ 1 (here 5) is split into a node of degree
⌊(b+1)/2⌋ and a node of degree ⌈(b+1)/2⌉. The degree of the parent increases by 1. The
splitter key separating the two “parts” of v is moved to the parent.

The “leftover” middle key k = s′[b+1−d] is an upper bound for the keys reach-
able from t. This key and the pointer to t are needed in the predecessor u of v. The
situation for u is analogous to the situation for v before the insertion: If v was the ith
child of u, t displaces it to the right; children i+ 1, . . . ,d are pushed one position to
the right as well. Now t becomes the ith child, and k is inserted as the ith splitter. The
addition of t as an additional child of u increases the degree of u. If the degree of u

becomes b+ 1, we split u. The process continues until either some ancestor of v has
room to accommodate the new child or the root is split.

In the latter case, we allocate a new root node pointing to the two fragments of
the old root. This is the only situation where the height of the tree can increase. In this
case, the depth of all leaves increases by 1, i.e., the invariant that all leaves have the
same depth is maintained. Since the height of the tree is O(logn) (see Lemma 7.1),
we obtain a worst-case execution time of O(logn) for insert. Pseudocode is shown
in Fig. 7.8.4

We still need to argue that insert leaves us with a correct (a,b)-tree. When we
split a node of degree b+1, we create nodes of degree d = ⌈(b+ 1)/2⌉ and b+1−d.
Both degrees are clearly at most b. Also, b+ 1− ⌈(b+ 1)/2⌉ ≥ a if b ≥ 2a− 1.
Convince yourself that b = 2a− 2 will not work.

Exercise 7.6. It is tempting to streamline insert by calling locate to replace the initial
descent of the tree. Why does this not work? Would it work if every node had a
pointer to its parent?

4 We have borrowed the notation C::m from C++ to define a method m for class C.
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// Example:
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// 〈2,3,5〉.insert(12)
Procedure ABTree::insert(e : Element)

(k, t) := r.insertRec(e,height, ℓ)
if t 6= null then // root was split

r :=allocate ABItem(〈k〉,〈t,r〉)
height++

// Insert an element into a subtree of height h.
// If this splits the root of the subtree,
// return the new splitter and subtree handle
Function ABItem::insertRec(e : Element, h : N, ℓ : List of Element) : Key×ABHandle

i := locateLocally(e)
if h = 1 then // base case

if key(c[i]→e) = key(e) then // same key already present
c[i]→e :=e // overwrite with new element
return (⊥,null )

else

if key(c[i]→e)> key(e) then

(k, t) :=(key(e), ℓ.insertBefore(e,c[i])) //

32

1252 3

5 ∞

∞

t c[i]

c[i]

else // key(c[i]→e)< key(e)
(k, t) :=(key(c[i]→e), ℓ.insertAfter(e,c[i]))
swap(c[i], t)

endif

else

(k, t) := c[i]→insertRec(e,h−1, ℓ)
if t = null then return (⊥,null )

endif

s′ := 〈s[1], . . . ,s[i−1],k,s[i], . . . ,s[d−1]〉
c′ := 〈c[1], . . . ,c[i−1], t,c[i], . . . ,c[d]〉 //

2 3

53

5

2 12 ∞

t

s′
c′

k = 12

if d < b then // there is still room here
(s,c,d) :=(s′,c′,d+1)
return (⊥,null )

else // split this node
d :=⌊(b+1)/2⌋
s := s′[b+2−d..b]
c := c′[b+2−d..b+1] //

532

2 125

12

return(3,  )

∞

s
c

return (s′[b+1−d],allocate ABItem(s′[1..b−d],c′[1..b+1−d]))

Fig. 7.8. Insertion into an (a,b)-tree
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// Example: 〈2,3,5〉.remove(5)
Procedure ABTree::remove(k : Key) // 5

52 3

2

3

...

∞

r

k
r.removeRec(k,height, ℓ)
if r.d = 1∧height > 1 then

r′ := r; r := r′.c[1];
dispose r′; height-- //

2 3

2 3

∞

r

Procedure ABItem::removeRec(k : Key,h : N, ℓ : List of Element)
i := locateLocally(k)
if h = 1 then // base case, bottom of tree

if key(c[i]→e) = k then // there is sth. to remove
ℓ.remove(c[i])
removeLocally(i) //

2

3

2 3 ∞

r

s
c

i

else

c[i]→removeRec(e,h−1, ℓ)
if c[i]→d < a then // invariant needs repair

if i = d then i-- // make sure i and i+1 are valid children
s′ :=concatenate(c[i]→s,〈s[i]〉,c[i+1]→s)
c′ :=concatenate(c[i]→c,c[i+1]→c)
d′ := |c′|
if d′ ≤ b then // fuse

(c[i+1]→s,c[i+1]→c,c[i+1]→d) :=(s′,c′,d′)
dispose c[i]; removeLocally(i) //

2 3

2 3

∞

r
s
c

s′
c′

i

else // balance

m := ⌈d′/2⌉
(c[i]→s,c[i]→c,c[i]→d) :=(s′[1..m−1],c′[1..m],m)
(c[i+1]→s, c[i+1]→c, c[i+1]→d) :=

(s′[m+1..d′−1], c′[m+1..d′], d′−m)
s[i] := s′[m]

// Remove the ith child from an ABItem
Procedure ABItem::removeLocally(i : N)

c[i..d−1] := c[i+1..d]
s[i..d−2] := s[i+1..d−1] //

i i
k1k1 k2 k3k3

T1 T1T2 T3 T3T4 T4

c
s

d--

Fig. 7.9. Removal from an (a,b)-tree

We now turn to the operation remove. The approach is similar to what we already
know from our study of insert. We locate the element to be removed, remove it
from the sorted list, and repair possible violations of invariants on the way back up.
Figure 7.9 shows pseudocode. When a parent u notices that the degree of its child
c[i] has dropped to a− 1, it combines this child with one of its neighbors c[i− 1]
or c[i+ 1] to repair the invariant. There are two cases, illustrated in Fig. 7.10. If the
neighbor has degree larger than a, we can balance the degrees by transferring one
child or several children from that neighbor to c[i]. If the neighbor has degree a,
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balancing cannot help, since both nodes together have only 2a− 1 children, so that
we cannot give a children to both of them. However, in this case we can fuse them
into a single node, since the requirement b≥ 2a− 1 ensures that the fused node has
degree b at most.

To fuse a node c[i] with its right neighbor c[i+ 1], we concatenate their child
arrays. To obtain the new splitter array, we place the splitter s[i] of the parent between
the splitter arrays of c[i] and c[i+ 1]. The new arrays are stored in c[i+ 1], node c[i]
is deallocated, and the pointer to c[i], together with the splitter s[i], is removed from
the parent node.

Exercise 7.7. Suppose a node v has been produced by fusing two nodes as de-
scribed above. Prove that the ordering invariant is maintained: An element e reach-
able through child v.c[i] has key v.s[i− 1]< key(e)≤ v.s[i] for 1≤ i≤ v.d.

Balancing two neighbors is equivalent to first fusing them and then splitting the re-
sult, as in the operation insert. Since fusing two nodes decreases the degree of their
parent, the need to fuse or balance might propagate up the tree. If the degree of the
root drops to 1, we do one of two things. If the tree has height 1 and hence the linked
list contains only a single item (the dummy node), there is nothing to do and we are
finished. Otherwise, we deallocate the root and replace it by its sole child. The height
of the tree decreases by 1.

The execution time of remove is proportional to the height of the tree and hence
logarithmic in the size of the sorted sequence. We summarize the performance of
(a,b)-trees in the following theorem.

Theorem 7.2. For any integers a and b with a ≥ 2 and b ≥ 2a− 1, (a,b)-trees sup-

port the operations insert, remove, and locate on sorted sequences of size n in time

O(logn).

Exercise 7.8. Give a more detailed implementation of locateLocally based on binary
search that needs at most ⌈logb⌉ comparisons. Your code should avoid both explicit
use of infinite key values and special-case treatments for extreme cases.

c1 c1c1 c1 c2 c2c2 c2 c3 c3c3 c3c4 c4

vv v

k1

k1k2

k2 k

k

Fig. 7.10. Node balancing and fusing in (2,4)-trees: Node v has degree a−1 (here 1). In the
situation on the left, it has a sibling of degree a+ 1 or more (here 3), and we balance the
degrees. In the situation on the right, the sibling has degree a, and we fuse v and its sibling.
Observe how keys are moved. When two nodes are fused, the degree of the parent decreases.
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or

Fig. 7.11. The correspondence between (2,4)-trees and red–black trees. Nodes of degree 2, 3,
and 4 as shown on the left correspond to the configurations on the right. Red edges are shown
in bold.

Exercise 7.9. Suppose a = 2k and b = 2a. Show that (1+ 1/k) logn+ 1 element
comparisons suffice to execute a locate operation in an (a,b)-tree. Hint: It is not

quite sufficient to combine Exercise 7.4 with Exercise 7.8, since this would give you
an additional term +k.

Exercise 7.10. Extend (a,b)-trees so that they can handle multiple occurrences of
the same key. Elements with identical keys should be treated last-in first-out, i.e.,
remove(k) should remove the least recently inserted element with key k.

*Exercise 7.11 (red–black trees). A red–black tree is a binary search tree where
the edges are colored either red or black. The black-depth of a node v is the number
of black edges on the path from the root to v. The following invariants have to hold:

(a) All leaves have the same black-depth.
(b) Edges into leaves are black.
(c) No path from the root to a leaf contains two consecutive red edges.

Show that red–black trees and (2,4)-trees are isomorphic in the following sense:
(2,4)-trees can be mapped to red–black trees by replacing nodes of degree three
or four by two or three nodes, respectively, connected by red edges as shown in
Fig. 7.11. Red–black trees can be mapped to (2,4)-trees using the inverse transfor-
mation, i.e., components induced by red edges are replaced by a single node. Now
explain how to implement (2,4)-trees using a representation as a red–black tree.5

Explain how the operations of adding a child to a node, removing a child from a
node, splitting, fusing, and balancing nodes in the (2,4)-tree can be translated into
recoloring and rotation operations (see Fig. 7.2) in the red–black tree. Colors are
stored at the target nodes of the corresponding edges.

7.3 More Operations

Search trees support many operations in addition to insert, remove, and locate. We
shall study them in two batches. In this section, we shall discuss operations directly
supported by (a,b)-trees, and in Sect. 7.5 we shall discuss operations that require
augmentation of the data structure:

5 This may be more space-efficient than a direct representation if the keys are large.
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• min/max. The constant-time operations first and last on a sorted list give us the
smallest and the largest element in the sequence in constant time. For example,
in Fig. 7.5, the dummy element of list ℓ gives us access to the smallest element,
2, and to the largest element, 19, via its next and prev pointers, respectively. In
particular, search trees implement double-ended priority queues, i.e., sets that
allow finding and removing both the smallest and the largest element; finding
takes constant time and removing takes logarithmic time.

• Range queries. To retrieve all elements with keys in the range [x,y], we first locate
x and then traverse the sorted list until we see an element with a key larger than
y. This takes time O(logn+ output size). For example, the range query [4,14]
applied to the search tree in Fig. 7.5 will find the 5, it subsequently outputs 7, 11,
13, and it stops when it sees the 17.

• Build/rebuild. Exercise 7.12 asks you to give an algorithm that converts a sorted
list or array into an (a,b)-tree in linear time. Even if we first have to sort the
elements, this operation is much faster than inserting the elements one by one.
We also obtain a more compact data structure this way.

Exercise 7.12. Explain how to construct an (a,b)-tree from a sorted list in linear
time. Which (2,4)-tree does your routine construct for the sequence 〈1, . . . ,17〉?
Next, remove the elements 4, 9, and 16.

7.3.1 *Concatenation

Two sorted sequences can be concatenated if the largest element of the first se-
quence is smaller than the smallest element of the second sequence. If sequences
are represented as (a,b)-trees, two sequences S1 and S2 can be concatenated in time
O(log(max{|S1|, |S2|})). First, using the pointers to their dummy items, we find the
beginning and end of both lists and make a note of the largest key in S1. We re-
move the dummy item from S1 and concatenate the underlying lists. Next, we fuse
the root of one tree with an appropriate node of the other tree in such a way that the
resulting tree remains sorted and balanced. More precisely, if S1.height≥ S2.height,
we descend S1.height− S2.height levels from the root of S1 by following pointers
to the rightmost children. The node v thus reached is then fused with the root of
S2. The new splitter key required is the largest key in S1. If the degree of v now
exceeds b, node v is split. From that point on, the concatenation proceeds like an
insert operation, propagating splits up the tree until the invariant is fulfilled or a new
root node is created. The case S1.height < S2.height is a mirror image. We descend
S2.height−S1.height levels from the root of S2 by following pointers to the leftmost
children, fuse nodes, and propagate splits upwards, if necessary. Figure 7.12 gives an
example of this case. The operation runs in time O(log(max{|S1|, |S2|})), even if the
heights of the trees have to be calculated. If the heights of the trees are known, time
O(1+ |S1.height− S2.height|) is sufficient.
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Fig. 7.12. Concatenating (2,4)-trees for 〈2,3,5,7〉 and 〈11,13,17,19〉.

7.3.2 *Splitting

We now show how to split a sorted sequence at a given element in logarithmic time.
Consider a sequence S = 〈w, . . . ,x,y, . . . ,z〉. Splitting S at y results in the sequences
S1 = 〈w, . . . ,x〉 and S2 = 〈y, . . . ,z〉. We implement splitting as follows. Consider the
path p from the root to leaf y. We split each node v on p into two nodes, vℓ and vr.
Node vℓ gets the children of v that are to the left of p, and vr gets the children that are
to the right of p. Some of these nodes may get only one child or no children. Such
a node with at least one child can be viewed as the root of an (a,b)-tree (slightly
generalized by waiving the degree bound of 2 for the root). Note that we can record
the heights of all these trees at practically no extra cost. The doubly linked list is split
between the x-node and the y-node; the first part gets a new dummy item. Succes-
sively concatenating the left trees and the new dummy element yields an (a,b)-tree
for the sorted list S1 = 〈w, . . . ,x〉. Concatenating 〈y〉 and the right trees produces the
(a,b)-tree for S2 = 〈y, . . . ,z〉. The concatenation is simpler than in the general case,
as we do not have to worry about the linked lists. These O(logn) concatenations can
even be carried out in total time O(logn), by exploiting the fact that the heights of
the left trees are strictly decreasing and the heights of the right trees are strictly in-
creasing. Let us look at the trees to the left of p in more detail. Let r1,r2, . . . ,rk be
the roots of these trees and let h1,h2, . . . ,hk be their heights. Then h1 > h2 > · · ·> hk.
Recall that these heights are known. We first concatenate the tree with root rk with
the new dummy element, which in time O(1+ hk) yields a new tree with height at
most hk +O(1). This tree is concatenated with the tree with root rk−1, which in time
O(1+ hk−1− hk) leads to a new tree with height at most hk−1+O(1). This is iterated:
In the round for j = k−2, . . . ,1 the tree with root r j is concatenated with the tree re-
sulting from the previous rounds; the time needed is O

(
1+ h j− h j+1

)
; the new tree

has height at most h j +O(1) (see Exercise 7.13). After k rounds, only one tree is left.
The total time needed is O

(
1+ hk+∑1≤i<k(1+ hi− hi+1)

)
= O(k+ h1) = O(logn).

The trees on the right side are treated analogously, starting with the smallest tree and
the single element y. Figure 7.13 gives an example.

Exercise 7.13. We glossed over one issue in the argument above. How can we bound
the height of the tree resulting from concatenating the trees with roots rk to ri? Show
(by induction) that the height is not larger than hi + 1.
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Exercise 7.14. Explain how to remove a subsequence 〈e ∈ S : α ≤ e≤ β 〉 from an
(a,b)-tree S in time O(logn).

19171175232 13 19

13

3

1917

13

3 7523 752 171311 19 11∞ ∞∞ ∞

Fig. 7.13. Splitting the (2,4)-tree for 〈2,3,5,7,11,13,17,19〉 shown in Fig. 7.5 at element 11
produces the four (shaded) subtrees shown on the left and a single list node (with key 11). The
list is split, which creates a new dummy item. Successively concatenating the trees indicated
by the shaded areas leads to the (2,4)-trees shown on the right.

7.4 Amortized Analysis of Update Operations

Inserting or deleting an element in an (a,b)-tree costs Θ(logn) time. Let us take a
closer look at the best and the worst case. In the best case, we have to locate the
affected element and to update the linked list and the bottommost internal node on
the search path. In the worst case, split or fuse operations may propagate all the way
up the tree. Since allocating (or deallocating) nodes is usually much slower than just
reading them, these transformation steps make a significant difference in the running
time.

Exercise 7.15. Exhibit a sequence of n operations on (2,3)-trees that requires
Ω(n logn) split and fuse operations.

In this section we study the cost of update operations in terms of the number of split

and fuse operations. We show that, with repect to this cost measure, the amortized

complexity is essentially equal to that of the best case if b is not at its minimum
possible value but is at least 2a. In Sect. 7.5.1, we shall see variants of insert and
remove that, in the light of the analysis below, turn out to have constant amortized
complexity even in the standard sense.

Theorem 7.3. Consider a sorted sequence S organized as an (a,b)-tree with b ≥
2a. Assume that S is initially empty. Then, for any sequence of n insert or remove

operations, the total number of split or fuse operations is O(n).

Proof. We give the proof for (2,4)-trees and leave the generalization to the reader
(Exercise 7.16). We use the bank account method introduced in Sect. 3.5. The in-
ternal operations split and fuse are paid for by tokens; they cost one token each. We
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charge two tokens for each insert and one token for each remove, and claim that this
suffices to pay for all split and fuse operations. Note that there is at most one balance

operation for each remove, so we can account for the cost of balance directly without
amortized analysis. In order to do the accounting, we associate the tokens with the
nodes of the tree and show that the nodes can hold tokens according to the following
table (the token invariant):

degree 1 2 3 4 5
tokens ◦◦ ◦ ◦◦ ◦◦◦◦

Note that we have included the cases of degree 1 and 5 which, (apart from the special
case of a root of an empty sequence) occur temporarily during rebalancing. The
purpose of splitting and fusing is to remove these exceptional degrees.

Creating an empty sequence makes a list with one dummy item and a root of
degree 1. We charge two tokens for the create and put them on the root. Let us
look next at insertions and removals. These operations add or remove a leaf and
hence increase or decrease the degree of a node immediately above the leaf level.
Increasing the degree of a node requires up to two additional tokens on the node (if
the degree increases from 3 to 4 or from 4 to 5), and this is exactly what we charge for
an insertion. If the degree grows from 2 to 3, we do not need additional tokens and
we are overcharging for the insertion; there is no harm in this. Similarly, reducing the
degree by 1 may require one additional token on the node (if the degree decreases
from 3 to 2 or from 2 to 1). So, immediately after adding or removing a leaf, the
token invariant is satisfied.

+ +

+ +

bottommost node

charge

insert

remove

balance:

split:

fuse:

or

forfor

for for

= leftover token

parent

parent

operation

split

fuse

Fig. 7.14. The effect of (a,b)-tree operations on the token invariant. The upper part of the
figure illustrates the addition or removal of a leaf. The two tokens charged for an insert are
used as follows. When the leaf is added to a node of degree 3 or 4, the two tokens are put on
the node. When the leaf is added to a node of degree 2, the two tokens are not needed, and
the token on the node is also freed. The lower part illustrates the use of the tokens in balance,
split, and fuse operations.
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We need next to consider what happens during rebalancing. Figure 7.14 summa-
rizes the following discussion graphically.

A split operation is performed on nodes of (temporary) degree 5 and results in a
node of degree 3 and a node of degree 2. It also increases the degree of the parent
by 1. The four tokens stored on the degree-5 node are spent as follows: One token
pays for the split, one token is put on the new node of degree 2, and two tokens are
used for the parent node. Again, we may not need the additional tokens for the parent
node; in this case, we discard them.

A balance operation takes a node of degree 1 and a node of degree 3 or 4 and
moves one child from the high-degree node to the node of degree 1. If the high-
degree node has degree 3, two tokens are available and two tokens are needed; if the
high-degree node has degree 4, four tokens are available and one token is needed. In
either case, the available tokens are sufficient to maintain the token invariant.

A fuse operation fuses a degree-1 node with a degree-2 node into a degree-3 node
and decreases the degree of the parent. Three tokens are available. We use one to pay
for the operation and one to pay for the decrease in the degree of the parent. The
third token is no longer needed, and we discard it.

Let us summarize. We charge two tokens for sequence creation, two tokens for
each insert, and one token for each remove. These tokens suffice to pay one token
each for every split or fuse operation. There is at most a constant amount of work for
everything else done during an insert or remove operation. Hence, the total cost of n

update operations is O(n), and there are at most 2(n+1) split or fuse operations. ⊓⊔

*Exercise 7.16. Generalize the above proof to arbitrary a and b with b ≥ 2a. Show
that n insert or remove operations cause only O(n/(b− 2a+ 1)) fuse or split opera-
tions.

7.5 Augmented Search Trees

We show here that (a,b)-trees can support additional operations on sequences if
we augment the data structure with additional information. However, augmentations
come at a cost. They consume space and require time for keeping them up to date.
Augmentations may also stand in each other’s way.

Exercise 7.17 (reduction). Some operations on search trees can be carried out with
the use of the navigation data structure alone and without the doubly linked list. Go
through the operations discussed so far and discuss whether they require the next and
prev pointers of linear lists. Range queries are a particular challenge.

7.5.1 Parent Pointers

Suppose we want to remove an element specified by the handle of a list item. In the
basic implementation described in Sect. 7.2, the only thing we can do is to read the
key k of the element and call remove(k). This would take logarithmic time for the
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search, although we know from Sect. 7.4 that the amortized number of fuse opera-
tions required to rebalance the tree is constant. This detour is not necessary if each
node v of the tree stores a handle indicating its parent in the tree (and perhaps an
index i such that v.parent.c[i] = v).

Exercise 7.18. Assume b ≥ 2a. Show that in (a,b)-trees with parent pointers,
remove(h : Handle) and insertAfter(h : Handle) can be implemented to run in con-
stant amortized time.

*Exercise 7.19 (avoiding augmentation). Assume b ≥ 2a. Design an iterator class
that allows one to represent a position in an (a,b)-tree that has no parent pointers.
Creating an iterator is an extension of locate and takes logarithmic time. The class
should support the operations remove and insertAfter in constant amortized time.
Hint: Store the path to the current position.

*Exercise 7.20 (finger search). Augment search trees such that searching can profit
from a “hint” given in the form of the handle of a finger element e′. If the sought
element has rank r and the finger element e′ has rank r′, the search time should be
O(log |r− r′|). Hint: One solution links all nodes at each level of the search tree into
a doubly linked list.

*Exercise 7.21 (optimal merging). Section 5.3 discusses how to merge two sorted
lists or arrays. Explain how to use finger search to implement merging of two sorted
sequences in (optimal) time O(n log(m/n)), where n is the size of the shorter se-
quence and m is the size of the longer sequence.

7.5.2 Subtree Sizes

Suppose that every nonleaf node t of a search tree stores its size, i.e., t.size is the
number of leaves in the subtree rooted at t. The kth smallest element of the sorted
sequence can then be selected in a time proportional to the height of the tree. For
simplicity, we shall describe this for binary search trees. Let t denote the current
search tree node, which is initialized to the root. The idea is to descend the tree while
maintaining the invariant that the kth element is contained in the subtree rooted at t.
We also maintain the number i of elements that are to the left of t. Initially, i = 0.
Let i′ denote the size of the left subtree of t. If i+ i′ ≥ k, then we set t to its left
successor. Otherwise, t is set to its right successor and i is increased by i′. When
a leaf is reached, the invariant ensures that the kth element is reached. Figure 7.15
gives an example.

Exercise 7.22. Generalize the above selection algorithm to (a,b)-trees. Develop two
variants: one that needs time O(b loga n) and stores only the subtree size, and another
variant that needs only time O(logn) and stores d−1 sums of subtree sizes in a node
of degree d.

Exercise 7.23. Explain how to determine the rank of a sequence element with key k

in logarithmic time.
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Fig. 7.15. Selecting the 6th smallest
element from 〈2,3,5,7,11,13,17,19〉
represented by a binary search tree.
The thick arrows indicate the search
path.

Exercise 7.24. A colleague suggests supporting both logarithmic selection time
and constant amortized update time by combining the augmentations described in
Sects. 7.5.1 and 7.5.2. What will go wrong?

7.6 Parallel Sorted Sequences

Sorted sequences are difficult to parallelize for distributed-memory machines. Even
on shared-memory machines, this is not easy. There has been a lot of work on sorted
sequences that allow concurrent access [56, 134, 196]. However, it seems to be very
difficult to achieve significant speedup compared with a tuned sequential implemen-
tation of a cache-friendly sorted sequence such as (a,b)-trees [291]. This is partic-
ularly difficult if there are a many insert, remove, and update operations and con-
tention for the same keys.

If one needs only concurrent access, the (a,b)-trees introduced in Sect. 7.2 are
a promising starting point [62, 134, 196], since their constant amortized update cost
(see Sect. 7.4) requires concurrency control on only a constant number of tree nodes
when averaged over all operations.

ca b g h j k l n o q r s tpmf ied
I

T

j k l q r s td e ca b f i g h pm n o

f g h ij k l q r s tm n o pa b c d e

a b c d e f g h i j k l q r s tm n o p
concat

split

local insertion

Fig. 7.16. Inserting 〈d,e, f , i,m, p〉 into 〈a,b,c,g,h, j,k, l,n,o,q,r,s, t〉 using three PEs.
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We next discuss bulk operations on sorted sequences and show that simple algo-
rithms can achieve sizable speedups in practice. The solution works for any sorted-
sequence data structure with efficient support for concatenation (Sect. 7.3.1) and
splitting (Sect. 7.3.2). We describe bulk insertion in detail. Bulk remove, bulk up-
date, or arbitrary operation mixes are easy generalizations. One can also adapt the
techniques described here to obtain algorithms for operations on two trees such as
union, intersection, or difference [12, 46].

We first sort the insertion operations by their keys. Then, we split the sequence
I of insertions and the sorted sequence T into corresponding pieces. We can then,
independently and in parallel, perform the insertions in each piece of I into its
corresponding piece of T . Concatenating the resulting sequences into a single se-
quence yields the desired result. Figure 7.16 gives an example. Figure 7.17 shows
pseudocode for a parallel divide-and-conquer algorithm implementing the split–
insert–concat approach. Not counting the cost of sorting I, we obtain a span of
logk log |T |+ I

k
log |T |; logk levels of recursion which take time O(log |T |) for split-

ting and concatenation in each level and time O( |I|
k

log |T |) for the insertions. Again
ignoring the time for sorting I, the overall work is O(k log |T |) for splitting and con-
catenation and O(|I| log |T |) for the insertions. Setting k = p, this yields a parallel
execution time

O

( |I|
p

log |T |+ log p log |T |
)

.

This result can be improved to O((|I|/p) log |T |+ log |T |) by splitting and concate-
nating with a more scalable parallel algorithm [12].

Procedure bulkInsertPar(T : SortedSequence, I : Array of Element, k : N)
assert I is sorted

if k = 1 then // base case
foreach e ∈ I do T.insert(e)

else

m := ⌊I/2⌋
(T1,T2) :=T.split(I[m])
bulkInsertRec(T1, I[1..m],⌈k/2⌉) ‖ // parallel recursion
bulkInsertRec(T2, I[m+1..|I|],⌊k/2⌋)
T :=concat(T1,T2)

Fig. 7.17. Task-parallel pseudocode for bulk insertion. The (presorted) insertion sequence
I and the sorted sequence T are recursively split into k independent insertion tasks with an
approximately equal number of insertions per task.

**Exercise 7.25. Show, using a more careful analysis, that with an appropriate
choice of k, the algorithm in Fig. 7.17 actually only needs parallel execution time
O((|I|/p) log(|T |/|I|)+ log2 |T |). Hint: The average size of a subtree used for in-
sertion is |T |/k. Argue that the overall work for insertions is maximized when all
subtrees have average size.
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7.7 Implementation Notes

Our pseudocode for (a,b)-trees is close to an actual implementation in a language
such as C++ except for a few oversimplifications. The temporary arrays s′ and c′ in
the procedures insertRec and removeRec can be avoided by appropriate case distinc-
tions. In particular, a balance operation will not require calling the memory manager.
A split operation of a node v might be slightly faster if v keeps the left half rather than
the right half. We did not formulate the operation this way because then the cases of
inserting a new sequence element and splitting a node would no longer be the same
from the point of view of their parent.

For large b, locateLocally should use binary search. For small b, a linear search
might be better. Furthermore, we may want to have a specialized implementation for
small, fixed values of a and b that unrolls6 all the inner loops.

Of course, the values of a and b are important. Let us start with the cost of locate.
There are two kinds of operations that dominate the execution time of locate: Besides
their inherent cost, element comparisons may cause branch mispredictions (see also
Sect. 5.17). Furthermore, dereferencing pointers may cause cache faults. Exercise 7.9
indicates that element comparisons can be minimized by choosing a as a large power
of two and b = 2a. Since the number of pointers that have to be dereferenced is
proportional to the height of the tree (see Exercise 7.4), large values of a are also
good for this measure. Taking this reasoning to the extreme, we would obtain the best
performance for a ≥ n, i.e., a single sorted array. This is not astonishing. We have
concentrated on searches, and static data structures are best if updates are neglected.

Insertions and deletions have an amortized cost of one locate plus a constant
number of node reorganizations (split, balance, or fuse) with cost O(b) each. We
obtain a logarithmic amortized cost for update operations as long as b = O(logn). A
more detailed analysis (see Exercise 7.16) reveals that increasing b beyond 2a makes
split and fuse operations less frequent and thus saves expensive calls to the memory
manager associated with them. However, this measure has a slightly negative effect
on the performance of locate and it clearly increases space consumption. Hence, b

should remain close to 2a.
Finally, let us take a closer look at the role of cache faults. A cache of size M can

hold Θ(M/b) nodes. These are most likely to be the frequently accessed nodes close
to the root. To a first approximation, the top loga(M/b) levels of the tree are stored
in the cache. Below this level, every time a pointer is dereferenced, a cache fault will
occur, i.e., we will have about loga(bn/Θ(M)) cache faults in each locate operation.
Since the cache blocks of processor caches start at addresses that are a multiple of
the block size, it makes sense to align the starting addresses of search tree nodes with
a cache block, i.e., to make sure that they also start at an address that is a multiple of
the block size. Note that (a,b)-trees might well be more efficient than binary search
for large data sets because we may save a factor of loga in cache faults.

6 Unrolling a loop “for i :=1 to K do bodyi” means replacing it by the straight-line program

“body1; . . . ; bodyK”. This saves the overhead required for loop control and may give other
opportunities for simplifications.
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Very large search trees are stored on disks. Under the name B-trees [34], (a,b)-
trees are the workhorse of the indexing data structures in databases. Internal nodes of
B-trees have a size of several kilobytes. Furthermore, the items of the linked list are
also replaced by entire data blocks that store between a′ and b′ elements, for appro-
priate values of a′ and b′ (see also Exercise 3.31). These leaf blocks will then also be
subject to splitting, balancing, and fusing operations. For example, assume that we
have a = 210, the internal memory is large enough (a few megabytes) to cache the
root and its children, and the data blocks store between 16 and 32 KB of data. Then
two disk accesses are sufficient to locate any element in a sorted sequence that takes
16 GB of storage. Since putting elements into leaf blocks dramatically decreases the
total space needed for the internal nodes and makes it possible to perform very fast
range queries, this measure can also be useful for a cache-efficient internal-memory
implementation. However, note that update operations may now move an element in
memory and thus will invalidate element handles stored outside the data structure.
There are many more tricks for implementing (external-memory) (a,b)-trees. We
refer the reader to [135] and [228, Chaps. 2 and 14] for overviews. A good free im-
plementation of external B-trees is available in STXXL [88]. For an internal memory
version, consider github.com/bingmann/stx-btree.

From the augmentations discussed in Sect. 7.5 and the implementation trade-
offs discussed here, it becomes evident that the optimal implementation of sorted
sequences does not exist, but depends on the hardware and the operation mix relevant
to the actual application. We believe that (a,b)-trees with b = 2k = 2a = O(logn),
with a doubly linked list for the leaves, and augmented with parent pointers, are a
sorted-sequence data structure that supports a wide range of operations efficiently.

Exercise 7.26. What choice of a and b for an (a,b)-tree guarantees that the number
of I/O operations required for insert, remove, or locate is O(logB(n/M))? How many
I/O operations are needed to build an n-element (a,b)-tree using the external sorting
algorithm described in Sect. 5.12 as a subroutine? Compare this with the number
of I/Os needed for building the tree naively using insertions. For example, try M =
229 bytes, B = 218 bytes7, n = 232, and elements that have 8-byte keys and 8 bytes of
associated information.

7.7.1 C++

The STL has four container classes set, map, multiset, and multimap for sorted se-
quences. The prefix multi means that there may be several elements with the same
key. Maps offer the interface of an associative array (see also Chap. 4). For example,
someMap[k] := x inserts or updates the element with key k and sets the associated
information to x.

The most widespread implementation of sorted sequences in STL uses a variant
of red–black trees with parent pointers, where elements are stored in all nodes rather

7 We are making a slight oversimplification here, since in practice one will use much smaller
block sizes for organizing the tree than for sorting.

github.com/bingmann/stx-btree


256 7 Sorted Sequences

than only in the leaves. None of the STL data types supports efficient splitting or
concatenation of sorted sequences.

LEDA [194] offers a powerful interface, sortseq, that supports all important op-
erations on sorted sequences, including finger search, concatenation, and splitting.
Using an implementation parameter, there is a choice between (a,b)-trees, red–
black trees, randomized search trees, weight-balanced trees, and skip lists (for the
last three, see Sect. 7.8).

7.7.2 Java

The Java library java.util offers the interface classes SortedMap and SortedSet, which
correspond to the STL classes set and map, respectively. The corresponding imple-
mentation classes TreeMap and TreeSet are based on red–black trees.

7.8 Historical Notes and Further Findings

There is an entire zoo of sorted-sequence data structures. Just about any of them will
do if you just want to support insert, remove, and locate in logarithmic time. Perfor-
mance differences for the basic operations are often more dependent on implementa-
tion details than on the fundamental properties of the underlying data structures. The
differences show up in the additional operations.

The first sorted-sequence data structure to support insert, remove, and locate in
logarithmic time was AVL trees [5]. AVL trees are binary search trees which main-
tain the invariant that the heights of the subtrees of a node differ by at most one.
Since this is a strong balancing condition, locate is probably a little faster than most
competitors. On the other hand, AVL trees do not have constant amortized update
costs. In each node, one has to store a “balance factor” from {−1,0,1}. In compari-
son, red–black trees have slightly higher costs for locate, but they have faster updates
and the single color bit can often be squeezed in somewhere. For example, pointers
to items will always store even addresses, so that their least significant bit could be
diverted to storing color information.

(2,3)-trees were introduced in [7]. The generalization to (a,b)-trees and the
amortized analysis in Sect. 3.5 come from [158]. There, it was also shown that the
total number of splitting and fusing operations at the nodes of any given height de-
creases exponentially with height.

Splay trees [300] and some variants of randomized search trees [289] work even
without any additional information besides one key and two successor pointers. A
more interesting advantage of these data structures is their adaptability to nonuni-
form access frequencies. If an element e is accessed with probability p, these search
trees will be reshaped over time to allow an access to e in time O(log(1/p)). This
can be shown to be asymptotically optimal for any comparison-based data structure.
However, because of the large constants, this property leads to improved running
times only for quite skewed access patterns.
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Weight-balanced trees [243] balance the size of the subtrees instead of the height.
They have the advantage that a node of weight w (= number of leaves of its subtree)
is only rebalanced after Ω(w) insertions or deletions have passed through it [49].

There are so many search tree data structures for sorted sequences that these
two terms are sometimes used as synonyms. However, there are also some equally
interesting data structures for sorted sequences that are not based on search trees.
Sorted arrays are a simple static data structure. Sparse tables [162] are an elegant
way to make sorted arrays dynamic. The idea is to accept some empty cells to make
insertion easier. Bender et al. [39] extended sparse tables to a data structure which
is asymptotically optimal in an amortized sense. Moreover, this data structure is a
crucial ingredient for a sorted-sequence data structure [39] that is cache-oblivious

[116], i.e., it is cache-efficient on any two levels of a memory hierarchy without even
knowing the size of the caches and cache blocks. The other ingredient is oblivious
static search trees [116]; these are perfectly balanced binary search trees stored in an
array such that any search path will exhibit good locality in any cache. We describe
here the van Emde Boas layout used for this purpose, for the case where there are
n = 22k

leaves for some integer k. We store the top 2k−1 levels of the tree at the
beginning of the array. After that, we store the 22k−1

subtrees of depth 2k−1, allocating
consecutive blocks of memory for them. The resulting 1+ 22k−1

subtrees of depth
2k−1 are stored recursively in the same manner. Static cache-oblivious search trees
are practical in the sense that they can outperform binary search in a sorted array.

Skip lists [257] are based on another very simple idea. The starting point is a
sorted linked list ℓ. The tedious task of scanning ℓ during locate can be accelerated
by producing a shorter list ℓ′ that contains only some of the elements in ℓ. If corre-
sponding elements of ℓ and ℓ′ are linked, it suffices to scan ℓ′ and only descend to ℓ
when approaching the searched element. This idea can be iterated by building shorter
and shorter lists until only a single element remains in the highest-level list. This data
structure supports all important operations efficiently in an expected sense. Random-
ness comes in because the decision about which elements to lift to a higher-level list
is made randomly. Skip lists are particularly well suited for supporting finger search.

Yet another family of sorted-sequence data structures comes into play when
we no longer consider keys as atomic objects. If keys are numbers given in bi-
nary representation, we can obtain faster data structures using ideas similar to the
fast integer-sorting algorithms described in Sect. 5.10. For example, we can obtain
sorted sequences with w-bit integer keys that support all operations in time O(logw)
[215, 319]. At least for 32-bit keys, these ideas lead to a considerable speedup in
practice [87]. Not astonishingly, string keys are also important. For example, sup-
pose we want to adapt (a,b)-trees to use variable-length strings as keys. If we want
to keep a fixed size for node objects, we have to relax the condition on the minimum
degree of a node. Two ideas can be used to avoid storing long string keys in many
nodes. Common prefixes of keys need to be stored only once, often in the parent
nodes. Furthermore, it suffices to store the distinguishing prefixes of keys in inner
nodes, i.e., just enough characters to be able to distinguish different keys in the cur-
rent node [139]. Taking these ideas to the extreme results in tries [111], a search
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tree data structure specifically designed for string keys: Tries are trees whose edges
are labeled by characters or strings. The characters along a root–leaf path represent
a key. Using appropriate data structures for the inner nodes, a search in a trie for a
string of size s can be carried out in time O(s) .

We close with three interesting generalizations of sorted sequences. The first gen-
eralization is multidimensional objects, such as intervals or points in d-dimensional
space. We refer to textbooks on geometry for this wide subject [85]. The second
generalization is persistence. A data structure is persistent if it supports nondestruc-
tive updates. For example, after the insertion of an element, there may be two ver-
sions of the data structure, the one before the insertion and the one after the inser-
tion – both can be searched [99]. The third generalization is searching many se-

quences [66, 67, 216]. In this setting, there are many sequences, and searches need
to locate a key in all of them or a subset of them.


