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Sorting and Selection

Telephone directories are sorted alphabetically by last name. Why? Because a sorted
index can be searched quickly. Even in the telephone directory of a huge city, one can
find a name in a few seconds. In an unsorted index, nobody would even try to find a
name. This chapter teaches you how to turn an unordered collection of elements into
an ordered collection, i.e., how to sort the collection. The sorted collection can then
be searched fast. We will get to know several algorithms for sorting, the different
algorithms are suited for different situations, for example sorting in main memory or
sorting in external memory, and illustrate different algorithmic paradigms. Sorting
has many other uses as well. An early example of a massive data-processing task
was the statistical evaluation of census data; 1500 people needed seven years to
manually process data from the US census in 1880. The engineer Herman Hollerith
who participated in this evaluation as a statistician, spent much of the 10 years
to the next census developing counting and sorting machines for mechanizing this
gigantic endeavor. Although the 1890 census had to evaluate more people and more
questions, the basic evaluation was finished in 1891. Hollerith’s company continued
to play an important role in the development of the information-processing industry;
since 1924, it has been known as International Business Machines (IBM). Sorting is
important for census statistics because one often wants to form subcollections, for
example, all persons between age 20 and 30 and living on a farm. Two applications of
sorting solve the problem. First, we sort all persons by age and form the subcollection
of persons between 20 and 30 years of age. Then we sort the subcollection by the type
of the home (house, apartment complex, farm, ... ) and extract the subcollection of
persons living on a farm.

Although we probably all have an intuitive concept of what sorting is about, let
us give a formal definition. The input is a sequence s = {ey,...,e,) of n elements.
Each element ¢; has an associated key k; = key(e;). The keys come from an ordered

! The photograph was taken by C. M. Bell; US Library of Congress’ Prints and Photographs
Division, ID cph.3¢15982.
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universe, i.e., there is a linear order (also called a total order) < defined on the keysE
For ease of notation, we extend the comparison relation to elements so that e < ¢
if and only if key(e) < key(e'). Since different elements may have equal keys, the
relation < on elements is only a linear preorder. The task is to produce a sequence
s’ = (e},...,e,) such that s’ is a permutation of s and such that ] < ¢} <--- <e¢,.
Observe that the ordering of elements with equal key is arbitrary.

Although different comparison relations for the same data type may make sense,
the most frequent relations are the obvious order for numbers and the lexicographic
order (see Appendix[A) for tuples, strings, and sequences. The lexicographic order
for strings comes in different flavors. We may treat corresponding lower-case and
upper-case characters as being equivalent, and different rules for treating accented
characters are used in different contexts.

Exercise 5.1. Given linear orders <4 for A and <p for B, define a linear order on
A X B.

Exercise 5.2. Consider the relation R over the complex numbers defined by x R y if
and only if |x| < |y|. Is it total? Is it transitive? Is it antisymmetric? Is it reflexive? Is
it a linear order? Is it a linear preorder?

Exercise 5.3. Define a total order for complex numbers with the property that x <y
implies |x| < [y].

Sorting is a ubiquitous algorithmic tool; it is frequently used as a preprocessing step
in more complex algorithms. We shall give some examples.

*  Preprocessing for fast search. In Sect.[Z7]on binary search, we have already seen
that a sorted directory is easier to search, both for humans and for computers.
Moreover, a sorted directory supports additional operations, such as finding all
elements in a certain range. We shall discuss searching in more detail in Chap.[7l
Hashing is a method for searching unordered sets.

*  Grouping. Often, we want to bring equal elements together to count them, elimi-
nate duplicates, or otherwise process them. Again, hashing is an alternative. But
sorting has advantages, since we shall see rather fast, space-efficient, determinis-
tic sorting algorithm that scale to huge data sets.

e Processing in a sorted order. Certain algorithms become very simple if the inputs
are processed in sorted order. Exercise[5.4] gives an example. Other examples are
Kruskal’s algorithm presented in Sect. [[1.3] and several of the algorithms for
the knapsack problem presented in Chap. You may also want to remember
sorting when you solve Exercise[8.6] on interval graphs.

In Sect. 3.1 we shall introduce several simple sorting algorithms. They have
quadratic complexity, but are still useful for small input sizes. Moreover, we shall

2 A linear or total order is a reflexive, transitive, total, and antisymmetric relation such as the
relation < on the real numbers. A reflexive, transitive, and total relation is called a linear
preorder or linear quasiorder. An example is the relation R C R x R defined by x Ry if and
only if |x| <|y|; see Appendix [Alfor details.
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learn some low-level optimizations. Section 53] introduces mergesort, a simple
divide-and-conquer sorting algorithm that runs in time O(nlogn). Section[3.5]estab-
lishes that this bound is optimal for all comparison-based algorithms, i.e., algorithms
that treat elements as black boxes that can only be compared and moved around. The
quicksort algorithm described in Sect. is again based on the divide-and-conquer
principle and is perhaps the most frequently used sorting algorithm. Quicksort is
also a good example of a randomized algorithm. The idea behind quicksort leads to
a simple algorithm for a problem related to sorting. Section[5.8 explains how the kth
smallest of n elements can be selected in time O(n). Sorting can be made even faster
than the lower bound obtained in Sect.[5.3 by exploiting the internal structure of the
keys, for example by exploiting the fact that numbers are sequences of digits. This
is the content of Sect. Section[5.12 generalizes quicksort and mergesort to very
good algorithms for sorting inputs that do not fit into internal memory.

Most parallel algorithms in this chapter build on the sequential algorithms. We
begin in Sect. with an inefficient yet fast and simple algorithm that can be
used as a subroutine for sorting very small inputs very quickly. Parallel mergesort
(Sect.[3.4) is efficient for inputs of size Q(plog p) and a good candidate for sorting
relatively small inputs on a shared-memory machine. Parallel quicksort (Sect. 5.7)
can be used in similar circumstances and might be a good choice on distributed-
memory machines. There is also an almost in-place variant for shared memory. Se-
lection (Sect. can be parallelized even better than sorting. In particular, there
is a communication-efficient algorithm that does not need to move the data. The
noncomparison-based algorithms in Sect. are rather straightforward to paral-
lelize (Sect. B.11). The external-memory algorithms in Sect. are the basis of
very efficient parallel algorithms for large inputs. Parallel sample sort (Sect.
and parallel multiway mergesort (Sect.[5.14) are only efficient for rather large inputs
of size a)(pz), but the elements need to be moved only once. Since sample sort is a
good compromise between simplicity and efficiency, we give two implementations
— one for shared memory and the other for distributed memory. Finally, in Sect.
we outline a sophisticated algorithm that is asymptotically efficient even for inputs
of size p. This algorithm is a recursive generalization of sample sort that uses the
fast, inefficient algorithm in Sect.[5.2]for sorting the sample.

Exercise 5.4 (a simple scheduling problem). A hotel manager has to process n
advance bookings of rooms for the next season. His hotel has k identical rooms.
Bookings contain an arrival date and a departure date. He wants to find out whether
there are enough rooms in the hotel to satisfy the demand. Design an algorithm that
solves this problem in time O(nlogn). Hint: Consider the multiset of all arrivals and
departures. Sort the set and process it in sorted order.

Exercise 5.5 ((database) sort join). As in Exercise 3] consider two relations R C
A x Band Q C B x C with A # C and design an algorithm for computing the natural
join of R and Q

R Q:={(a,b,c) CAxBxC:(a,b) €RA(b,c)€Q}.
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Show how to obtain running time O((|R| +|Q|)log(|R| + |Q|) + |R > Q]) with a de-
terministic algorithm.

Exercise 5.6 (sorting with a small set of keys). Design an algorithm that sorts n
elements in O(klogk + n) expected time if there are only k different keys appearing
in the input. Hint: Combine hashing and sorting, and use the fact that k keys can be
sorted in time O(klogk).

Exercise 5.7 (checking). It is easy to check whether a sorting routine produces a
sorted output. It is less easy to check whether the output is also a permutation of the
input. But here is a fast and simple Monte Carlo algorithm for integers: (a) Show
that (ey,...,e,) is a permutation of (¢, ...,e},) if and only if the polynomial g(z) :=
[T, (z—ei) =TI, (z—¢}) is identically 0. Here, z is a variable. (b) For any € > 0, let
pbe aprime with p > max {n/¢e,ey,...,en,€|,..., e, }. Now the idea is to evaluate the
above polynomial mod p for a random value z € 0..p — 1. Show that if {ej,...,e,) is
not a permutation of (¢},...,e}), then the result of the evaluation is 0 with probability
at most €. Hint: A polynomial of degree n that is not identically 0 modulo p has at
most n 0’s in 0..p — 1 when evaluated modulo p.

Exercise 5.8 (permutation checking by hashing). Consider sequences A and B
where A is not a permutation of B. Suppose h : Element — 0..U — 1 is a random
hash function. Show that prob(Y,.cs h(e) = Y.cph(e)) < 1/U. Hint: Focus on one
element that occurs a different number of times in A and B.

5.1 Simple Sorters

We shall introduce two simple sorting techniques: selection sort and insertion sort.

Selection sort repeatedly selects the smallest element from the input sequence,
deletes it, and adds it to the end of the output sequence. The output sequence is
initially empty. The process continues until the input sequence is exhausted. For
example,

<>,<4,7, 1, 1) ~> <1>,<4,7, 1) ~> <1,1>,<4,7> ~> <17174>,<7> ~> <1717477>,<>.

The algorithm can be implemented such that it uses a single array of n elements
and works in-place, i.e., it needs no additional storage beyond the input array and a
constant amount of space for loop counters, etc. The running time is quadratic.

Exercise 5.9 (simple selection sort). Implement selection sort so that it sorts an ar-
ray with n elements in time O(nz) by repeatedly scanning the input sequence. The
algorithm should be in-place, i.e., the input sequence and the output sequence should
share the same array. Hint: The implementation operates in n phases numbered 1 to
n. At the beginning of the ith phase, the first i — 1 locations of the array contain the
i — 1 smallest elements in sorted order and the remaining n — i + 1 locations contain
the remaining elements in arbitrary order.
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Procedure insertionSort(a : Array [1..n] of Element)
for i:=2tondo
invariant ¢[1] <--- <a[i— 1]
/I move ali] to the right place

e:=ali

if e < a[1] then /I new minimum
for j:=idownto 2 do a[j]:=a[j—1]
alll:==e

else /I use a[1] as a sentinel
for j:=idownto —co while a[j — 1] > e do a[j]:=a[j—1]
aljl:=e

Fig. 5.1. Insertion sort

In Sect. we shall learn about a more sophisticated implementation where the
input sequence is maintained as a priority queue. Priority queues support efficient
repeated selection of the minimum element. The resulting algorithm runs in time
O(nlogn) and is frequently used. It is efficient, it is deterministic, it works in-place,
and the input sequence can be dynamically extended by elements that are larger than
all previously selected elements. The last feature is important in discrete-event simu-
lations, where events have to be processed in increasing order of time and processing
an event may generate further events in the future.

Selection sort maintains the invariant that the output sequence is sorted by care-
fully choosing the element to be deleted from the input sequence. Insertion sort
maintains the same invariant by choosing an arbitrary element of the input sequence
but taking care to insert this element in the right place in the output sequence. For
example,

04,7, 1, 1) ~ (4) (T, 1, 1)~ (4,7) (1, 1) ~ (1,4,7),(1) ~ (1,1,4,7).,().

Figure[3.Ilgives an in-place array implementation of insertion sort. The implementa-
tion is straightforward except for a small trick that allows the inner loop to use only
a single comparison. When the element e to be inserted is smaller than all previously
inserted elements, it can be inserted at the beginning without further tests. Otherwise,
it suffices to scan the sorted part of a from right to left while e is smaller than the
current element. This process has to stop, because a[1] < e.

In the worst case, insertion sort is quite slow. For example, if the input is sorted
in decreasing order, each input element is moved all the way to a[1], i.e., in iteration
i of the outer loop, i elements have to be moved. Overall, we obtain

(i—-1)= —n—i—Z n—|—1 n:n(n_l):Q(nz)

M:

2

movements of elements; see also (A.12).
Nevertheless, insertion sort is useful. It is fast for small inputs (say, n < 10) and
hence can be used as the base case in divide-and-conquer algorithms for sorting.
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Furthermore, in some applications the input is already “almost” sorted, and in this
situation insertion sort will be fast.

Exercise 5.10 (almost sorted inputs). Prove that insertion sort runs in time
O(n+ D), where D = Y ;|r(e;) —i| and r(e;) is the rank (position) of e; in the sorted
output.

Exercise 5.11 (average-case analysis). Assume that the input to an insertion sort
is a permutation of the numbers 1 to n. Show that the average execution time over
all possible permutations is Q(nz). Hint: Argue formally that about one-third of the
input elements in the right third of the array have to be moved to the left third of the
array. Can you improve the argument to show that, on average, n”> /4 — O(n) iterations
of the inner loop are needed?

Exercise 5.12 (insertion sort with few comparisons). Modify the inner loops of
the array-based insertion sort algorithm in Fig.[5.1] so that it needs only O(nlogn)
comparisons between elements. Hint: Use binary search as discussed in Chap. [7]
What is the running time of this modification of insertion sort?

Exercise 5.13 (efficient insertion sort?). Use the data structure for sorted sequences
described in Chap.[7lto derive a variant of insertion sort that runs in time O(nlogn).

*Exercise 5.14 (formal verification). Use your favorite verification formalism, for
example Hoare calculus, to prove that insertion sort produces a permutation of the
input.

5.2 Simple, Fast, and Inefficient Parallel Sorting

In parallel processing, there are also cases where spending a quadratic number of
comparisons to sort a small input makes sense. Assume that the PEs are arranged as
a quadratic matrix with PE indices written as pairs. Assume furthermore that we have
input elements e; at the diagonal PEs with index (i,). For simplicity, assume also that
all elements are different. In this situation, there is a simple and fast algorithm that
sorts in logarithmic time: PE (i, ) first broadcasts its element along row i and column
i. This can be done in logarithmic time; see Sect. [[3.11 Now, for every pair (i, j) of
input elements, there is a dedicated processor that can compare them in constant
time. The rank of element i can then be determined by adding the 0-1 value [e; > ¢;]
along each row. We can already view this mapping of elements to ranks as the output
of the sorting algorithm. If desired, we can also use this information to permute the
elements. For example, we could send the elements with rank 7 to PE (i,i).

At the first glance, this sounds like a rather useless algorithm, since its efficiency
is o(1). However, there are situations where speed is more important than efficiency,
for example for the fast parallel selection algorithm discussed in Sect. where we
use sorting a sample to obtain a high-quality pivot. Also, note that in that situation,
even finding a single random pivot requires a prefix sum and a broadcast, i.e., taking
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Fig. 5.2. Brute force ranking of four elements on 4 x 4 PEs

a random pivot is only a constant factor faster than choosing the median of a sample
of size |/p. Figure[5.2] gives an example.

We can obtain wider applicability by generalizing the algorithm to handle larger
inputs. Here, we outline an algorithm described in more detail in ] and care only
about computing the rank of each element. Now, the PEs are arranged into an a X b
matrix. Each PE has a (possibly empty) set of input elements. Each PE sorts its ele-
ments locally. Then we redistribute the elements such that PE (i, j) has two sequences
I and J, where [ contains all elements from row i/ and J contains all elements from
column J. This can be done using all-gather operations along the rows and columns;
see Sect. Additionally, we ensure that the sequences are sorted by replacing
the local concatenation operations in the all-gather algorithm by a merge operation.
Subsequently, elements from / are ranked with respect to the elements in J, i.e., for
each element x € I, we count how many elements y € J have y < x. This can be done
in linear time by merging / and J. The resulting local rank vectors are then added
along the rows. Figure[3.3] gives an example.

Overall, if all rows and columns contain a balanced number of elements, we get
a total execution time

n n n
global ranks
row data—-=rqghl © |dghl 2 |dghl € |dghl P |d g h |
local ranks—r0123 h 11223 9 (2222 d |1113 | |4 6 7 11
column data——+—» k i m I
abem € |abem 2 [abem € |abem P | a b e m
0013 E 1113 9 |0023 d |0113 JI 12512
| m
cijk €lcijk @|cijk Clcijk P| ci j k
0223 E 1333 9 (1222 d 1122 JI 389 10
| m

Fig. 5.3. Fast, inefficient ranking of (d,g,h,l,a,b,e,m,c,i, j, k) on 3 x 4 PEs.
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5.3 Mergesort — an O(nlogn) Sorting Algorithm

Mergesort is a straightforward application of the divide-and-conquer principle. The
unsorted sequence is split into two parts of about equal size. The parts are sorted
recursively, and the sorted parts are merged into a single sorted sequence. This ap-
proach is efficient because merging two sorted sequences a and b is quite simple.
The globally smallest element is either the first element of a or the first element of b.
So, we move the smaller element to the output, find the second smallest element us-
ing the same approach, and iterate until all elements have been moved to the output.
Figure [5.4] gives pseudocode, and Fig. illustrates a sample execution. If the se-
quences are represented as linked lists (see Sect.[3.2), no allocation and deallocation
of list items is needed. Each iteration of the inner loop of merge performs one ele-
ment comparison and moves one element to the output. Each iteration takes constant
time. Hence, merging runs in linear time.

Function mergeSort({ey,...,e,)) : Sequence of Element
if n =1 then return (e;)
else return merge( mergeSort({e1,...,€[,/2])),

mergeSort({€|n/2|+1s---,¢€n)))

/l merging two sequences represented as lists
Function merge(a,b : Sequence of Element) : Sequence of Element

¢i=()

loop
invariant a, b, and ¢ are sorted and Ve € c,e/ €alUb:e < ¢’
if a.isEmpty then c.concat(b); return ¢
if b.isEmpty then c.concat(a); return c
if a.first < b.first then c.moveToBack(a.PopFront)
else c.moveToBack(b.PopFront)
Fig. 5.4. Mergesort
. (2,7,1,8,2,8,1)
split 2, 7m 8.1) a b c operation
split T S (1,2,7) (1,2,8,8) ( move a
2y (7,1) (8,2) (8,1) (2,7) (1,2,8,8) (1) move b
split NN N (2,7)  (2,8,8) (1,1) move a
(7) (1)(8) (2) (8) (1) (1) (2,8,8) (1,1,2) move b
merge ~ @~ ~
<177> <2,8> <1,8> <7> <878> <17 7272> move a
merge <> <8 8> <1, 1,2,2,7> concat b
(1,2,7) (1,2,8,8) () () (1,1,2,2,7,8,8)
merge —_—
(1,1,2,2,7,8,8)

Fig. 5.5. Execution of mergeSort({2,7,1,8,2,8,1)). The left part illustrates the recursion in
mergeSort and the right part illustrates the merge in the outermost call.
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Theorem 5.1. The function merge, applied to sequences of total length n, executes
in time O(n) and performs at most n — 1 element comparisons.

For the running time of mergesort, we obtain the following result.

Theorem 5.2. Mergesort runs in time O(nlogn) and performs no more than [nlogn|
element comparisons.

Proof. Let C(n) denote the worst-case number of element comparisons performed.
We have C(1) =0and C(n) <C(|n/2])+C([n/2])+n— 1, using Theorem[3.1l The
master theorem for recurrence relations (2.3) suggests C(n) = O(nlogn). We next
give two proofs that show explicit constants. The first proof shows C(n) < 2n [logn],
and the second proof shows C(n) < n[logn].

For n a power of two, we define D(1) =0 and D(n) =2D(n/2)+n. Then D(n) =
nlogn for n a power of two by either the master theorem for recurrence relations
or by a simple induction argument[} We claim that C (n) < D(2¥), where k is such
that 28-1 < n < 2K, Then C(n) < D(2%) = 2%k < 2n[logn]. It remains to argue the
inequality C(n) < D(2%). We use induction on k. For k = 0, we have n = 1 and
C(1) =0=D(1), and the claim certainly holds. For k > 1, we observe that |n/2]| <
[n/2] < 2%1, and hence

C(n) <C(|n/2])+C([n/2])+n—1<2D2K 1) +2F—1 < D(2").

This completes the first proof.
We turn now to the second, refined proof. We prove

C(n) < n[logn] —2M¢" 11 <nlogn

by induction over n. For n = 1, the claim is certainly true. So, assume n > 1. Let k be
such that 2=1 < [n/2] < 2%, i.e. k = [log [n/2]]. Then C([n/2]) < [n/2]k—2k+1
by the induction hypothesis. If [n/2| > 2%~1, then k is also equal to [log|n/2]] and
hence C(|n/2]) < |n/2] k—2*+ 1 by the induction hypothesis. If [/2] = 2¢~! and
hence k — 1 = [log |n/2]], the induction hypothesis yields C(|n/2]) = |n/2] (k—
1) -2t 1 =21k —1) =214+ 1 = |n/2] k— 2%+ 1. Thus we have the same
bound for C(|n/2]) in both cases, and hence

C(n) <C(|n/2])+C([n/2])+n—1
< (ln/2]k=2+1)+ ([n/21k=2"+1) +n—1
=nk+n—2" 41 =nlk+1) =21+ 1 = nlogn] — 20"l 1 1.
It remains to argue that nk — 25 + 1 < nlogn for k = [logn]. If n = 2¥, the inequality
clearly holds. If n < 2%, we have nk — 2k +1 <n(k— 1)+ (n -2+ 1) <n(k—1) <
nlogn.

The bound for the execution time can be verified using a similar recurrence rela-
tion. a

3Forn=1=2° we have D(1) =0 = nlogn, and for n = 2% and k > 1, we have D(n) =
2D(n/2)+n=2(n/2)log(n/2)+n=n(logn—1)+n = nlogn.
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Mergesort is the method of choice for sorting linked lists and is therefore frequently
used in functional and logical programming languages that have lists as their primary
data structure. In Sect. we shall see that mergesort is basically optimal as far as
the number of comparisons is concerned; so it is also a good choice if comparisons
are expensive. When implemented using arrays, mergesort has the additional advan-
tage that it streams through memory in a sequential way. This makes it efficient in
memory hierarchies. Section[3.12/has more on that issue. However, mergesort is not
the usual method of choice for an efficient array-based implementation, since it does
not work in-place, but needs additional storage space; but see Exercise 5.191

Exercise 5.15. Explain how to insert Xk new elements into a sorted list of size n in
time O(klogk +n).

Exercise 5.16. We have discussed merge for lists but used abstract sequences for the
description of mergeSort. Give the details of mergeSort for linked lists.

Exercise 5.17. Implement mergesort in a functional programming language.

Exercise 5.18. Give an efficient array-based implementation of mergesort in your fa-
vorite imperative programming language. Besides the input array, allocate one aux-
iliary array of size n at the beginning and then use these two arrays to store all inter-
mediate results. Can you improve the running time by switching to insertion sort for
small inputs? If so, what is the optimal switching point in your implementation?

Exercise 5.19. The way we describe merge, there are three comparisons for each
loop iteration — one element comparison and two termination tests. Develop a variant
using sentinels that needs only one termination test. Can you do this task without
appending dummy elements to the sequences?

Exercise 5.20. Exercise 3.31] introduced a list-of-blocks representation for se-
quences. Implement merging and mergesort for this data structure. During merging,
reuse emptied input blocks for the output sequence. Compare the space and time ef-
ficiency of mergesort for this data structure, for plain linked lists, and for arrays. Pay
attention to constant factors.

5.4 Parallel Mergesort

The recursive mergesort from Fig.[5.4] contains obvious task-based parallelism — one
simply performs the recursive calls in parallel. However, this algorithm needs time
Q(n) regardless of the number of processors available, since the final, sequential
merge takes that time. In other words, the maximum obtainable speedup is O(logn)
and the corresponding isoefficiency function is exponential in p. This is about as far
away from a scalable parallel algorithm as it gets.

In order to obtain a scalable parallel mergesort, we need to parallelize merg-
ing. Our approach to merging two sorted sequences a and b in parallel is to split
both sequences into p pieces ay, ..., a, and by, ..., b, such that merge(a,b) is the
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concatenation of merge(ay,by), ..., merge(a,,b,). The p merges are performed in
parallel by assigning one PE each. For this to be correct, the elements in a; and b;
must be no larger than the elements in a;; and b;;. Additionally, to achieve good
load balance, we want to ensure that |a;| + |b;| = (|a| + |b|)/p fori € 1..p. All these
properties can be achieved by defining the elements in a; and b; to be the elements
with positions in (i — 1)[(|a| + |b])/p] + 1..i[(Ja| +|b])/p] in the merged sequence.
The strategy is now clear. PE i first determines where a; ends in a and b; ends in b. It
then merges a; and b;.

Let k =i[(|a] +|b|)/p]. In order to find where a; and b; end in a and b, we need
to find the smallest k elements in the two sorted arrays. This is a special case of the
selection problem discussed in Sect. where we can exploit the sortedness of the
arrays a and b to accelerate the computation. We now develop a sequential determin-
istic algorithm twoSequenceSelect(a, b, k) that locates the k smallest elements in two
sorted arrays a and b in time O(log|a| +log|b|). The idea is to maintain subranges
ally..rg) and b[ly..r,] with the following properties:

(a) The elements a[l..¢, — 1] and b[1..£, — 1] belong to the k smallest elements.
(b) The k smallest elements are contained in a[l..r,] and b[1..rp).

We shall next describe a strategy which allows us to halve one of the ranges [{,..r,] or
[£p..rp]. For simplicity, we assume that the elements are pairwise distinct. Let m, =
| (ba+714)/2], @=almg), mp = | (€p+13)/2], and b = bmy]. Assume that @ < b, the
other case being symmetric. If k < m, + my, then the elements in b[m,..r,] cannot
belong to the k smallest elements and we may set rp, to my, — 1. If k > m, 4+ my, then
all elements in a[l,..m,] belong to the k smallest elements and we may set ¢, to
mg ~+ 1. In either case, we have reduced one of the ranges to half its size. This is akin
to binary search. We continue until one of the ranges becomes empty, i.e., r, =, — 1
or r, = £, — 1. We complete the search by setting r, = k — r, in the former case and
rq = k — rp in the latter case.

Since one of the ranges is halved in each iteration, the number of iterations is
bounded by log|a| +log|b|. Table ] gives an example.

Table 5.1. Example calculation for selecting the k = 4 smallest elements from the sequences
a=(4,5,6,8) and b = (1,2,3,7). In the first line, we have @ > b and k > m, + my,. Therefore,
the first two elements of b belong to the k smallest elements and we may increase ¢} to 3.
Similarly, in the second line, we have m, =2 and m, =3,a > b, and k < mg + my,. Therefore
all elements of a except maybe the first do not belong to the k smallest. We may therefore set
rato 1.

a lamgrgal b Ly mprp blk<mg+mp? a< b?|action
[45]68] 1 2 4 5|[12]37] 1 2 42 no no |(l,:=3
[45/68] 1 2 4 5[12[3]7] 3 3 43 yes no |rg:=1
[4]]568 1 1 1 4|12]3]7] 3 3 43 no no |l:=4
[4])568 1 1 1 4|123[7]] 4 4 47 yes yes |rp:=3
[4]568 1 1 1 4[123[|]7 4 3 3 finish rg:=1
4]568 1 | 123]7 3 done
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*Exercise 5.21. Assume initially that all elements have different keys.

(a) Implement the algorithm twoSequenceSelect outlined above. Test it carefully and
make sure that you avoid off-by-one errors.

(b) Prove that your algorithm terminates by giving a loop variant. Show that at least
one range shrinks in every iteration of the loop. Argue as in the analysis of binary
search.

(c) Now drop the assumption that all keys are different. Modify your function so
that it outputs splitting positions m, and my, in a and b such that m, +my;, = k,
a[mg] < b[mp + 1], and b[myp] < a[m, + 1]. Hint: Stop narrowing a range once all
its elements are equal. At the end choose the splitters within the ranges such that
the above conditions are met.

We can now define a shared-memory parallel binary mergesort algorithm. To
keep things simple, we assume that n and p are powers of two. First we build p runs
by letting each PE sort a subset of n/p elements. Then we enter the merge loop. In
iteration i of the main loop (i € 0..log p — 1), we merge pairs of sorted sequences of
size 2 -n/p using 2/ PEs. The merging proceeds as described above, i.e., both input
sequences are split into 2/ parts each and then each processor merges corresponding
pieces.

Let us turn to the analysis. Run formation uses a sequential sorting algorithm
and takes time O((n/p)log(n/p)). Each iteration takes time O(log(2’- (n/p))) =
O(logn) for splitting (each PE in parallel finds one splitter) and time O(n/p) for
merging pieces of size n/p. Overall, we get a parallel execution time

Tpar = O(ElogE +logp <10gn+ ﬁ))
p D p

1
_O<log2n—|—n 0gn>.
p

This algorithm is efficienf] for n = Q(plog p). The algorithm is a good candidate for
an implementation on real-world shared-memory machines since it does sequential
merging and sorting in its inner loops and since it can effectively adapt to the memory
hierarchy. However, its drawback is that it moves the data logarithmically often. In
Sects. and[3.14] we shall see algorithms that move the data less frequently.

On the theoretical side, it is worth noting that there is an ingenious but com-
plicated variant of parallel mergesort by Cole ] which works in time O(log p +
(nlogn)/p), i.e., it is even more scalable. We shall present a randomized algorithm
in Sect. 5. 13l that is simpler and also allows logarithmic time.

*Exercise 5.22. Design a task-based parallel mergesort with work O(nlogn) and
span O(log3 n) Hint: You may want to use parallel recursion both for indepen-
dent subproblems and for merging. For the latter, you may want to use the function
twoSequenceSelect from Exercise Be careful with the size of base case in-
puts. Compare the scalability of this recursive algorithm with the bottom-up parallel
mergesort described above.

4 Note that log?n < (nlogn)/p if and only if p < n/logn if n = Q(plog p).
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**Exercise 5.23. Develop a practical distributed-memory parallel mergesort. Can
you achieve running time O(% logn + log? p)? A major obstacle may be that our
shared-memory algorithm assumes that concurrent reading is fast. In particular, naive
access to the midpoints of the current search ranges may result in considerable con-
tention.

Exercise 5.24 (parallel sort join). As in Exercises [423] and[5.3] consider two
relations R C A x Band Q C B x C with A # C and design an algorithm for computing
the natural join of R and Q

R Q:={(a,b,c) CAxBxC:(a,b) €RA(b,c)€Q}.

Give a parallel algorithm with run time O(((|R| + |Q|)log(|R| + |Q|) + |R>=1 Q]|)/p)
for sufficiently large inputs. How large must the input be? How can the limitation
in Exercise [4.23] be lifted? Hint: You have to ensure that the work of outputting the
result is well balanced over the PEs.

5.5 A Lower Bound

Algorithms give upper bounds on the complexity of a problem. By the preceding
discussion, we know that we can sort # items in time O(nlogn). Can we do better,
and maybe even achieve linear time? A “yes” answer requires a better algorithm and
its analysis. How could we potentially argue a “no” answer? We would have to argue
that no algorithm, however ingenious, can run in time o(nlogn). Such an argument
is called a lower bound. So what is the answer? The answer is both “no” and “yes”.
The answer is “no” if we restrict ourselves to comparison-based algorithms, and the
answer is “yes” if we go beyond comparison-based algorithms. We shall discuss
noncomparison-based sorting in Sect.

What is a comparison-based sorting algorithm? The input is a set {ey,...,e,} of
n elements, and the only way the algorithm can learn about its input is by comparing
elements. In particular, it is not allowed to exploit the representation of keys, for
example as bit strings. When the algorithm stops, it must return a sorted permutation
of the input, i.e., a permutation (e/,...,¢),) of the input such that ¢f < e} <... <e],.
Deterministic comparison-based algorithms can be viewed as trees. They make an
initial comparison; for instance, the algorithm asks “e; < e;?”, with outcomes yes
and no. Since the algorithm cannot learn anything about the input except through
comparisons, this first comparison must be the same for all inputs. On the basis of
the outcome, the algorithm proceeds to the next comparison. There are only two
choices for the second comparison: one is chosen if e; < e, and the other is chosen
if e; > ej. Proceeding in this way, the possible executions of the sorting algorithm
define a tree. The key point is that the comparison made next depends only on the
outcome of all preceding comparisons and nothing else. Figure shows a sorting
tree for three elements.

Formally, a comparison tree for inputs e; to e, is a binary tree whose nodes have
labels of the form “e; < ¢;7”. The two outgoing edges correspond to the outcomes <
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e1<ey<e3 < e3! ey >ep) >e3
>

e1<e3<e e3<e;<epy e<e <e3 e <ez<e

Fig. 5.6. A tree that sorts three elements. We first compare e; and e;. If e; < ey, we compare
ey with e3. If ey < e3, we have e] < ep < e3 and are finished. Otherwise, we compare e¢; with
e3. For either outcome, we are finished. If e; > e, we compare e, with e3. If e; > e3, we have
e] > ex > e3 and are finished. Otherwise, we compare e¢; with e3. For either outcome, we are
finished. The worst-case number of comparisons is three. The average number is (243 +3 +
24+3+3)/6 =8/3.

and >. The computation proceeds in the natural way. We start at the root. Suppose the
computation has reached a node labeled ¢; : ¢;. If ¢; < ¢, we follow the edge labeled
<, and if ¢; > ¢}, we follow the edge labeled >. The leaves of the comparison tree
correspond to the different outcomes of the algorithm.

We next formalize what it means that a comparison tree solves the sorting prob-
lem of size n. We restrict ourselves to inputs in which all keys are distinct. When
the algorithm terminates, it must have collected sufficient information so that it
can tell the ordering of the input. For a permutation 7 of the integers 1 to n, let
{7 be the leaf of the comparison tree reached on input sequences {ey,...,e,} with
ern(1) <en(2) < ... <eg(y- Note that this leaf is welldefined since 7 fixes the outcome
of all comparisons. A comparison tree solves the sorting problem of size n if, for any
two distinct permuations © and ¢ of {1,...,n}, the leaves £z and {5 are distinct.

Any comparison tree for sorting n elements must have at least n! leaves. Since a
tree of depth T has at most 27 leaves, we must have

ZTZn! or T >logn!.
Via Stirling’s approximation to the factorial (A.10), we obtain
n\n
T >logn! > log (—) =nlogn —nloge.
e

Theorem 5.3. Any comparison-based sorting algorithm needs nlogn — O(n) com-
parisons in the worst case.

We state without proof that this bound also applies to randomized sorting algorithms
and to the average-case complexity of sorting, i.e., worst-case instances are not much
more difficult than random instances.

Theorem 5.4. Any comparison-based sorting algorithm for n elements needs
nlogn — O(n) comparisons on average, i.e.,
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d
Lodr _ nlogn—O(n),
n!
where the sum extends over all n! permutations of the set {1,...,n} and dy is the

depth of the leaf (.

The element uniqueness problem is the task of deciding whether, in a set of n
elements, all elements are pairwise distinct.

Theorem 5.5. Any comparison-based algorithm for the element uniqueness problem
of size n requires Q(nlogn) comparisons.

Proof. The algorithm has two outcomes “all elements are distinct” and “there are
equal elements” and hence, at first sight, we know only that the corresponding com-
parison tree has at least two leaves. We shall argue that there are n! leaves for the
outcome “all elements are distinct”. For a permutation 7 of {1,...,n}, let 5 be the
leaf reached on input sequences (ey,...,e,) with en(1) <eg2) < ... < eg(y)- Thisis
one of the leaves for the outcome “all elements are distinct”.

Let i € 1..n — 1 be arbitrary and consider the computation on an input with
en(1) < eg@) < ... < eg(i) = en(it1) < ... < €g(y). This computation has outcome
“equal elements” and hence cannot end in the leaf /5. Since only the outcome of
the comparison ez(;,1) : eg(;) differs for the two inputs (it is > if the elements are
distinct and < if they are the same), this comparison must have been made on the
path from the root to the leaf /7, and the comparison has established that e, 1) is
larger than e (;). Thus the path to £ establishes that ez (1) < ez(2), €x(2) < €z(3)s ---»
€x(n—1) < €x(n)> and hence lr # {5 whenever 7 and o are distinct permutations of
{1,...,n}. O

Exercise 5.25. Why does the lower bound for the element uniqueness problem not
contradict the fact that we can solve the problem in linear expected time using hash-
ing?

Exercise 5.26. Show that any comparison-based algorithm for determining the
smallest of n elements requires n — 1 comparisons. Show also that any comparison-
based algorithm for determining the smallest and second smallest elements of n el-
ements requires at least n — 1 4 logn comparisons. Give an algorithm with this per-
formance.

Exercise 5.27 (lower bound for average case). With the notation above, let d; be
the depth of the leaf /7. Argue that A = (1/n!)Y; dy is the average-case complexity
of a comparison-based sorting algorithm. Try to show that A > logn!. Hint: Prove
first that ¥ ,27% < 1. Then consider the minimization problem “minimize ¥ ,d
subject to ¥, 279 < 1”. Argue that the minimum is attained when all d;’s are equal.

Exercise 5.28 (sorting small inputs optimally). Give an algorithm for sorting k el-
ements using at most [logk!] element comparisons. (a) For k € {2,3,4}, use merge-
sort. (b) For k =5, you are allowed to use seven comparisons. This is difficult. Merge-
sort does not do the job, as it uses up to eight comparisons. (c) For k € {6,7,8}, use
the case kK = 5 as a subroutine.
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5.6 Quicksort

Quicksort is a divide-and-conquer algorithm that is, in a certain sense, complemen-
tary to the mergesort algorithm of Sect. Quicksort does all the difficult work
before the recursive calls. The idea is to distribute the input elements into two or
more sequences so that the corresponding key ranges do not overlap. Then, it suf-
fices to sort the shorter sequences recursively and concatenate the results. To make
the duality to mergesort complete, we would like to split the input into two sequences
of equal size. Unfortunately, this is a nontrivial task. However, we can come close
by picking a random splitter element. The splitter element is usually called the pivot.
Let p denote the pivot element chosen. Elements are classified into three sequences
of elements that are smaller than, equal to, and larger than the pivot. Figure[3.7] gives
a high-level realization of this idea, and Fig. depicts a sample execution. Quick-
sort has an expected execution time of O(nlogn), as we shall show in Sect. 5.6.1] In
Sect. we discuss refinements that have made quicksort the most widely used
sorting algorithm in practice.

Function quickSort(s : Sequence of Element) : Sequence of Element
if [s| <1 then return s /I base case
pick p € s uniformly at random /I pivot key
a:={e€s:e<p)
b:=(e€s:e=p)
ci=(e€s:e>p)
return concatenation of quickSort(a), b, and quickSort(c)

Fig. 5.7. High-level formulation of quicksort for lists

(3,6,8,1,0,7,2,4,5,9)
(1,0,2) (3) (6,8,7,4,5,9)

0 (1) @ (4.5) (6) (8,7,9)

Fig. 5.8. Execution of quickSort (Fig. 53 on (3,6,8,1,0,7,2,4,5,9) using the first element
of a subsequence as the pivot. The first call of quicksort uses 3 as the pivot and generates the
subproblems (1,0,2), (3), and (6,8,7,4,5,9). The recursive call for the third subproblem uses
6 as a pivot and generates the subproblems (4,5), (6), and (8,7,9).
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5.6.1 Analysis

To analyze the running time of quicksort for an input sequence s = {ey,...,e,), we
focus on the number of element comparisons performed. We allow three-way com-
parisons here, with possible outcomes “smaller”, “equal”, and “larger”. Other op-
erations contribute only constant factors and small additive terms to the execution
time.

Let C(n) denote the worst-case number of comparisons needed for any input
sequence of size n and any choice of pivots. The worst-case performance is easily
determined. The subsequences a, b, and ¢ in Fig.[5.7] are formed by comparing the
pivot with all other elements. This requires n — 1 comparisons. Let k denote the
number of elements smaller than the pivot and let X’ denote the number of elements
larger than the pivot. We obtain the following recurrence relation: C(0) = C(1) =0
and

C(n) <n—1+max{C(k)+C(K):0<k<n—1,0<K <n—k}.

It is easy to verify by induction that

Cn) < @ —0(n?).
This worst case occurs if all elements are different and we always pick the largest or
smallest element as the pivot.

The expected performance is much better. We first give a plausibility argument
for an O(nlogn) bound and then show a bound of 2nInn. We concentrate on the case
where all elements are different. Other cases are easier because a pivot that occurs
several times results in a larger middle sequence b that need not be processed any
further. Consider a fixed element ¢;, and let X; denote the total number of times ¢;
is compared with a pivot element. Then ) ; X; is the total number of comparisons.
Whenever ¢; is compared with a pivot element, it ends up in a smaller subproblem.
Therefore, X; < n— 1, and we have another proof of the quadratic upper bound. Let
us call a comparison “good” for e; if e; moves to a subproblem of at most three-
quarters the size. Any e; can be involved in at most log, 37 good comparisons. Also,
the probability that a pivot which is good for e; is chosen is at least 1/2; this holds
because a bad pivot must belong to either the smallest or the largest quarter of the
elements. So E[X;] < 2log, 31, and hence E[}; X;] = O(nlogn). We shall next prove
a better bound by a completely different argument.

Theorem 5.6. The expected number of comparisons performed by quicksort is

C(n) <2nlnn < 1.39nlogn.

Proof. Let s’ = (€],...,€,) denote the elements of the input sequence in sorted or-
der. Every comparison involves a pivot element. If an element is compared with a
pivot, the pivot and the element end up in different subsequences. Hence any pair
of elements is compared at most once, and we can therefore count comparisons by



170 5 Sorting and Selection

looking at the indicator random variables X;;, i < j, where X;; = 1 if e§ and e; are
compared and X;; = 0 otherwise. We obtain

CW)ZElan Zn: Xij :Zn: Zn: E[Xij]zzn: z”: prob(X;; = 1).

i=1 j=it1 i=1 j=it+1 i=1j=i+1

The middle transformation follows from the linearity of expectations (A3). The
last equation uses the definition of the expectation of an indicator random variable
E[X;;] = prob(X;; = 1). Before we can simplify further the expression for C(n), we
need to determine the probability of X;; being 1.

2

j—i+1

Proof. Consider the j—i+ 1-elementset M = {¢/,... ,e’j}. As long as no pivot from
M is selected, ef» and e} are not compared, but all elements from M are passed to the
same recursive calls. Eventually, a pivot p from M is selected. Each element in M
has the same chance 1/|M| of being selected. If p = ¢! or p = e’j, we have X;; = 1.
Otherwise, e, and ¢’; are passed to different recursive calls, so that they will never be
compared. Thus prob(X;; = 1) =2/|M|=2/(j—i+1). O

Lemma 5.7. For any i < j, prob(X;; =1) =

We can now complete the proof of Theorem[5.6]by a relatively simple calculation:

_ n n 2 nn71+12
C(n):ZZprob(X,jzl):ZZ — 1:22 z
i=1 j=it+1 =1 jmi1 T i=1 k=2
n n 2 n 1
< -=2 —=2n(H,—1)<2n(1+Inn—1)=2nlnn.
_,g{/;zk nkg’Zk n(H,—1) <2n(1+Inn—1)=2nlnn

For the last three steps, recall the properties of the nth harmonic number H, :=

Yi o 1/k<1+Inn (AT3). O

Note that the calculations in Sect. 2.11] for left-to-right maxima were very similar,
although we had quite a different problem at hand.

5.6.2 *Refinements

We shall now discuss refinements of the basic quicksort algorithm. The resulting
algorithm, called gSort, works in-place, and is fast and space-efficient. Figure
shows the pseudocode, and Fig. shows a sample execution. The refinements are
nontrivial and we need to discuss them carefully.

The function gSort operates on an array a. The arguments ¢ and r specify the sub-
array to be sorted. The outermost call is gSort(a, 1,n). If the size of the subproblem is
smaller than some constant ng, we resort to a simple algorithnﬁ such as the insertion

> Some authors propose leaving small pieces unsorted and cleaning up at the end using a
single insertion sort that will be fast, according to Exercise Although this nice trick
reduces the number of instructions executed, the solution shown is faster on modern ma-
chines because the subarray to be sorted will already be in cache.
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Procedure gSort(a : Array of Element; {,r : N) /I Sort the subarray a[(..r]
while r —/+1 > ny do /I Use divide-and-conquer.
J :=pickPivotPos(a,l,r) /I Pick a pivot element and
swap(alf],alj]) // bring it to the first position.
p:=all] /I p is the pivot now.
ii={ ji=r
repeat I a:[¢ i— J r]
while a[i] < pdo i++ /I Skip over elements
while a[j] > pdo j—— /I already in the correct subarray.
if i < j then / If partitioning is not yet complete,
swap(ali],a[j]);it++; j—— /I (*) swap misplaced elements and go on.
until i > j / Partitioning is complete.
if i < (¢+r)/2 then gSort(a,l,j); (:=i /I Recurse on
else gSort(a,i,r); r:=j /I smaller subproblem.
endwhile
insertionSort(all..r]) /I Faster for small r — ¢

Fig. 5.9. Refined quicksort for arrays

i — — 36810724509
3681072459 2 01|86 73459
2681073459 1 0]2|56 7 3 4|8 9
2081673459 01 4 3|7 6 5|8 9
2018673459 3 4|5 6|7
ji 56‘

Fig. 5.10. Execution of gSort (Fig.[5.9) on (3,6,8,1,0,7,2,4,5,9) using the first element as
the pivot and ng = 1. The left-hand side illustrates the first partitioning step, showing elements
in bold that have just been swapped. The right-hand side shows the result of the recursive
partitioning operations.

sort shown in Fig. 5.1l The best choice for ny depends on many details of the ma-
chine and compiler and needs to be determined experimentally; a value somewhere
between 10 and 40 should work fine under a variety of conditions.

The pivot element is chosen by a function pickPivotPos that we shall not specify
further. The correctness does not depend on the choice of the pivot, but the efficiency
does. Possible choices are the first element; a random element; the median (“middle”)
element of the first, middle, and last elements; and the median of a random sample
consisting of k elements, where k is either a small constant, say 3, or a number
depending on the problem size, say [\/ r—0+1 ] . The first choice requires the least
amount of work, but gives little control over the size of the subproblems; the last
choice requires a nontrivial but still sublinear amount of work, but yields balanced
subproblems with high probability. After selecting the pivot p, we swap it into the
first position of the subarray (= position ¢ of the full array).

The repeat—until loop partitions the subarray into two proper (smaller) subarrays.
It maintains two indices i and j. Initially, i is at the left end of the subarray and j is at
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the right end; i scans to the right, and j scans to the left. After termination of the loop,
we have i = j+ 1 or i = j+ 2, all elements in the subarray a[¢..;] are no larger than
p, all elements in the subarray afi..r] are no smaller than p, each subarray is a proper
subarray, and, if i = j+2, a[j+ 1] is equal to p. So, recursive calls gSort(a, ¢, j) and
gSort(a,i,r) will complete the sort. We make these recursive calls in a nonstandard
fashion; this is discussed below.

Let us see in more detail how the partitioning loops work. In the first iteration
of the repeat loop, i does not advance at all but remains at ¢, and j moves left to the
rightmost element no larger than p. So, j ends at £ or at a larger value; generally, the
latter is the case. In either case, we have i < j. We swap ali| and a[j], increment i,
and decrement j. In order to describe the total effect more generally, we distinguish
cases.

If p is the unique smallest element of the subarray, j moves all the way to /, the
swap has no effect, and j = ¢ — 1 and i = ¢+ 1 after the increment and decrement.
We have an empty subproblem a[{..¢ — 1] and a subproblem a[¢ 4 1..r]. Partitioning
is complete, and both subproblems are proper subproblems.

If j moves down to i+ 1, we swap, increment i to £+ 1, and decrement j to £.
Partitioning is complete, and we have the subproblems a[¢..¢] and a[¢ + 1..r]. Both
subarrays are proper subarrays.

If j stops at an index larger than i + 1, we have ¢ < i < j < r after executing the
line marked (*) in Fig. Also, all elements to the left of i are at most p (and there
is at least one such element), and all elements to the right of j are at least p (and
there is at least one such element). Since the scan loop for i skips only over elements
smaller than p and the scan loop for j skips only over elements larger than p, further
iterations of the repeat loop maintain this invariant. Also, all further scan loops are
guaranteed to terminate by the italicized claims above and so there is no need for an
index-out-of-bounds check in the scan loops. In other words, the scan loops are as
concise as possible; they consist of a test and an increment or decrement.

Let us next study how the repeat loop terminates. If we have i < j+ 2 after the
scan loops, we have i < j in the termination test. Hence, we continue the loop. If we
have i = j — 1 after the scan loops, we swap, increment i, and decrement j. So i =
J+ 1, and the repeat loop terminates with the proper subproblems al[¢..;] and ali..r].
The case i = j after the scan loops can occur only if afi] = p. In this case, the swap
has no effect. After incrementing i and decrementing j, we have i = j + 2, resulting
in the proper subproblems a[¢..j] and a[j + 2..r], separated by one occurrence of p.
Finally, when i > j after the scan loops, then either i goes beyond j in the first scan
loop or j goes below i in the second scan loop. By our invariant, i must stop at j + 1
in the first case, and then j does not move in its scan loop or j must stop at i — I in the
second case. In either case, we have i = j+ 1 after the scan loops. The line marked
(*) is not executed, so we have subproblems a[¢.. j] and a[i..r], and both subproblems
are proper.

We have now shown that the partitioning step is correct, terminates, and generates
proper subproblems.
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Exercise 5.29. Does the algorithm stay correct if the scan loops skip over elements
equal to p? Does it stay correct if the algorithm is run only on inputs for which all
elements are pairwise distinct?

The refined quicksort handles recursion in a seemingly strange way. Recall that
we need to make the recursive calls gSort(a,?, j) and gSort(a,i,r). We may make
these calls in either order. We exploit this flexibility by making the call for the smaller
subproblem first. The call for the larger subproblem would then be the last thing
done in gSort. This situation is known as tail recursion in the programming-language
literature. Tail recursion can be eliminated by setting the parameters (¢ and r) to the
right values and jumping to the first line of the procedure. This is precisely what
the while-loop does. Why is this manipulation useful? Because it guarantees that
the size of the recursion stack stays logarithmically bounded; the precise bound is
[log(n/ng)]. This follows from the fact that in a call for a[f..r], we make a single
recursive call for a subproblem which has size at most (r— ¢+ 1)/2.

Exercise 5.30. What is the maximal depth of the recursion stack without the “smaller
subproblem first” strategy? Give a worst-case example.

*Exercise 5.31 (sorting strings using multikey quicksort [IE]). Let s be a se-
quence of n strings. We assume that each string ends in a special character that is
different from all “normal” characters. Show that the function mkgSort(s, 1) below
sorts a sequence s consisting of different strings. What goes wrong if s contains
equal strings? Solve this problem. Show that the expected execution time of mkgSort
is O(N +nlogn) if N=Y,c|e|.

Function mkqSort(s : Sequence of String, i : N) : Sequence of String
assert Ve,e' € s:¢e[l..i— 1] =¢[1..i—1]
if |s| <1 then return s /I base case
pick p € s uniformly at random /I pivot character
return concatenation of mkqSort({e € s : e[i] < pl[i]),i),
mkgSort({e € s e[i] = p[i]),i+ 1), and
mkgSort({e € s : e[i] > p[i]) ,i)

Exercise 5.32. Implement several different versions of gSort in your favorite pro-
gramming language. Use and do not use the refinements discussed in this section,
and study the effect on running time and space consumption.

*Exercise 5.33 (Strictly inplace quicksort). Develop a version of quicksort that
requires only constant additional memory. Hint: Develop a nonrecursive algorithm
where the subproblems are marked by storing their largest element at their first array
entry.

5.7 Parallel Quicksort

Analogously to parallel mergesort, there is a trivial parallelization of quicksort that
performs only the recursive calls in parallel. We strive for a more scalable solution
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that also parallelizes partitioning. In principle, parallel partitioning is also easy: Each
PE is assigned an equal share of the array to be partitioned and partitions it. The
partitioned pieces have to be reassembled into sequences. Compared with mergesort,
parallel partitioning is simpler than parallel merging. However, since the pivots we
choose will not split the input perfectly into equal pieces, we face a load-balancing
problem: Which processors should work on which recursive subproblem? Overall,
we get an interesting kind of parallel algorithm that combines data parallelism with
task parallelism. We first explain this in the distributed-memory setting and then
outline a shared-memory solution that works almost in-place.

Exercise 5.34. Adapt Algorithm [5.7] to become a task-parallel algorithm with work
O(nlogn) and span O (log®n).

5.7.1 Distributed-Memory Quicksort

Figure [3.11] gives high-level pseudocode for distributed-memory parallel quicksort.
Figure gives an example. In the procedure parQuickSort, every PE has a local
array s of elements. The PEs cooperate in groups and together sort the union of their
arrays. Each group is an interval i.. j of PEs. Initially i = 1, j = p, and each processor
has an about equal share of the input, say PEs 1..j have [n/p] elements and PEs
Jj+ 1..p have |n/p] elements, where j = p- (n/p — |n/p]). The recursion bottoms
out when there is a single processor in the group, i.e., i = j. The PE completes the
sort by calling sequential quicksort for its piece of the input. When further partition-
ing is needed, the PEs have to agree on a common pivot. The choice of pivot has a
significant influence on the load balance and is even more crucial than for sequential
quicksort. For now, we shall only explain how to select a random pivot; we shall
discuss alternatives at the end of the section. The group i..j of PEs needs to select
a random element from the union of their local arrays. This can be implemented

Function parQuickSort(s : Sequence of Element, i, j : N) : Sequence of Element

pi=j—i+l1 /I # of PEs working together
if i = j then quickSort(s) ; returns /I sort locally
v:=pickPivot(s,i, j)

a=(e€s:e<v); bi=(e€s:e>v) /I partition
ng =Y i<k<jlal@k;  ny:=Y<x<;|b| @k /I all-reduce in segment i..j i
K= e pf /I fractional number of PEs responsible fora
choose k € {|K'|,[K']} such that max { [%], 7% | } is minimized 3

send the a’s to PEs i..i+k — 1 such that no PE receives more than [5¢] of them
send the b’s to PEs i+ k.. j such that no PE receives more than f% of them
receive data sent to PE iproc into s

if iproc < i+ k then parQuickSort(s,i,i+k— 1) else parQuickSort(s,i+k, j)

Fig. 5.11. SPMD pseudocode for parallel quicksort. Each PE has a local array s. The group
i..j of PEs work together to sort the union of their local arrays.
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PE 3 i=1 j=3
3 9 6 p =3
partition
3][9 6] | =4m=6
— H— p 4 6
y - N k=1
2 01 3|18 5 4 7 9 6 i=2 j=3p =2
i=j=1 v partition
qucksorr |54 8] 2 =4
— fTo b )
0 1 2 3 a b a \ b K=x72=%
k=1
5 4 8 7 9 6
i=j=2 i=j=3
quickSort quickSort
4 5 6 7 8 9

Fig. 5.12. Example of distributed-memory parallel quicksort.

efficiently using prefix sums as follows: We compute the prefix sum over the local
values of |s|, i.e., PE £ € i..j obtains the number S@/: =Y,/ |s| @k of elements
stored in PEs i..£. Moreover all PEs in i..j need the total size S@ j; see Sect.
for the realization of prefix sums. Now we pick a random number x € 1..S@ . This
can be done without communication if we assume that we have a replicated pseu-
dorandom number generator, i.e., a generator that computes the same number on all
participating PEs. The PE where x € S — |s| + 1..S picks s[x — (S — |s|]) as the pivot
and broadcasts it to all PEs in the group.

In practice, an even simpler algorithm can be used that approximates random
sampling if all PEs hold a similar number of elements. We fist pick a random PE
index £ using a replicated random number generator. Then PE ¢ broadcasts a random
element of s@/{. Note that the only nonlocal operation here is a single broadcast; see
Sect.[[311

Once each PE knows the pivot, local partitioning is easy. Each PE splits its local
array into the sequence a of elements no larger than the pivot and the sequence b of
elements larger than the pivot. We next need to set up the two subproblems. We split
the range of PEs i..j into subranges i..i+k — 1 and i + k.. j such that the left subrange
sorts all the a’s and the right subrange sorts the 5’s. A crucial decision is how to
choose the number k of PEs dedicated to the a’s. We do this so as to minimize load
imbalance. The load balance would be perfect if we could split PEs into fractional
pieces. This calculation is done in lines 1 and 2. Then line 3 rounds this so that load
imbalance is minimized.

Now the data has to be redistributed accordingly. We explain the redistribution for
a. For b, this can be done in an analogous fashion. A similar redistribution procedure
is explained as a general load-balancing principle in Sect. Conceptually, we
assign global numbers to the array elements — element a[x] of PE iproc gets a number
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Zkipmc |a| @£+ x. Note that this can be done using yet another prefix sum calculation.
Let L = [n,/k] denote the maximum number of elements we want to send to one PE.
We send the element with global number y to PE i+ | (y — 1)/L|. This way, each PE
gets at most L elements and the receiving PEs range from i+ [(1 —1)/L| =i to
i+ |(ng—1)/L] <i+k—1.Since the elements of a have consecutive numbers, they
are sent to at most [|a|/L] + 1 PEs with consecutive PE numbers. In other words, a
is split into up to [|a|/L] + 1 pieces of consecutive elements. Each piece can be sent
as a single message.

Exercise 5.35. Give detailed pseudocode for a procedure actually doing the message
exchange.

We shall not give a detailed analysis of parallel quicksort but restrict ourselves
to an outline. The first analysis of the expected performance of sequential quicksort
given in Sect.[5.6.1] can be generalized to show that with high probability the depth
of the parallel recursion is O(log p) — a longer recursion branch would require a
sequence of bad pivots that is very unlikely.

Exercise 5.36. Give a formal proof similar to the one of Lemma/5.13

A single level of recursion takes time

O<max |s| @k + 10gp> ,
kel..p

where the logarithmic term stems from the collective broadcast, reduction, and
prefix-sum operations needed to coordinate the PEs. Summing over all levels of re-
cursion, we get a term O(log2 p) for the collective communication operations. If all
PEs always had the same number of elements |s| = %, the remaining work would
be O(% log p) for the recursion and O(% log %) for the base-case sequential sorting.
Overall, we would get time

O(Elogn—l-logzp).
p

This includes O(log? p) message startup overhead, O(3 log p) communication vol-
ume, and O(% logn) element comparisons. Hence, we can hope for similar perfor-
mance as for parallel mergesort if we can bound the load imbalance.

So, let us have a closer look at load balancing. Assuming perfect load balance for
the input, the good news is that load imbalance stems only from rounding effects that
“should” be small. However, the bad news is that these rounding errors have to be
multiplied in each level of recursion. How bad can the rounding errors get? The worst
that can happen is that one of the recursive subproblems gets (almost) one PE load’s
worth of elements more than the other one. Since we always round in an optimal
way, we can assume that this additional load is allocated to the larger subproblem
— of course, it can also happen that the smaller subproblem gets more elements per
PE, but only if this results in a smaller imbalance. To make the analysis simple, we
shall analyze a modified algorithm that only uses “good” pivots where the smaller
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subproblem has size at least |s[/4. The worst case is then that we have k =log, 3 p
levels of recursion and an imbalance factor bounded by

k 1 Z?:l ln<1+%)
H 14+ (3/4):‘ —e p(3/4) Estimate |A. 18
i=1 p
o= Lyk 3y :
<e 0P/ = eb ko Equation[A.T4]
.

1@k | x
—e? T < ert@) — 4 546,

The good news is that this is a constant, i.e., our algorithm achieves con-
stant efficiency. The bad news is that e¢* is a rather large constant, and even a
more detailed analysis will not get an imbalance factor close to one. However,
we can refine the algorithm to get a better load balance. A key observation is
that TT¥; (141/(p(3/4)))) is close to one if (4/3)F = o(p). For example, once
j—1i<logp, we could switch to another algorithm with better load balance. For
example, we can choose the pivot carefully based on a large sample. Or, we could
switch to the sample sort algorithm described in Sect.[5.13] This hybrid algorithm
combines the high scalability of pure quicksort with the good load balance of pure
sample sort. Another interesting approach is JanusSort [24] that actually splits the
PEs fractionally and thus achieves perfect load balance. This is possible by spawn-
ing an additional thread on PEs that are fractionally assigned to two subproblems.

5.7.2 *In-Place Shared-Memory Quicksort

A major reason for the popularity of sequential quicksort is its small memory foot-
print. Besides the space for the input array, it only requires space for the recursion
stack. The depth of the recusion stack can be kept logarithmic in the size of the in-
put if the smaller subproblem is always solved first. Is there also a parallel quicksort
which is basically in-place? Tsigas and Zhang [316] described such an algorithm
whose innermost loop is similar to sequential quicksort. Suppose we want to use
p processors to partition an array. We logically split the input array into blocks of
size B and keep two global counters ¢ and r, with ¢ < r. The blocks with indices
[¢+1..r — 1] are untouched. In the innermost loop, each PE works on two blocks L
and R, where the index of L is at most ¢ and the index of R is at least r. As in se-
quential array-based partitioning (Sect.[5.6.2), the PE scans L from left to right and
R from right to left, exchanging small elements of L with large elements of R. When
the right end of block L is reached, L is “clean” — all its elements are small. Block L
is set aside and the PE chooses the block with index ¢+ 1 as its new block. To this
end, the PE increments ¢ atomically and, at the same time, makes sure that £ < r.
A single CAS instruction suffices provided it can access both counters at the same
time[1 Similarly, a new block from the right is acquired by atomically decrementing

% On machines providing only CAS on a single machine word, this can be achieved by mak-
ing the block size sufficiently large, so that two block counters fit into one machine word.
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r. The initial values of £ and r are 1 and [|s|/p]. Once ¢ = r, no further blocks remain
and the parallel partitioning step terminates. It is followed by a cleanup phase. Note
that for each PE, there are up to two blocks that are not yet clean. These are cleaned
using a sequential algorithm.

It is instructive to analyze the scalability of this partitioning algorithm. First of
all, we need B = Q(p), since there would otherwise be too much contention for
updating the counters ¢ and r. The sequential cleaning step looks at ®(p) blocks and
hence needs time Q(pz). Apparently, we pay a high price for the in-place property —

our noninplace algorithm in Sect.[S7.T] has a span of only O (log? p).

**Exercise 5.37. (Research problem) Design a practical in-place parallel sorting al-
gorithm with polylogarithmic span. Hints: One possibility is to improve the Tsigas—
Zhang algorithm by using a smaller block size, a relaxed data structure for assigning
blocks (see also Sect.3.7.2)), and a parallel cleanup algorithm. Another possibility is
to make the algorithm in Sect.[3.7.1lin-place — partition locally and then permute the
data such that we obtain a global partition.

5.8 Selection

Selection refers to a class of problems that are easily reduced to sorting but do not
require the full power of sorting. Let s = {ey,...,e,) be a sequence and call its sorted

/

version 5" = (€],...,€),). Selection of the smallest element amounts to determining

¢!, selection of the largest amounts to determining e}, and selection of the kth small-

est amounts to determining ;. Selection of the mediar] refers to determining e’M 2]

Selection of the median and also of quartileﬂ is a basic problem in statistics. It is
easy to determine the smallest element or the smallest and the largest element by
a single scan of a sequence in linear time. We now show that the kth smallest ele-
ment can also be determined in linear time. The simple recursive procedure shown
in Fig. solves the problem.

This procedure is akin to quicksort and is therefore called quickselect. The key
insight is that it suffices to follow one of the recursive calls. As before, a pivot is
chosen, and the input sequence s is partitioned into subsequences a, b, and ¢ contain-
ing the elements smaller than the pivot, equal to the pivot, and larger than the pivot,
respectively. If |a| > k, we recurse on a, and if k > |a| + |b|, we recurse on ¢ with
a suitably adjusted k. If |a| < k < |a| + |b|, the task is solved: The pivot has rank &
and we return it. Observe that the latter case also covers the situation |s| = k = 1,
and hence no special base case is needed. Figure [5.14] illustrates the execution of
quickselect.

7 The standard definition of the median of an even number of elements is the average of the
two middle elements. Since we do not want to restrict ourselves to the situation where the
inputs are numbers, we have chosen a slightly different definition. If the inputs are numbers,
the algorithm discussed in this section is easily modified to compute the average of the two
middle elements.

8 The elements with ranks [on], where o € {1/4,1/2,3/4}.
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As with quicksort, the worst-case execution time of quickselect is quadratic. But
the expected execution time is linear and hence a logarithmic factor faster than quick-
sort.

Theorem 5.8. Algorithm quickselect runs in expected time O(n) on an input of size n.

Proof. We give an analysis that is simple and shows a linear expected execution
time. It does not give the smallest constant possible. Let 7'(n) denote the maximum
expected execution time of quickselect on any input of size at most n. Then T'(n) is
a nondecreasing function of n. We call a pivot good if neither |a| nor |c| is larger
than 2n/3. Let ¥ denote the probability that a pivot is good. Then y > 1/3, since
each element in the middle third of the sorted version s’ = (¢, ...,¢},) is good. We
now make the conservative assumption that the problem size in the recursive call is
reduced only for good pivots and that, even then, it is reduced only by a factor of
2/3, i.e., reduced to |2n/3]. For bad pivots, the problem size stays at n. Since the
work outside the recursive call is linear in n, there is an appropriate constant ¢ such
that

T(n) < cn—i—}’T({%J) +(1=7)T(n).
Solving for T'(n) yields

T(i’l)gg—i—T(\‘%J)<3Cﬂ+T({é£J><3c(n+_+4§+ )
<3 Z(2)i<3 ! 9
cn 5 cn = 9cn
£\ =273 0

//Find an element with rank k
Function select(s : Sequence of Element; k : N) : Element
assert |s| > k

pick p € s uniformly at random // pivot key
a:=(e€s:e<p) k
if |a| > k then return select(a, k) 1| a |
b:=(ecs:e=p) k
if |a| 4 |b| > k then return p N _a 1b={p,....p) |
c:={e€s:e>p) k
return select(c,k — |a| — |b|) | a [0 ] ¢ ]

Fig. 5.13. Quickselect

s k|p a b c
(3,1,4,5,9,2,6,5,3,5,8) 6(2 (1) (2) (3,4,5,9,6,5,3,5,8)
(3,4,5,9,6,5,3,5,8) 4|6 (3,4,5,5,3,4) (6) 9,8)
(3,4,5,5,3,5) 415 (3,4,3) (5,5,5) ()

Fig. 5.14. The execution of select((3,1,4,5,9,2,6,5,3,5,8,6),6). The middle element (bold)
of the current sequence s is used as the pivot p.
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Exercise 5.38. Modify quickselect so that it returns the k& smallest elements.

Exercise 5.39. Give a selection algorithm that permutes an array in such a way that
the k smallest elements are in entries a[l], ..., a[k]. No further ordering is required
except that alk] should have rank k. Adapt the implementation tricks used in the
array-based quicksort to obtain a nonrecursive algorithm with fast inner loops.

Exercise 5.40 (streaming selection). A data stream is a sequence of elements pre-
sented one by one.

(a) Develop an algorithm that finds the kth smallest element of a sequence that is
presented to you one element at a time in an order you cannot control. You
have only space O(k) available. This models a situation where voluminous data
arrives over a network at a compute node with limited storage capacity.

(b) Refine your algorithm so that it achieves a running time O(nlogk). You may
want to read some of Chap. |6/ first.

*(c) Refine the algorithm and its analysis further so that your algorithm runs in
average-case time O(n) if k = O(n/logn). Here, “average” means that all or-
ders of the elements in the input sequence are equally likely.

5.9 Parallel Selection

Essentially, our selection algorithm in Fig. [5.13]is already a parallel algorithm. We
can perform the partitioning into a, b, and ¢ in parallel using time O(n/p). Determin-
ing |al, |b|, and |c| can be done using a reduction operation in time O(log p). Note that
all PEs recurse on the same subproblem so that we do not have the load-balancing
issues we encountered with parallel quicksort. We get an overall expected parallel ex-
ecution time of O(% +logplogn) = O(% +1og? p). The simplification of the asymp-
totic complexity can be seen from a simple case distinction. If n = O( plog? p) , then
logn = O(log p). Otherwise, the term n/p dominates the term lognlog p.

For parallel selection on a distributed-memory machine, an interesting issue is the
communication volume involved. One approach is to redistribute the data evenly be-
fore a recursive call, using an approach similar to distributed-memory parallel quick-
sort. We then get an overall communication volume O(n/p) per PE, i.e., essentially
all the data is moved.

Function parSelect(s : Sequence of Element; k : N) : Element

v:=pickPivot(s) // requires a prefix sum
a=(e€s:e<v); b:=(ecs:e=v); c:=(e€s:e>v) [/partition k
ng:=Y;la|@i; np:=Y,;|b|@i //reduction 1
if n, > k then return parSelect(a, k) A a |
if n, +np, < k then return parSelect(c,k —ny, —nyp) /" a [0 ] ¢
return v N a 1T b={..v

Fig. 5.15. SPMD pseudocode for communication-efficient parallel selection
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From the point of view of optimizing communication volume, we can do much
better by always keeping the data where it is. We get the simple algorithm outlined
in Fig. However, in the worst case, the elements with ranks near k are all at the
same PE. On that PE, the size of s will only start to shrink after Q(logp) levels of
recursion. Hence, we get a parallel execution time of Q(% log p +log plogn), which
is not efficient.

5.9.1 *Using Two Pivots

The O(log plogn) term in the running time of the parallel selection algorithm stems
from the fact that the recursion depth is O(logn) since the expected problem size is
reduced by a constant factor in each level of the recursion and that time O(log p) time
is needed in each level for the reduction operation. We shall now look at an algorithm
that manages to shrink the problem size by a factor f:=@( pl/ 3) in each level of the
recursion and reduces the running time to O(n/p + logp). Floyd and Rivest ]
(see also , ]) had the idea of choosing two pivots ¢ and r where, with high
probability, ¢ is a slight underestimate of the sought element with rank £ and where
r is a slight overestimate. Figure 3.16] outlines the algorithm and Fig.[3.17] gives an
example.

Function parSelect2(s : Sequence of Element; k : N) : Element
if Y;|s@i| < n/p then // small total remaining input size? (reduction)
gather all data on a single PE
solve the problem sequentially there

else
(€,r):=pickPivots(s) /I requires a prefix sum
a=(e€s:e<l); b:=(ecs:{<e<r);, c:=(e€s:e>r) [lpartition k
ng:=Y;la|@i; ny:=Y;|b|@i [/reduction 1
if n, > k then return parSelect2(a, k) A a |
if n, +ny, < k then return parSelect2(c,k — ng —ny) A a [ ] ¢ ]
return parSelect2(b,k —ng) N _a ] b |
Fig. 5.16. Efficient parallel selection with two splitters
PE 1 PE 2 PE 3 k=5
8 2 0 54 1 7 6|3 9 6 o
partition
rofl
ng=3<5
2 05 8|1 46 7|3 6 9 ny =5
——t [ o | i
a b c |a b o b o ng+n,=9>5
5 4 6 3 6 k=2

selection with two pivots. The figure shows the first level of recursion using three PEs.
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The improved algorithm is similar to the single-pivot algorithm. The crucial dif-
ference lies in the selection of the pivots. The idea is to choose a random sample
S of the input s and to sort S. Now, v = S[|k|S|/|s|]] will be an element with rank
close to k. However, we do not know whether v is an underestimate or an overesti-
mate of the element with rank k. We therefore introduce a safety margin A and set
= S[|k|S|/|s|| — A] and r = S[|k|S|/|s|| + A]. The tricky part is to choose |S| and
A such that sampling and sorting the sample are fast, and that with high probabil-
ity rank(¢) < k < rank(r) and rank(r) — rank(¢) is small. With the right choice of
the parameters |S| and A, the resulting algorithm can be implemented to run in time
O(n/p+1logp).

The basic idea is to choose |S| = ®(\/1_7) so that we can sort the sample in time
O(log p) using the fast, inefficient algorithm in Sect. Note that this algorithm
assumes that the elements to be sorted are uniformly distributed over the PEs. This
may not be true in all levels of the recursion. However, we can achieve this uniform
distribution in time O(n/p + logp) by redistributing the sample.

*Exercise 5.41. Work out the details of the redistribution algorithm. Can you do it
also in time O(fBn/p + alogp)?

We choose A = ®(p1/ 6). Working only with expectations, each sample represents
©(n/,/p) input elements, so that with A = ®(p1/ %), the expected number of ele-
ments between ¢ and r is @(n/\/ﬁ~p1/6) = @(n/p1/3).

**Exercise 5.42. Prove using Chernoff bounds (see Sect.[A3)) that for any constant
¢, with probability at least 1 — p~¢, the following two propositions hold: The number
of elements between ¢ and r is © (n/p'/?) and the element with rank k is between ¢
and r.

Hence, a constant number of recursion levels suffices to reduce the remaining input
size to O(n/p). The remaining small instance can be gathered onto a single PE in
time O(n/p) using the algorithm described in Section Solving the problem
sequentially on this PE then also takes time O(n/p).

The communication volume of the algorithm above can be reduced [@]. Further
improvements are possible if the elements on each PE are sorted and when £ is not
exactly specified. Bulk deletion from parallel priority queues (Sect. is a natural
generalization of the parallel selection problem.

5.10 Breaking the Lower Bound

The title of this section is, of course, nonsense. A lower bound is an absolute state-
ment. [t states that, in a certain model of computation, a certain task cannot be carried
out faster than the bound. So a lower bound cannot be broken. But be careful. It can-
not be broken within the model of computation used. The lower bound does not
exclude the possibility that a faster solution exists in a richer model of computation.
In fact, we may even interpret the lower bound as a guideline for getting faster. It
tells us that we must enlarge our repertoire of basic operations in order to get faster.
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Procedure KSort(s : Sequence of Element) s> ¢
b={((),...,()) : Array [0..K — 1] of Sequence of Element
foreach e € s do blkey(e)].pushBack(e) 1/
s:= concatenation of b[0], ... ,b[K —1]

b[0] b[1] b[2] b[3] b[4]
Fig. 5.18. Sorting with keys in the range 0..K — 1

Procedure LSDRadixSort(s : Sequence of Element)

fori:=0tod—1do ' digits
redefine key(x) as (xdivK’) mod K I x ]
KSort(s) key (x)

invariant s is sorted with respect to digits i..0

Fig. 5.19. Sorting with keys in 0..K¢ — 1 using least significant digit (LSD) radix sort

What does this mean in the case of sorting? So far, we have restricted ourselves
to comparison-based sorting. The only way to learn about the order of items was
by comparing two of them. For structured keys, there are more effective ways to
gain information, and this will allow us to break the Q(nlogn) lower bound valid for
comparison-based sorting. For example, numbers and strings have structure: they are
sequences of digits and characters, respectively.

Let us start with a very simple algorithm, Ksort (or bucket sort), that is fast if
the keys are small integers, say in the range 0..K — 1. The algorithm runs in time
O(n+K). We use an array b[0..K — 1] of buckets that are initially empty. We then
scan the input and insert an element with key & into bucket b[k]. This can be done in
constant time per element, for example by using linked lists for the buckets. Finally,
we concatenate all the nonempty buckets to obtain a sorted output. Figure[5.18| gives
the pseudocode. For example, if the elements are pairs whose first element is a key
in the range 0..3 and

§= <(37a)7 (17b)7 (27C)7 (37d)7 (O7e)7 (07f)7 (37g)7 (27h)7 (17i)>’

we obtain b = [((0,¢), (0, 1)), ((1,b),(1,0)), ((2,¢),(2,h)), ((3,a),(3,d),(3,8))]
and output ((0,¢),(0, f),(1,b),(1,i),(2,¢),(2,h),(3,a),(3,d),(3,g)). This example
illustrates an important property of Ksort. Itis stable, i.e., elements with the same key
inherit their relative order from the input sequence. Here, it is crucial that elements
are appended to their respective bucket.

Comparison-based sorting uses two-way branching. We compare two elements
and follow different branches of the program depending on the outcome. In KSort,
we use K-way branching. We put an element into the bucket selected by its key and
hence may proceed in K different ways. The K-way branch is realized by array access
and is visualized in Figure[3.18

KSort can be used as a building block for sorting larger keys. The idea behind
radix sort is to view integer keys as numbers represented by digits in the range
0..K — 1. Then KSort is applied once for each digit. Figure[5.19 gives a radix-sorting
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algorithm for keys in the range 0..K¢ — 1 that runs in time O(d(n+K)). The ele-
ments are first sorted by their least significant digit (LSD radix sort), then by the
second least significant digit, and so on until the most significant digit is used for
sorting. It is not obvious why this works. The correctness rests on the stability of
Ksort. Since KSort is stable, the elements with the same ith digit remain sorted with
respect to digits i — 1..0 during the sorting process with respect to digit i. For exam-
ple,if K =10,d = 3, and

s =(017,042,666,007,111,911,999), we successively obtain
s =(111,911,042,666,017,007,999),

s =(007,111,911,017,042,666,999), and

s =(007,017,042,111,666,911,999).

*Exercise 5.43 (variable length keys). Assume that input element x is a number
with d, digits.

(a) Extend LSD radix sort to this situation and show how to achieve a running time
of O(dmax(n+K)), where dpax is the maximum dy of any input.

(b) Modify the algorithm so that an element x takes part only in the first d, rounds of
radix sort, i.e., only in the rounds corresponding to the last d, digits. Show that
this improves the running time to O(L + Kdmax ), where L = ¥, d, is the total
number of digits in the input.

(c) Modify the algorithm further to achieve a running time of O(L+ K). Hint: From
an input x = Yoy 4 %K' generate the d, pairs (¢,x;), 0 < ¢ < dy, and sort them
using radix sort. Use K buckets for the first round of radix sort and dax buckets
for the second round. Observe that the ¢th bucket, 0 < ¢ < dpax, Will contain
the multiset of digits that occur as the (th least significant digit. Now run LSD
radix sort on the original inputs with the following modification: Whenever you
concatenate buckets at the end of a call of Ksort, concatenate only the nonempty
buckets and do not touch the empty buckets.

*Exercise 5.44 (string sorting). Modify the algorithm from Exercise to sort
strings of total length N over an alphabet of size K in time O(N + K).

Radix sort starting with the most significant digit (MSD radix sort) is also pos-
sible. Here, we apply KSort to the most significant digit and then sort each bucket
recursively. The only problem is that a bucket may contain much fewer than K ele-
ments and then it would be wasteful to sort it further using maybe several rounds
of KSort. The solution is to switch to another sorting algorithm when the buck-
ets become small. This works particularly well if we can assume that the keys are
uniformly distributed. More specifically, let us now assume that the keys are real
numbers with 0 < key(e) < 1. The algorithm uniformSort in Fig. scales these
keys to integers between 0 and n — 1 = |s| — 1 and groups them into n buckets,
where bucket b[i] is responsible for keys in the range [i/n, (i + 1)/n). For example,
if s = (0.8,0.4,0.7,0.6,0.3), we obtain five buckets responsible for intervals of size
0.2, and b = [(),(0.3),(0.4),(0.7,0.6), (0.8)]. Only b[3] = (0.7,0.6) is a nontrivial
subproblem. uniformSort is very efficient for random keys.
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Procedure uniformSort(s : Sequence of Element)
n:=|s|
b={(),...,()) : Array [0..n — 1] of Sequence of Element
foreach e € s do b[|key(e) - n]].pushBack(e)
for i:=0ton—1do sort b[i] in time O(|b[i]|log|b[i]|)
s:= concatenation of b[0],...,b[n—1]

Fig. 5.20. Sorting random keys in the range [0, 1)

Theorem 5.9. If the keys are independent uniformly distributed random values in
[0, 1), uniformSort sorts n keys in expected time O(n) and worst-case time O(nlogn).
The linear time bound for the average case holds even if an algorithm with quadratic
running time is used for sorting the buckets.

Proof. We leave the worst-case bound as an exercise and concentrate on the average
case. The total execution time 7 is O(n) for setting up the buckets and concatenating
the sorted buckets, plus the time for sorting the buckets. Let 7; denote the time for
sorting the ith bucket. We obtain

)T

i<n

E[T] =0(n)+E =0(n)+ Y_E[T;] = O(n) + nE[Ty).

i<n

The second equality follows from the linearity of expectations (A.3), and the third
equality uses the fact that all bucket sizes have the same distribution for uniformly
distributed inputs. Hence, it remains to show that E[75] = O(1). The analysis is sim-
ilar to the arguments used to analyze the behavior of hashing in Chap. Fl

Let By = |b[0]|. We have E[Ty] = O(E[B]]). The random variable By obeys a
binomial distribution (A-8) with n trials and success probability 1/, and hence

n\ /(1) NN A1 N
—17) = — —_ — < ——==—<|-=
prob(Bo =) (z) <n> (1 n) She s (z) .

where the last inequality follows from Stirling’s approximation to the factorial

(A-T10). We obtain
E[B}] = Y 2 prob(By = i) < ¥ (;)'

i<n i<n

N e i—2
=L (%) +ez,§(7)

<o(l)+eY, G)iz =0(1),

i>6
and hence E[T] = O(n) (note that e/i < 1/2 for i > 6). O

*Exercise 5.45 (inplace bucket sort). Develop an sorting algorithm for elements
with keys in the range 0..K — 1 that uses the data structure of Exercise .31l The
space consumption should be n+ O(n/B + KB) for n elements, and blocks of size B.
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5.11 *Parallel Bucket Sort and Radix Sort

We shall first describe a stable, distributed-memory implementation of bucket sort.
Each PE builds a local array of K buckets and distributes its locally present ele-
ments to these buckets. Now we need to concatenate local buckets to form global
buckets. Note that the bucket sizes can be extremely skewed. For example, 90%
of all elements could have key 42. We need to ensure good load balance even for
highly skewed inputs — each PE gets at most L:= [n/p] elements. We use a similar
strategy to that in parallel quicksort and use prefix sums to assign global numbers
to all elements. To do this, we compute both the global bucket sizes and a vector-
valued prefix sum over the bucket sizes. This can be done in time O(K +logp);
see Sect. Let m;:=Y ;|b[i]@j| denote the global size of bucket i. Then the
kth element, 0 < k < |b[i]@iproc|, in bucket i on PE iy gets a global number
Yj<imj+ Ljcip [Pli]1@]| + k. An element with global number y is assigned to
PE 1+ |(y—1)/L]. Assuming that no PE initially has more then L elements, no local
bucket will spread over more than two PEs, and hence a PE sends at most 2K mes-
sages. The average number of received messages is the same. However, in the worst
case, there might be a situation where many small buckets are assigned to one PE.

PE 1:els. 0..4/PE 2:els. 5..9|PE 3: els.10..14
0alb3c0d 2e |1f3glhlj2k |[3l1nln302p | input
1i local
| [ b 5
Oa|[1b|]2e|[3c 1f ||2k|[3g 1m2p|(3I
01 2 3/0 1 2 3|0 1 2 3]|key
=y 21 1 1{0 3 1 1/0 2 1 2| size
mp=2 0 | 0 2 2
m1:6 2 0 1 4 S
my=3 8 0 1 2
my =4 11 0 1 2|4 o
- o % - n oo N~ o 2|32
S & «© T @ X ¢ T TIEE
= a S K
- o C
u& JL move
elements
lpaod|[tb1t1h | 1j 1nin|[2e 2k  2p][[3c3g3i 30 glt?cbkaelts

Fig. 5.21. Parallel bucket sort of 15 elements with K = 4. The elements have a letter as asso-
ciated information. For example, 2k stands for an element with key 2 and information k. The
middle part of the figure shows various sums and prefix sums. m; is the number of elements in
buckets i summed over all processors. The column X shows the prefix sums for the m;’s. The
rows Z— show the prefix sums of the |5[i] @ j|. The elements in bucket 1 of processor 2 have
global numbers ¥ ;o m; + Y j> [b[1]@j| +k=2+1+k=3+k 0 <k <3, ie., their global
numbers span the interval 3..5. PE 2 sends one message to itself; it contains 1; and 2k.
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This PE might have to receive @(pK) messages. Therefore, pieces of buckets moved
to the same PE should be packed into a single message. This limits the number of
sent and received messages to p. Figure 5.21] gives an example. The overall cost of
the data exchange is Tyj—san (L) using an all-to-all communication; see Sect.

The above stable distributed bucket sort can be used to implement parallel LSD
radix sort. A disadvantage of LSD radix sort is that all elements are moved d times
in d-digit radix sort. An alternative is to start radix sort with the Most Significant
Digit (MSD radix sort). Buckets of size m; < L can then be assigned to a single
PE where they can be sorted locally looking at the remaining digits. Larger buckets
still need to be split between several PEs but at least the number of PEs involved
decreases. Also, if the PEs are numbered so as to respect locality of communication,
then communication between PEs assigned to the same bucket may be faster than
global communication.

5.12 *External Sorting

Sometimes the input is so large that it does not fit into internal memory. In this
section, we learn how to sort such data sets in the external-memory model introduced
in Sect. This model distinguishes between a fast internal memory of size M and
a large external memory. Data is moved in blocks of size B between the two levels
of the memory hierarchy. Scanning data is fast in external memory, and mergesort
is based on scanning. We therefore take mergesort as the starting point for external-
memory sorting.

Assume that the input is given as an array in external memory. We shall describe a
nonrecursive implementation of mergesort for the case where the number of elements
n is divisible by B. We load subarrays of size M into internal memory, sort them
using our favorite algorithm, for example gSort, and write the sorted subarrays back
to external memory. We refer to the sorted subarrays as runs. The run formation
phase takes n/B block reads and n/B block writes, i.e., a total of 2n/B 1/0s. We then
merge pairs of runs into larger runs in [log(n/M)| merge phases, ending up with a
single sorted run. Figure[3.22] gives an example for n = 48 and runs of length 12.

How do we merge two runs? We keep one block from each of the two input
runs and one from the output run in internal memory. We call these blocks buffers.

nmake_things_ as_sinple_as _possible_bu t_no_sinpler

> formRuns < > formRuns < > formRuns < > formRuns <

__aeghi kmmst __aaei | npsss __aaeil npsss __ei |l mopr st

merge merge
__aaaeeghi i kI mmpsssst __ _bbeeiill moopprssstu
merge
aaabbeeeeghiiii kl Il mmmnooppprsssssssttu

Fig. 5.22. An example of two-way mergesort with initial runs of length 12.
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Initially, the input buffers are filled with the first B elements of the input runs, and
the output buffer is empty. We compare the leading elements of the input buffers and
move the smaller element to the output buffer. If an input buffer becomes empty, we
fetch the next block of the corresponding input run; if the output buffer becomes full,
we write it to external memory.

Each merge phase reads all current runs and writes new runs of twice the length.
Therefore, each phase needs /B block reads and n/B block writes. Summing over
all phases, we obtain (2n/B)(1 + [logn/M]) 1/Os. This technique works provided
that M > 3B.

5.12.1 Multiway Mergesort

In general, internal memory can hold many blocks and not just three. We shall de-
scribe how to make full use of the available internal memory during merging. The
idea is to merge more than just two runs; this will reduce the number of phases.
In k-way merging, we merge k sorted sequences into a single output sequence. In
each step, we find the input sequence with the smallest first element. This element
is removed and appended to the output sequence. External-memory implementation
is easy as long as we have enough internal memory for k input buffer blocks, one
output buffer block, and a small amount of additional storage.

For each sequence, we need to remember which element we are currently con-
sidering. To find the smallest element out of all k sequences, we keep their current
elements in a priority queue. A priority queue maintains a set of elements support-
ing the operations of insertion and deletion of the minimum. Chapter[6] explains how
priority queues can be implemented so that insertion and deletion take time O(logk)
for k elements. The priority queue tells us, at each step, which sequence contains
the smallest element. We delete this element from the priority queue, move it to the
output buffer, and insert the next element from the corresponding input buffer into
the priority queue. If an input buffer runs dry, we fetch the next block of the corre-
sponding sequence, and if the output buffer becomes full, we write it to the external
memory.

How large can we choose k? We need to keep k+ 1 blocks in internal memory
and we need a priority queue for k keys. So, we need (k+1)B+O(k) <M or k =
O(M/B). The number of merging phases is reduced to [log,(n/M)], and hence the
total number of I/Os becomes

2% (1 + [1ogM/B%D. (5.2)

The difference from binary merging is the much larger base of the logarithm. In-
terestingly, the above upper bound for the I/O complexity of sorting is also a lower
bound [6], i.e., under fairly general assumptions, no external sorting algorithm with
fewer I/O operations is possible.

In practice, the number of merge phases will be very small. Observe that a single
merge phase suffices as long as n < M? /B. We first form M /B runs of length M each
and then merge these runs into a single sorted sequence. If internal memory stands
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for DRAM and “external memory” stands for hard disks or solid state disks, this
bound on 7 is no real restriction, for all practical system configurations.

Exercise 5.46. Show that a multiway mergesort needs only O(nlogn) element com-
parisons.

Exercise 5.47 (balanced systems). Study the current market prices of computers,
internal memory, and mass storage (currently hard disks and solid state disks). Also,
estimate the block size needed to achieve good bandwidth for I/O. Can you find
any configuration where multiway mergesort would require more than one merging
phase for sorting an input that fills all the disks in the system? If so, what fraction of
the cost of that system would you have to spend on additional internal memory to go
back to a single merging phase?

5.12.2 Sample Sort

The most popular internal-memory sorting algorithm is not mergesort but quicksort.
So it is natural to look for an external-memory sorting algorithm based on quick-
sort. We shall sketch sample sort (11d]. It has the same performance guarantees as
multiway mergesort (5.2), but only in expectation not in the worst case. On the posi-
tive side, sample sort is easier to adapt to parallel disks and parallel processors than
merging-based algorithms. Furthermore, similar algorithms can be used for fast ex-
ternal sorting of integer keys along the lines of Sect.

Instead of the single pivot element of quicksort, we now use k — 1 splitter el-
ements si, ..., Sy_1 to split an input sequence into k output sequences, or buckets.
Bucket i gets the elements e for which s;_1 < e < s;. To simplify matters, we define
the artificial splitters sy = —oo and s; = oo and assume that all elements have differ-
ent keys. The splitters should be chosen in such a way that the buckets have a size
of roughly n/k. The buckets are then sorted recursively. In particular, buckets that fit
into the internal memory can subsequently be sorted internally. Note the similarity
to the MSD radix sort described in Sect.

The main challenge is to find good splitters quickly. Sample sort uses a fast,
simple randomized strategy. For some integer a, we randomly choose (a+ 1)k —1
sample elements from the input. The sample S is then sorted internally, and we de-
fine the splitters as s; = S[(a+ 1)i] for 1 <i < k—1, i.e., consecutive splitters are
separated by a samples, the first splitter is preceded by a samples, and the last split-
ter is followed by a samples. Taking a = O results in a small sample set, but the
splitting will not be very good. Moving all n elements to the sample will result in
perfect splitters, but the sample will be too big. The following analysis shows that
setting a = O®(logk) achieves roughly equal bucket sizes at low cost for sampling and
sorting the sample.

The most I/O-intensive part of sample sort is the k-way distribution of the input
sequence to the buckets. We keep one buffer block for the input sequence and one
buffer block for each bucket. These buffers are handled analogously to the buffer
blocks in k-way merging. If the splitters are kept in a sorted array, we can find the
right bucket for an input element e in time O(logk) using binary search.
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Theorem 5.10. Sample sort uses

O (1+[ozwn 371))

expected 1/O steps for sorting n elements. The internal work is O(nlogn).

We leave a detailed proof to the reader and describe only the key ingredient of
the analysis here. We use k = ®(min(n/M,M/B)) buckets and a sample of size
O(klogk). The following lemma shows that with this sample size, it is unlikely that
any bucket has a size much larger than the average. We hide the constant factors
behind O(+) notation because our analysis is not very tight in this respect.

Lemma 5.11. Let k > 2 and a+ 1 = 121Ink. A sample of size (a+ 1)k — 1 suffices to
ensure with probability at least 1 /2 that no bucket receives more than 4n/k elements.

Proof. As in our analysis of quicksort (Theorem[3.6), it is useful to study the sorted
version s’ = (¢},...,¢},) of the input. Assume that there is a bucket with at least 4n/k
elements assigned to it. We estimate the probability of this event.

We split 5" into k/2 segments of length 2n/k. The jth segment #; contains ele-
ments elz, in k1 to e/z(j ke If 4n/k elements end up in some bucket, there must be
some segment ¢; such that all its elements end up in the same bucket. This can only
happen if fewer than a + 1 samples are taken from 7;, because otherwise at least one
splitter would be chosen from ¢; and its elements would not end up in a single bucket.
Let us concentrate on a fixed j.

We use a random variable X to denote the number of samples taken from ¢;.
Recall that we take (a + 1)k — 1 samples. For each sample i, 1 <i< (a+ 1)k—1,
we define an indicator variable X; with X; = 1 if the ith sample is taken from ¢; and
Xi = 0 otherwise. Then X = }j<j<(q41)k—1Xi- Also, the X;’s are independent, and
prob(X; = 1) = 2/k. Independence allows us to use the Chernoff bound (A6) to
estimate the probability that X < a+ 1. We have

E[X] = ((a+ 1)k — 1)-% —2at1)— 3<“2+ b,
Hence X < a+ 1 implies X < (1 —1/3)E[X], and so we can use (A.6) with € = 1/3.
Thus

>

taul BNV

prob(X <a+1) < e W/OEXI/2 < = (at)/12 _ p=Ink %
The probability that an insufficient number of samples is chosen from a fixed ¢; is
thus at most 1/k, and hence the probability that an insufficient number is chosen
from some ¢; is at most (k/2) - (1/k) = 1/2. Thus, with probability at least 1/2, each
bucket receives fewer than 4n/k elements. ad

Exercise 5.48. Work out the details of an external-memory implementation of sam-
ple sort. In particular, explain how to implement multiway distribution using 2n/B +
k+ 1 /O steps if the internal memory is large enough to store k+ 1 blocks of data
and O(k) additional elements.



5.13 Parallel Sample Sort with Implementations 191

Exercise 5.49 (many equal keys). Explain how to generalize multiway distribution
so that it still works if some keys occur very often. Hint: There are at least two
different solutions. One uses the sample to find out which elements are frequent.
Another solution makes all elements unique by interpreting an element e at an input
position i as the pair (e,i).

*Exercise 5.50 (more accurate distribution). A larger sample size improves the
quality of the distribution. Prove that a sample of size O((k/€?)log(km/€)) guar-
antees, with probability at least 1 — 1/m, that no bucket has more than (1 + €)n/k
elements. Can you get rid of the € in the logarithmic factor?

5.13 Parallel Sample Sort with Implementations

We learned about sample sort as an external-memory algorithm in Sect. It
is equally useful for parallel sorting ]. We begin with a high-level description as
a distributed-memory algorithm. Then we describe shared memory and MPI imple-
mentations in sections [5.13.1and respectively.

Figure gives high-level pseudocode for distributed-memory sample sort.
The number of splitters is now p — 1: We divide the input into p pieces of about
equal size, one for each PE. The procedure selectSplitters encapsulates the task of
selecting samples in parallel and extracting splitters from them. A pragmatic approx-
imation to a uniform random sample is that each PE chooses a number of samples
from its local data proportional to its share in the overall amount of data. A more
sophisticated algorithm that actually chooses a uniformly distributed global random
sample is described in [273]. This algorithm needs only O(log p) communication
cost.

Perhaps the simplest way to extract splitters from the sample is to gather (see
Sect. the local samples at PE 0, sort them there and take the splitters as equidis-
tant elements of the sorted sample as described in Sect. The splitters are then
broadcast to all PEs; see Sect. [13.1l A variant of this idea is to use an all-gather
operation and to do the sorting and splitter selection redundantly. This saves us the
broadcast but makes other operations slower. If p or n is large, it may be good to use

Procedure parSampleSort(s : Sequence of Element)
b={(),...,()) : Array [1..p] of Sequence of Element
(S0 = —00,81,...,8p_1,5p = o) := selectSplitters(s)
foreach ¢ c s do
determine i such that s;_1 < e <'s;
bli].pushBack(e)
send b[i] to PE ifori€ 1..p /I all-to-all
receive buckets into s
sort(s)

Fig. 5.23. SPMD pseudocode for distributed-memory sample sort
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PE 1 PE 2 PE 3
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Fig. 5.24. Sample sort of 21 characters on three PEs using oversampling parameter a = 2.

a parallel algorithm to sort the sample — perhaps a fast one such as the fast, inefficient
algorithm in Sect.[5.2] or the parallel quicksort in Sect.[5.7.1

In the partitioning phase, we need to locate the right bucket for each element.
This can be achieved in time O(logp) per element by binary search in the sorted
array of splittersﬁ

Delivering the buckets to their destination is an all-to-all operation; see
Sect. The data can be received into the input sequence s, but a size update is
needed since the splitters do not perfectly partition the data into equal-sized pieces.
Finally, s is sorted locally. Figure 3.24] gives an example.

We now complete the analysis of parallel sample sort.

Theorem 5.12. Parallel sample sort takes time O(% logn + plog? p) assuming se-
quential sorting of the sample. Using a fast parallel algorithm for sorting the sample,
the running time reduces to O(3logn + D).

Proof. (Outline.) We leave the variant with centralized sorting of the sample as an
exercise. By Lemma [5.11] a sample size of O(plogp) suffices to achieve pieces
of size O(n/p). Determining the sample in parallel takes time O(logp) = o(p) as
described above. Sorting the sample using the fast, inefficient algorithm in Sect.
needs time

plogp  plogp plogp
< \/1_7 p 10gp (\/— ) ( )

see (3.I). Distributing the elements to local buckets takes time O(% log p). Delivering
the local buckets to the PEs responsible for them is the time for a nonuniform all-to-

9 For a more efficient way to find buckets, see ].
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all communication with 2 = O(n/p), i.e., O(n/p+ p); see Sect.[13.6.3 Local sorting
takes time O( % logn). Summing all these terms yields the bound. g

We can see that sample sort with parallel sorting of the sample is efficient when
n>> p?/logp. In order to actually achieve efficiency close to 1, it is important to
balance the work between the PEs very well. The following exercise works out how
this affects the required sample size.

**Exercise 5.51. For any constant € > 0, show that a sample size O(plog(n) / 82)
ensures with high probability that no piece is larger than (1 + €)n/p. Hint: Consider
a potential piece A that is larger than (14 €)n/p. Show using Chernoff bounds that it
is unlikely that so few samples are taken from A that A is not split into several pieces.
Can you show that O(p log(p)/€*) samples are also enough?

5.13.1 Shared-Memory Sample Sort Implementation

We now explain how to implement sample sort on a shared-memory machine us-
ing C++11 and the standard library. Compared with the distributed-memory version,
matters simplify. In particular, the input and output are just a single global array s.
With centralized splitter determination, a single PE can take random samples from
s, sort this sample, and copy the splitters to a global splitter array. Hardware caching
will make sure that each PE has a local copy of the splitter array in its cache. Instead
of invoking an all-to-all collective communication, each PE will copy the local buck-
ets to the appropriate places in s. However, we shall see that a few special measures
are needed in order to adapt to NUMA effects; see Sect. 2.43]

Listing [5.1 shows our first attempt. Besides the random access iteratorJ s point-
ing to the beginning of the input array, n = |s|, and the number of threads (PEs)
p, the (sequential) routine pSampleSort is passed a three-dimensional array buckets:
bucketsli][j] is a vector into which thread i puts all elements from his batch that
should go to thread j. Line |6] declares a global barrier object, which is later used
to synchronize the worker threads. In lines [BHI2] the calling thread takes a random
sample S using a Mersenne Twister pseudorandom generator of 32-bit numbers with
a state size of 19937 bits and oversampling factor a = 16 log p; the declaration of
SampleDistribution states that we want to generate integers in 0..n — 1. In lines[[3l-
S is then sorted and condensed to contain only the splitters.

The parallel part of the program starts in line [T9 Lines create p threads
running a worker function defined in-place. The worker function is called with the
argument i, the second argument in the call rhread(definition of worker function, i),
i.e., the local value of iPE is i. In the while-loop of the worker function (lines 24H28),
thread iPE scans its region of the input s[iPE-n/p..(iPE+1)-n/p—1]. Each element
e = *current is located in the array splitters using the function upper_bound from the
standard library. This function uses binary search to locate the first splitter position

10 An iterator is an object similar to a pointer that allows a programmer to traverse a data
structure.
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Listing 5.1. Sample sort n elements in s using p threads

template <class lterator>
void pSampleSort(const Iterator & s, const size_t n, const unsigned p,

{

vector<vector<vector<Element> > > & buckets)

mt19937 rndEngine;
Barrier barrier(p); // for barrier synchronization

1

Choose random samples

vector<KeyType> S; // random sample of a elements from s
uniform_int_distribution<size_t> SampleDistribution(0, n—1);
const int a = (int)(16+log(p)/log(2.0)); // oversampling ratio
for(size_t i=0; i < (size_t)(a+1)«p — 1; ++i)

S.push_back((s + SampleDistribution(rndEngine))—>key);

sort(S.begin(),S.end()); // sort samples sequentially
for(size_t i=0; i < p—1 ; ++i) // select splitters

S.

S[i] = S[(a+1)«(i+1)];
resize(p—1);

vector<size_t> bucketSize(p, OULL);
vector<thread> threads(p);
for (unsigned i = 0; i < p; ++i) { // go parallel

}

threads]i] = thread( [&](const unsigned iPE) // the worker function
{ // distribute elements
auto current = s + iPE«n/p, end = s + (iPE+1)+n/p;
auto & myBuckets = buckets[iPE];
while(current != end) {
const size_t i = upper_bound(S.begin(),S.end(),
current—>key) — S.begin(); // binary search
myBuckets[i].push_back(+current++);

1
barrier.wait(iPE, p);

/I now each thread works on bucket "iPE". First compute the total size of bucket iPE:

size_t myBuckSize = 0;//accumulate into local variable (prevent false sharing)
for (const auto & b : buckets) myBuckSize += b[iPE].size();
bucketSize[iPE] = myBuckSize;
barrier.wait(iPE, p);
// find the bucket start in s by summing the sizes of the previous buckets (<iPE)
auto bucketBegin = s;
for(size_t b = 0; b < iPE ; ++b) bucketBegin += bucketSize[b];
// copy the bucket 'iPE’ from all PEs into s
auto currOut = bucketBegin;
for(const auto & b: buckets)
currOut = copy(b[iPE].cbegin(), b[iPE].cend(), currOut);
sort(bucketBegin, currOut); // sort the bucket
} // end of the worker function

2 0);

for (auto &t : threads) t.join();
}Y/SPDX—License—Identifier: BSD—3—Clause; Copyright(c) 2018 Intel Corporation
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larger than e. If no such splitter exists, splitters.end() is returned. Note that the spec-
ification of upper_bound elegantly avoids the need for explicitly storing a sentinel
key oo. Subtracting splitters.begin() yields the index of the bucket where e should be
stored. Each thread uses its own local bucket array myBuckets = buckets[iPE].

Before sorting can continue, a barrier synchronization is necessary (see
Sect.[13.4.2), i.e., all worker threads have to wait until all other worker threads have
finished the while-loop.

After another barrier synchronization (line[34)), each worker thread computes the
beginning of the part of the output it is responsible for. This is done by adding the
bucketSizes of the threads with smaller number (lines 36land[37)). Then, in lines B9
[Tl the iPE-th local bucket from each worker thread is copied to the output array
s. Note that bucketBegin is an iterator into the array s and hence all the copying
is done into s. Note also that the use of the standard library function copy allows
the compiler to use highly tuned code here. Finally, in line @2} the iPE-th bucket,
which now resides in a contiguous piece of the output array s, is sorted by calling the
standard library function sort.

We measured the speedup of this simple implementation compared with sequen-
tial std: : sort on the machine described in Appendix[Bl We performed a typical
weak scaling experiment, i.e., the input size was scaled linearly with the number p
of threads used — here, n = p-8-10%. We sort key-value pairs with 8-byte integers
each. The lowest line in Fig. shows the speedup obtained as a function of the
number of threads. The outcome is disappointing. The speedup is never more than
seven on a system with 72 physical cores, i.e., it is below 10% of what is suggested
by the core count.

Using profiling tools (see Sect. [B:8)) one can see that for larger thread counts,
the CPU cycles are spent mostly in the Linux kernel page fault handler and not on
sorting itself. In the Linux kernel used, page fault handling is mostly serial, exposing
a serious scalability bottleneck for applications with many page faults. In our imple-
mentation, the page faults stem from filling the buckets. The vectors used there are
essentially the unbounded arrays in Sect. 3.4l Not only does this imply that data is
copied as the arrays grow, but we also suffer from an “improvement” in the operating
system that only lazily allocates physical memory in small pages (typically 4 KB) as
the allocated virtual memory is actually written to; see 1inux.die.net/man/
2/set_mempolicy. This is a clever strategy for sequential execution or a small
number of threads but apparently becomes very slow for a large number of threads.

In other words, we face a frequent situation in parallel programming — we
have to program around a performance bug of software that we cannot influ-
ence. We circumvented the Linux kernel page fault handler by using the Intel
tbb: ::memory_pool_allocator, which redirects bucket allocation requests to
a pre-assigned internal memory pool. This version performs significantly better; see
the line marked “psamplesort-mpool” in Fig. However, using all four sockets
still does not give any significant speedup compared with two sockets.

An analysis of the profiler and processor performance data (see Sect. for
the improved implementation shows that the number of CPU cycles required per in-
struction (CPI) significantly increases in the case of threads scattered over all sockets.


linux.die.net/man/2/set_mempolicy
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Fig. 5.25. Speedup of different parallel sorting algorithms over std: : sort sorting 8- 10°
elements per thread.

Increased CPI is particularly prominent for memory access instructions. Since this
only happens in the multiple-socket case, NUMA effects seem to be the cause, i.e.,
memory access latencies go up for accessing memory allocated on a remote socket.
This is not surprising, given the first-touch NUMA memory assignment policy in
the Linux kernel: If the capacity of the socket local memory permits, an allocation
uses the physical memory pages on the socket of the running thread. Using memory
from only a single socket can constitute a serious scalability bottleneck, since mem-
ory controllers on this socket will be responsible for servicing memory requests of
all worker threads in the system. Even if the memory allocation is distributed uni-
formly over all sockets, the order-of-magnitude higher latency for remote accesses
will degrade performance. Most operating systems expose NUMA allocation inter-
faces, allowing programmers to allocate memory from specific sockets. Unfortu-
nately, these interfaces are not standardized yet and have many differences in seman-
tics (Sect.[C.6). An alternative way to control NUMA allocation in Linux is to exploit
the first-touch policy. As a first measure, we pin worker thread i to physical core i
(Sect. [C); see the function pinToCore in the source code. The concrete measures
to improve locality are twofold; see function initialize in the source code. First, each
thread initializes the part of s it later distributes to the buckets. Note that this part is
also a good approximation to the part it will finally sort sequentially. Second, each
thread reserves a local memory pool for the buckets.
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Figure[5.23]shows that the NUMA-optimized implementation exhibits good scal-
ing. As a further experiment (Fig.[3.26), we compare different parallel sorting algo-
rithms using up to 144 threads. An algorithm from the Intel TBB library achieves
a speedup that is always below 8 even for large inputs. This algorithm lacks scala-
bility because it uses a very simple parallelization of quicksort that uses sequential
partitioning. However, TBB has the advantage to yield some speedup even for small
inputs. Likely this is due to the use of efficient light-weight parallel tasks instead of
threads. The curve labelled “std parallel mode” refers of an implementation of paral-
lel multiway mergesort, that is available with the parallel version of the STL for g++
[297]. This algorithm as well as our best sample sort implementation (psamplesort-
mpool-numa) achieve speedups around 30 for large inputs. This can be viewed as
a success for our sample sort since it is much simpler. The MPI implementation
of sample sort discussed in the next section performs even better for large but not
too large inputs — achieving speedup of up to 47. We discuss this surprising effect
below. Finally, the line labelled ipS*o (inplace super scalar sample sort) refers to
a recent inplace variant of sample sort [@I]) Somewhat surprisingly, it significantly
outperforms all the other algorithms besides saving on memory. With up to 87, the
achieved speedup even exceeds the number of cores (72). There are two reasons for
this good performance. First, ipS*o performs element comparisons very efficiently
and without incurring conditional branch instructions (indeed, ipS*o also outper-
forms std: :sort as a sequential algorithm). Second it avoids several sources of
overhead involved with noninplace sorting.

90 T T T
psamplesort-mpool-numa —
80 | Intel TBB —X— ]
std X)arallel mode
ipS’o
70 | psamplesort-mpi 7]
60 f
50 *
40 E
30
20
10
VI
0 lb—
210 212 214 21() 218 220 222

input size (elements per thread)

Fig. 5.26. Speedup over std: : sort as a function of input size with 144 threads.
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**Exercise 5.52. Design and implement a shared-memory parallel sorter that works
well over a wide range of values of n and p. A few ideas: Avoid creating threads just
for a single sorting call. Switch between different algorithms for different p and n,
e.g., the algorithms from Sects. 521 5.41 3.7, and[3.13] Use profiling tools for tuning.
Combine experiments and asymptotic complexity to find the right switching points.

5.13.2 MPI Implementation

Listing[3.2] gives an implementation of parallel sample sort using the message pass-
ing interface; see also App. The routine parallelSort has a template parameter
Element specifying the element data type from the perspective of C++. Unfortu-
nately, MPI does not know about this and needs to get another specification of this
data type, mpiType. Each PE samples 1+ 16 |log p| of its local elements into the lo-
cal sample vector locS (lines BHIQ). These samples are collected in the global sample
s using all-gather; see lines [THI3] and also Sect.[I3.3). The samples are then sorted
using the standard library (line [I4). The vector s is reused as a splitter array — the
splitter at s[a - ] is moved to s[i] (lines [3HI6).

Then the local data is distributed into a vector of bucket vectors bucket (lines[T7-
R23). As in the shared-memory implementation, the function upper_bound from the
standard library is used to find the right bucket. Note that we do not take any special
measures with respect to memory management or NUMA effects. Our measurements
indicate that MPI and the operating system take care of this quite well.

Now the buckets have to be delivered to the PEs responsible for sorting them.
This is done in line 37l using the operation MPI_Alltoallv. Doing this requires some
preparation (lines 23H36) though. MPI expects senders and receivers to specify the
length and address of all messages to be delivered. An all-to-all operation with uni-
form message lengths is used to deliver this information (line[32). These preparations
may be a bit cumbersome, but note that they are not a big performance issue. For sort-
ing large data sets, the cost of the preparatory MPI_Alltoall is dwarfed by the cost of
the subsequent MPI_Alltoallv.

Finally, actually sorting the local data is a simple library call (line 39).

Overall, MPI does not get a first prize for extreme elegance, but we end up with
a code that has comparable length to the basic shared-memory code and outperforms
it significantly.

Figure shows the performance of our code when run on a shared-memory
system The MPI code outperforms the shared memory code for large but not too
large inputs. This is surprising since a direct shared-memory implementation should
usually be faster than a message passing code especially if it goes into a number of
complications to handle NUMA effects and to avoid operating system bottlenecks.
The point is that MPI does these things implicitly. The kernel bottleneck discussed

' 'We would like to thank Michael Axtmann for providing this implementation and the mea-
surements.

12 We used GCC 4.8.5 with optimization -02 and OpenMPI using the Byte Transfer Layer
TCP.
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Listing 5.2. MPI sample sort

template<class Element>
void parallelSort(MPI_Comm comm, vector<Element>& data,
MPI_Datatype mpiType, int p, int myRank)

{ random_device rd;
mt19937 rndEngine(rd());
uniform_int_distribution<size_t> dataGen(0, data.size() — 1);
vector<Element> locS; // local sample of elements from input <data>
const int a = (int)(16+log(p)/log(2.)); / oversampling ratio
for (size_t i=0; i < (size_t)(a+1); ++i)

locS.push_back(data[dataGen(rndEngine)]);

vector<Element> s(locS.size() = p); // global samples
MPI_Allgather(locS.data(), locS.size(), mpiType,
s.data(), locS.size(), mpiType, comm);

sort(s.begin(), s.end()); // sort global sample
for (size_ti=0; i < p—1; ++i) s[i] = s[(a+1) = (i+1)]; //select splitters
s.resize(p—1);
vector<vector<Element>> buckets(p); // partition data
for(auto& bucket : buckets) bucket.reserve((data.size() / p) ~ 2);
for( auto& el : data) {
const auto bound = upper_bound(s.begin(), s.end(), el);
buckets[bound — s.begin()].push_back(el);
}

data.clear();

// gather bucket sizes and calculate send/recv information
vector<int> sCounts, sDispls, rCounts(p), rDispls(p + 1);
sDispls.push_back(0);
for (auto& bucket : buckets) {
data.insert(data.end(), bucket.begin(), bucket.end());
sCounts.push_back(bucket.size());
sDispls.push_back(bucket.size() + sDispls.back());
1

MPI_Alltoall(sCounts.data(),1,MPI_INT,rCounts.data(),1,MPI_INT,comm);

/I exclusive prefix sum of recv displacements

rDispls[0] = 0;

for(inti = 1;i <= p; i++) rDispls[i] = rCounts[i—1]+rDispls[i—1];

vector<Element> rData(rDispls.back()); // data exchange

MPI_Alltoallv(data.data(), sCounts.data(), sDispls.data(), mpiType,
rData.data(), rCounts.data(), rDispls.data(), mpiType, comm);

sort(rData.begin(), rData.end());
rData.swap(data);

199
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Fig. 5.27. Speedup over std: : sort as a function of input size on BlueGene/Q. The running
times are the median of five trials. The sorted elements were 64-bit random integers.

above does not apply when each PE has an operating system process of its own. Since
each process of the MPI code generates its own input data, it automatically allocates
the data on the right NUMA-node. Also, MPI pins its processes, i.e., it forces them
to be executed on the same core all the time; see Sect. We have also run the MPI
program on up to 16384 cores of an IBM BlueGene/Q supercomputer Measuring
speedup for large p and large inputs is difficult, since the biggest inputs do not fit into
the internal memory of a single node and hence the sequential running time cannot
be measured. We overcame this problem by extrapolating the running time of the
sequential algorithm. This gives us an optimistic estimate of sequential running time
on a hypothetical machine with sufficient memory. Note that using such numbers for
computing speedups yields pessimistic estimates for the speedup. Figure[5.27]shows
the achievable (extrapolated) speedup as a function of n/p. For p = 1024, we achieve
a speedup of up to 663 — an efficiency of up to 65%. For such a simple algorithm,
this is remarkably efficient. For larger p, the efficiency goes down because we get
more and more contention in the interconnection network; see Sect.[B-7l Moreover,
even for the biggest inputs, with 223 elements per PE, the individual messages in the
all-to-all operation have a size of only 256 bytes, so that the startup overheads for

13 We would like to thank the Gauss Centre for Supercomputing (GCS) for providing comput-
ing time through the John von Neumann Institute for Computing (NIC) on the GCS share
of the supercomputer JUQUEEN [@] at the Jiilich Supercomputing Centre (JSC).
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message exchange dominate. Nevertheless, for p = 16384 we observe a speedup of
up to 5391 which is still an efficiency of 33%.

5.14 *Parallel Multiway Mergesort

Multiway mergesort is another external-memory sorting algorithm that is a good
candidate for an efficient parallel sorting algorithm. We first describe the shared-
memory variant for its elegance and simplicity.

To implement parallel p-way mergesort, we first split the input array s into p
equally sized pieces, possibly trying to allocate PEs on the same NUMA node as the
RAM storing that piece of data. Each PE then locally sorts the data allocated to it.
This takes time O(% log %)

For parallel p-way merging, we generalize the splitting idea used in parallel bi-
nary (two-way) mergesort (Sect. 5.4). Rather than splitting two sequences into p
pieces each, we now split p sequences into p pieces each such that all elements in
the first pieces are smaller than all elements in the second pieces, which in turn are
smaller than all elements in the third pieces, and so on. We can then obtain the sorted
output by sorting the union of the first pieces, sorting the union of the second pieces,
and so on. This description assumes that elements are pairwise distinct.

The function smmSort in Fig. realizes parallel multiway mergesort. After
sorting locally, we run p multisequence selections in parallel to find the splitters.
The ith processor is responsible for finding the split vector x@i such that the total
length of the sequences up to the split elements is equal to i-n/p. We then run p
incarnations of sequential multiway merging in parallel. The ith incarnation merges
the subsequences delineated by x@ (i — 1) and x@j.

We next discuss the search for the splitters. The function multiSequenceSelect in
Fig. describes a sequential algorithm for finding one set of splitting positions.
Its input is an array of p sorted sequences and an integer k. It determines, for each
sequence, a splitindex ¢;, 1 <i < p, such that }; /; = k and all elements up to any split
index are smaller than all elements following a split index. The function maintains
two vectors ¢ and r and the invariants £ < r, Y, ¢; <k <Y ,r;, and

max U;S;[1..4;] < minU;S;[¢; + 1..r;] < max U;Si[¢; + 1..rj] < minU;S;[ri + 1..]S4]],
1 1

Function smmSort(s : Sequence of Element) : Sequence of Element

sort(s);  barrier // sort locally then synchronize globally
x:=multiSequenceSelect((s@1,...,s@p), [ipmc %@l‘ ), barrier /I find splitters
return multiwayMerge({ s@1[x] @ (iproc — 1)+ 1..x1],..., /I assume

5@ plx, @ (iproc — 1)+ 1..xp])) /I x@0 = (0,...,0)

Fig. 5.28. SPMD pseudocode for shared-memory multiway mergesort.
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Function multiSequenceSelect(S : Array of Sequence of Element; k : N) : Array of N
for i:=1to |S|do (¢;,r;):=(0,|Si])
invariant Vi : ¢;..r; contains the splitting position of S;
invariant Vi, j : Va < {;,b > r; : Si[a] < S;[b]
while Ji : /; < r; do
v:=pickPivot(S,(,r)

for i:=1to |S| do m;:=binarySearch(v,S;[(;..r]) I Si[mi] <v < Si[m;+1]
if Y;mi <kthen (:=melse r:=m
return ¢

Fig. 5.29. Multisequence selection. Split the sorted input sequences in S such that the sum of
the resulting splitting positions is k and such that all elements up to the splitting positions are
no larger than the elements to the right of the splitting positions.

i.e., the elements in the left parts are smaller than the elements in the undecided parts
which in turn are smaller than elements in the right parts. Initially, all elements be-
long to the undecided parts. For simplicity, we assume that all elements are pairwise
distinct.

The algorithm works iteratively and continues as long as one of the undecided
parts is nonempty. In each iteration, it chooses a random element v from the union
of the undecided part and locates it in all the undecided parts. For each i, we
determine m; such that S;[m;] < v < S;[m; + 1] by binary search. This takes time
logarithmic in r; — ¢;. If Y;m; < k, we set £ to m; otherwise we set r to m. In either
case, the invariant is maintained.

*Exercise 5.53. Give detailed pseudocode for a generalization of the function multi-
SequenceSelect that allows keys to appear multiple times. Hint: There is a generic
approach that makes keys unique by replacing a key x stored at PE i in position j of
the local input array by the triple (x,iproc, j). These triples are ordered lexicograph-
ically. You can emulate this ordering without explicitly considering triples in the
binary searches. Suppose pivot v has been chosen on PE i at position j of the input.
Then, if iproc < I, the binary search should look for the rightmost element with key
<v. At PE i, no search is necessary, and we set m; := j. If iproc > i, the binary search
should look for the largest key less than v.

Exercise 5.54. The function smmSort in Fig. [5.28| defines the input and output by
local arrays. Reformulate your code as a program with explicit parallel loops where
the input and output are a single global array.

We turn now to the analysis. Assume smmSort is run on p local input sequences
of size n/p each. Local sorting takes time O(% log%), for example using sequen-
tial mergesort. Multiway merging takes time O(% log p). Summing this gives time

14 This can be done by choosing a random number x € 1..Y,(r; — £;) and by setting v to the
element with global number x, where the global number of S;[y] is y — £; + ¥ j;rj —¢; for
¥ € ¢i+1..r;. Pivot v can be found in time O(|S|) by scanning the ranges until the first range
i with Yj<iti— ¢; > x is found.
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O(%(log % +logp)) = O(% logn), i.e., optimal speedup so far. The barrier synchro-
nizations take time O(logp); see Sect. One iteration of multisequence se-
lection takes time O(plogn). From the analysis of quickselect, we know that the
expected number of iterations is O(logn). However, we have to be careful here. We
are running p multisequence selections in parallel and we are only finished when the
last of them has finished, i.e., we are interested in the expected maximum execution
time of p parallel multisequence selections.

Lemma 5.13. After O(logn + log p) expected iterations, all p multisequence selec-
tions are finished.

Proof. We first argue as in the proof of Theorem[3.8] With probability at least 1/3,
an iteration is good in the sense that it reduces ) ; r; — ¢; by a factor of at least 2/3.
Hence, k:=logs, n good iterations suffice to reduce the problem size to 1. We use
the Chernoff bound (A.6) to show that it is unlikely that some particular PE will need
a large number of iterations to see k good ones. The probability that any PE needs
a larger number of iterations is at most p times that probability. In order to be able
to use a tail bound, we rewrite the definition of the expected values of an integer
random variable as E[/]:= Yo7 prob(/ =) = Y, prob(/ > t). So, let I denote the
total number of iterations until all PEs have seen k good iterations. Let X’ denote the
number of good iterations that a particular PE j has seen after 7 iterations. X’ can
be written as Y, X!, where X! is an indicator random variable with X! = 1 if and
only if iteration i is good for PE j. We have E[X'] =1 /3. We use (A.6) for &€ = § and
t > 6k, which yields

prob (X’ < (1 — %) E[X’]) < e*(lf%)zE[Xt]/Z — o EX']/8 _ ,—1/24

It is now easy to complete the proof. We first observe

E[l] = Zprob(] >t)<ty+ Z prob(I >1t) <ty+ Z p-prob(X" < k),

>0 1>t >19

where 7y is any integer. For the first inequality, we used prob(/ > ) < 1 for all ¢. For
ty > 6k, we conclude further

[/24 e*t0/24

Ell <to+pY e/ =19+ p—ipr,

[]—0 ptzto 0 p1—€71/24

using (A.14). For ty > 241np + 4, the last expression is bounded by f#y + 1. 0

Overall we obtain the following result.
Theorem 5.14. Parallel multiway mergesort takes time O (E logn + plog2 p).
p

Once more, we can replace logn by logp, since for n = Q(p2 log p), the term

(n/p)logn dominates the term plog? p and for smaller n, logn = O(log p). Multiway
mergesort is efficient for n = Q(pz log p).
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*Exercise 5.55. Design a deterministic algorithm for multisequence selection that
runs in time O(p log? n) and is a generalization of our algorithm for two-sequence
selection in Sect.[5.4] Hint: The smallest or largest midpoint of a range can replace a
range endpoint.

**Exercise 5.56. Varman et al. ] gave an algorithm for multisequence selection
that runs in time O(plogn). Develop detailed pseudocode that works for arbitrary n
and p without requiring much additional memory (e.g., for padded arrays). Can you
demonstrate in an implementation that it outperforms our algorithm in practice?

*Exercise 5.57. Show a lower bound of time O(plog %) for multisequence selection
in the comparison-based model.

5.14.1 Distributed-Memory Multiway Mergesort

Multiway mergesort is also attractive for a distributed-memory algorithm. Fig-
ure[5.30 shows pseudocode and Figure[5.31] gives an example. The algorithm is sim-
ilar to sample sort; in particular, each element is communicated only once in a single
all-to-all communication. The main difference is that the input is sorted locally up
front, and this makes it possible to find perfect splitters efficiently. This results in
perfect load balance. The main difference with respect to shared-memory multiway
mergesort is that multisequence selection has to be implemented differently, since

Function dmmSort(s : Sequence of Element) : Sequence of Element

sort(s)

x:=dmmmSelect(s, < [z%} xS 1..p>) /I find splitters
(S15-..,8p) =allToAl((s[1..x1],s[x1 + 1..x],...,spxp— 1 + 1..|s]]))

return multiwayMerge((s,...,sp))

Fig. 5.30. SPMD pseudocode for distributed-memory multiway mergesort

PE1 PE 2 PE 3
ofi kcms |taphr ej ndgbgul | input
cfikmos |aehjprt |bdgl nqu | sort locally

[cf]i knos ||[[aelhjlprt ||[bdg] n]qu ]| Perfect s =h

) splitters s, =0
5

' ‘ v move data
lctlaclbdd || Knhj 7 l[osprilqu]

merge

abcdefg |hijkl mn |opgrstu

Fig. 5.31. Multiway mergesort of 21 characters on three PEs
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Function dmmmSelect(s : Sequence of Element; k : Array[1..p] of N) : Array[1..p] of N
4,r,m,v,0 : Array [1..p] of N

fori:=1to pdo (¢;,r;):=(0,]s|) /I initial search ranges

while Ji, j: ;@) # r;@j do /I or-reduction
v:=pickPivotVector(s,l,r) /I reduction, prefix sum, broadcast
for i:=1to p do m;:=binarySearch(vj,s[l;..r;])
o:=),m@j /I vector-valued reduction
for i:=1to p do if o; > k; then r; :=m; else {; :=m;

return /

Fig. 5.32. SPMD pseudocode for distributed-memory multisequence multiselect with one se-
quence per PE and p ranks specified by vector k

multiSequenceSelect in Fig. makes many remote memory accesses. Our strat-
egy is to perform essentially the same computations but on different PEs. We apply
the principle of “owner computes” (see also Sect. B.1) — each PE is responsible for
performing all the computations necessary for its local sequence. By doing this for
all p desired ranks at once, we can make the communication very coarse-grained.
Figure[5.32] shows pseudocode. The function runs p quickselect algorithms at once,
and thus almost all of its local variables are vectors of dimension p. For example,
the range ¢;..r; now encloses the ith splitting position in s. The search can only ter-
minate if all p x p ranges have unit size. To find out about that, all PEs have to
communicate in an or-reduction collective communication operation; see Sect.
Picking pivots now also involves communication. This can be done analogously to
pivot selection in parallel quicksort (see Sect. 5.7.1) except that the reduction, pre-
fix sum, and broadcast operations involved work component-wise on p-dimensional
vectors. Binary searches can be done locally. Adjusting the ranges once more re-
quires a collective communication (reduction) to count the number of elements up to
m;. One iteration of the function dmmmSelect takes time O(plogn+ pf + alogp)
for p binary searches and a constant number of reduction/broadcast/prefix operations
on vectors of length p. Overall, the selection takes time O( plog? n) It is also impor-
tant to note that the number of startup overheads involved is much smaller — only

O(log plogn).

5.15 Parallel Sorting with Logarithmic Latency

With parallel mergesort (Sect. 3.4) and quicksort (Sect. 3.7), we have seen effi-
cient parallel sorting algorithms that sort with span O(log2 n) On the other hand,
in Sect. we have seen a fast, inefficient algorithm that sorts in logarithmic time.
Here we want to outline a randomized asynchronous CRCW-PRAM algorithm that
bridges this gap. For simplicity, we restrict ourselves to the case n = p, i.e., there is
exactly one element per PE. The basic idea is to use a recursive variant of sample
sort.
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We use the fast, inefficient algorithm to sort a sample of size ,/p in loga-
rithmic time. We use an oversampling factor of Q(logp) to obtain an array of
k = Q(,/p/logp) splitters defining buckets of size O(n/k) with high probability.
Now, each PE searches the right bucket for its key using binary search in time
O(logk).

8gwebrt 2zu9i op37yxc6vb4 mas0df ghj ki 1 3af krv

4 053817269 Fboanequh ilcpnj kg ﬁvysv r tz x u _J
N\ / -
053817269boanequhiIcpnjkgMysvrtzqu//////
0123456789abcdef ghi j kI mopqgr st uvwxyz

Fig. 5.33. Sorting 36 elements with logarithmic latency. The sample size is 6 and the number
of buckets 3.

We then move elements to the right bucket. This is nontrivial. The trick is to
allocate a target array for the buckets that is a constant factor larger than necessary
with high probability. Each PE repeatedly attempts to copy its element into a random
position in its bucket, using a CAS instruction. If this fails, the attempt is repeated
until it suceeds. In each iteration, there is a constant success probability. Thus, with
high probability, O(log p) iterations suffice until all PEs have placed their element.

Next, the bucket array is compressed. Denoting an empty entry by a 0 and a full
entry by a 1, the position of a full entry in the compressed array is given by a prefix
sum over these flags.

Finally, we recurse on the buckets such that again one PE is available for each
element. An important technicality is how each PE learns about its bucket. Say that
PE i is reponsible for element A[i] where A is the compressed array. Then A[i] is once
more located among the splitters s using binary search, say s[j] < A[i] < s[j+ 1].
Now, by locating s[j] and s[j+ 1] in A, PE i can learn the left and right boundaries of
its bucket. Figure[5.33] gives an example.

All activities in the first level of recursion run in time O(log p). Moreover, the
number of PEs in a bucket shrinks by a factor p™!) with high probability. This means
that the logarithm of the maximum number of PEs having to interact shrinks by a
constant factor. Thus, summing over all levels of recursion, we obtain a geometric
series summing to O(log p).

It is an interesting question to what extent this algorithm is practical. In its fa-
vor, when n > p, the algorithm can be generalized in such a way that the number
of element comparisons approaches nlogn. Moreover, each element is moved only
O(loglogp) times — the number of recursion levels. On the other hand, these ele-
ment movements are implemented with very expensive random CAS operations, in
contrast to the more cache-efficient operations used, for example, by parallel quick-
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sort. Our conclusion is that, on currently predominant architectures, finding a sweet
spot for the algorithm may be difficult. The algorithm might prove useful for large
shared-memory machines that hide the cache miss latency by making extensive use
of hardware threads. Such architectures have been built in the past [@, ] and
may reappear in the future.

5.16 Implementation Notes

Comparison-based sorting algorithms are usually available in standard libraries, and
so you may not have to implement one yourself. Many libraries use tuned implemen-
tations of quicksort.

Canned noncomparison-based sorting routines are less readily available. Fig-
ure [5.34] shows an array-based implementation of Ksort. It works well for small
to medium-sized problems. For large K and n, it suffers from the problem that the
distribution of elements to the buckets may cause a cache fault for every element.

To fix this problem, one can use multiphase algorithms similar to MSD radix sort.
The number K of output sequences should be chosen in such a way that one block
from each bucket is kept in the cache; see also ]. The distribution degree K can
be larger when the subarray to be sorted fits into the cache. We can then switch to a
variant of uniformSort; see Fig.

Another important practical aspect concerns the type of elements to be sorted.
Sometimes we have rather large elements that are to be sorted with respect to small
keys. For example, you may want to sort an employee database by last name. In this
situation, it makes sense to first extract the keys and store them in an array together
with pointers to the original elements. Then, only the key—pointer pairs are sorted.
If the original elements need to be brought into sorted order, they can be permuted
accordingly in linear time using the sorted key—pointer pairs.

Procedure KSortArray(a,b : Array [1..n] of Element)

c={0,...,0) : Array [0..K — 1] of N /I counters for each bucket
for i:=1tondo clkey(ali])]++ /I Count bucket sizes
C:=1

for k:=0to K —1do (C,c[k]) :=(C+c[k],C) /I Store ¥ c[k] in c[k].
fori:=1tondo /I Distribute ali]

blc[key(ali])]] :=ali]
clkey(ali])]++

Fig. 5.34. Array-based sorting with keys in the range 0..K — 1. The input is an unsorted array
a. The output is b, containing the elements of @ in sorted order. We first count the number of
inputs for each key. Then we form the partial sums of the counts. Finally, we write each input
element to the correct position in the output array
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Multiway merging of a small number of sequences (perhaps up to eight) deserves
s?ecial mention. In this case, the priority queue can be kept in the processor registers

329].

5.16.1 C/C++

Sorting is one of the few algorithms that is part of the C standard library. However,
the C sorting routine gsort is slower and harder to use than the C++ function sort.
The main reason is that the comparison function is passed as a function pointer and is
called for every element comparison. In contrast, sort uses the template mechanism
of C++ to figure out at compile time how comparisons are performed so that the
code generated for comparisons is often a single machine instruction. The parame-
ters passed to sort are an iterator pointing to the start of the sequence to be sorted, and
an iterator pointing after the end of the sequence. In our experiments using an Intel
Pentium IIT and GCC 2.95, sort on arrays ran faster than our manual implementation
of quicksort. One possible reason is that compiler designers may tune their code op-
timizers until they produce good code for the library version of quicksort. There is an
efficient parallel-disk external-memory sorter in STXXL [@], an external-memory
implementation of the STL. Efficient parallel sorters (parallel quicksort and parallel
multiway mergesort) for multicore machines are available in the GNU standard li-
brary ,@]. On GPUs, radix sort [@], mergesort [@], and sample sort [@]
have been used.

Exercise 5.58. Give a C or C++ implementation of the procedure gSort in Fig.
Use only two parameters: a pointer to the (sub)array to be sorted and its size.

5.16.2 Java

The Java 6 platform provides a method sort which implements a stable binary merge-

sort for Arrays and Collections. One can use a customizable Comparator, but there

is also a default implementation for all classes supporting the interface Comparable.
The Arrays class provides a method parallelSort.

5.17 Historical Notes and Further Findings

In later chapters, we shall discuss several generalizations of sorting. Chapter [6] dis-
cusses priority queues, a data structure that supports insertions of elements and re-
moval of the smallest element. In particular, inserting n elements followed by re-
peated deletion of the minimum amounts to sorting. Fast priority queues result in
quite good sorting algorithms. A further generalization is the search trees introduced
in Chap.[7] a data structure for maintaining a sorted list that allows searching, insert-
ing, and removing elements in logarithmic time.

We have seen several simple, elegant, and efficient randomized algorithms in
this chapter. An interesting question is whether these algorithms can be replaced
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by deterministic ones. Blum et al. ] described a deterministic median selection
algorithm that is similar to the randomized algorithm discussed in Sect. This
deterministic algorithm makes pivot selection more reliable using recursion: It splits
the input set into subsets of five elements, determines the median of each subset,
for example by sorting each five-element subset, then determines the median of the
n/5 medians by calling the algorithm recursively, and finally uses the median of the
medians as the splitter. The resulting algorithm has linear worst-case execution time,
but the large constant factor makes the algorithm impractical. (We invite the reader
to set up a recurrence for the running time and to show that it has a linear solution.)

There are quite practical ways to reduce the expected number of comparisons re-
quired by quicksort. Using the median of three random elements yields an algorithm
with about 1.188nlogn comparisons. The median of three medians of three-element
subsets brings this down to ~ 1.094nlogn ]. The number of comparisons can be
reduced further by making the number of elements considered for pivot selection de-
pendent on the size of the subproblem. Martinez and Roura [207] showed that for a
subproblem of size m, the median of @(/m) elements is a good choice for the pivot.
With this approach, the total number of comparisons becomes (14 o(1))nlogn, i.e.,
it matches the lower bound of nlogn — O(n) up to lower-order terms. Interestingly,
the above optimizations can be counterproductive with respect to actual running time.
Although fewer instructions are executed, it becomes impossible to predict when the
inner while-loops of quicksort will be aborted. Since modern, deeply pipelined pro-
cessors only work efficiently when they can predict the directions of branches taken,
the net effect on performance can even be negative ]. Therefore, in ], a
comparison-based sorting algorithm that avoids conditional branch instructions was
developed. This algorithm is also cache-efficient, allows instruction parallelism, and
can be made in-place [25]; see also Fig. One can also implement quicksort
[IM] and mergesort [@] in such a way that conditional branches are avoided. An
interesting deterministic variant of quicksort is proportion-extend sort [@].

A classical sorting algorithm of some historical interest is Shell sort , ], a
generalization of insertion sort, that gains efficiency by also comparing nonadjacent
elements. It was open for a long time whether some variant of shell sort achieves
O(nlogn) average running time (167, 210]. Only recently was it shown that a ran-
domized version of shell sort does so ].

There are some interesting techniques for improving external multiway merge-
sort. The snow plow heuristic , Sect. 5.4.1] forms runs of expected size 2M using
a fast memory of size M: Whenever an element is selected from the internal priority
queue and written to the output buffer and the next element in the input buffer can
extend the current run, we add it to the priority queue. Also, the use of tournament
trees instead of general priority queues leads to a further improvement of multiway
merging ].

Multiway mergesort and distribution sort can be adapted to D parallel disks by
striping, i.e., any D consecutive blocks in a run or bucket are evenly distributed
over the disks. Using randomization, this idea can be developed into almost optimal
algorithms that also overlap I/O and computation ].
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We have seen linear-time algorithms for highly structured inputs. A quite gen-
eral model, for which the nlogn lower bound does not hold, is the word model. In
this model, keys are integers that fit into a single memory cell, say 32- or 64-bit
keys, and the standard operations on words (bitwise AND, bitwise OR, addition,
...) are available in constant time. In this model, sorting is possible in deterministic
time O(nloglogn) [16]. With randomization, even O(nm) is possible [142].
Flash sort is a distribution-based algorithm that works almost in-place.

There has been a huge amount of work on parallel sorting. On a CRCW-PRAM,
sorting of n integers in the range 1..n is possible using logarithmic time and linear
work ]. However, since this algorithm is not stable, it cannot be extended to keys
of polynomial size. Allowing a little more time changes the situation, however [di

Sorting small inputs can be realized in hardware using sorting networks, which
consist of wires and sorting gates which have two inputs a, b and two outputs
max(a,b), min(a,b). Batcher’s classical result [33] introduces a merging network
which merges two n-element sorted sequences using O(nlogn) gates and a critical
path length of O(logn). A logarithmic number of merging stages then yields an n-
element sorting network with O(n log® n) gates and a critical path length O(logﬂ%).
This algorithm has also been used as the base case of GPU sorting algorithms [83].
Ajtai et al. ] gave a sorting network with O(nlogn) gates and a critical path length
O(logn). Unfortunately, the constant factor involved is prohibitively large. A recent
improvement of these factors 133] still remains unpractical.

For practical sorting on large distributed-memory machines, there is a gap
between algorithms such as sample sort (Sect. B.13) or multiway mergesort
(Sect. 5.14.1) on the one hand, which communicate their data only once but need
Q(p) message startups and, on the other hand, polylogarithmic time algorithms such
as quicksort (Sect. [5.7) or binary mergesort (Sect. B.4), which move all the data a
logarithmic number of times. This gap can be filled using multilevel generalizations
of sample sort and multiway mergesort that move the data k times and need O( pl/ k)
message startups ].

For very large data sets, one can combine techniques from external-memory and
distributed-memory parallel processing 259].

Exercise 5.59 (Unix spellchecking). Assume you have a dictionary consisting of
a sorted sequence of correctly spelled words. To check a text, you convert it to a
sequence of words, sort it, scan the text and dictionary simultaneously, and output
the words in the text that do not appear in the dictionary. Implement this spellchecker
using Unix tools in a small number of lines of code. Can you do this in one line?



