
An interactive proof is an exchange between a prover and a verifier. The exchange has a
polynomial number of rounds and the messages sent in each round have polynomial length.
The prover has unbounded computational power and the verifier may use randomization. The
prover wants to convince the verifier that a certain fact holds. If the fact holds, the prover should
always succeed to convince the verifier. If the fact does not hold, the prover should succeed with
probability at most one-half.

The presentation follows Sipser’s book.

1 Warm-Up: Verifying the Number of Satisfying Assignments
of a Boolean Formula

Let

#SAT = {(Φ,k); Φ is a boolean formula with exactly k satisfying assignments.} .

We will show #SAT ∈ IP. The proof introduces the main technique needed to prove QBF ∈ IP.
Let Φ be a boolean formula over the boolean variables x1 to xn. We construct a polynomial

p = A(Φ) in real variables x1 to xn such that p(x) = Φ(x) for boolean arguments. We call p the
arithmetization of Φ. p is constructed inductively.
(a) If Φ = x for a variable x, then p = A(Φ) = x.
(b) If Φ = ¬Φ1, then p = A(Φ) = 1−A(Φ′).
(c) If Φ = Φ1∧Φ2, then p = A(Φ) = A(Φ1) ·A(Φ2).
The rules are readily extended to other connectives, e.g., if Φ = Φ1∨Φ2 then A(Φ) = 1− (1−
A(Φ1)) · (1−A(Φ2)).

We next define a sequence of specializations of p. For 0≤ i≤ n, let

fi(x1, . . . ,xi) = ∑
ai+1,...,an∈{0,1}

p(x1, . . . ,xi,ai+1, . . . ,an).

Then f0 is the number of satisfying assignments of Φ, fn = p, deg fi ≤ n for all i, and we have
the recursion

fi(x1, . . . ,xi) = fi+1(x1, . . . ,xi,0)+ fi+1(x1, . . . ,xi,1).

We are now ready for the interactive proof system for membership in #SAT . Let (Φ,k) be a
pair consisting of a boolean formula and an integer. The prover P wants to convince the verifier
V that Φ has exactly k satisfying assignments. If Φ has exactly k satisfying assignments, the
prover will succeed. If (Φ,k) 6∈ #SAT , the prover will succeed with probability at most n2/2n.

Let q be a prime larger than 2n. Arithmetic is in Fq.
The protocol will consist of n rounds numbered 1 to n. At the beginning of the i-th round,

the verifier will keep a number yi−1. Also, it will have chosen i−1 random numbers r1 to ri−1.
It will believe (Φ,k) ∈ #SAT iff the prover convinces him that yi−1 = fi−1(r1, . . . ,ri−1).

We start with y0 = k.
After the n-th round (= before the (n+1)-th round), the verifier has a number yn and it will

have chosen n numbers r1 to rn. It will believe (Φ,k) ∈ #SAT iff the prover convinces him that
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yn = fn(r1, . . . ,rn). However, there is no convincing to be done anymore, since fn = p. The
verifier simply checks whether yn = p(r1, . . . ,rn). It accepts if the equality holds and rejects
otherwise.

We next describe the interaction in round i.

Round i.
(1) The prover sends to V the coefficients of a polynomial qi in one variable z of degree at most

n. Allegedly, these are the coefficients of fi(r1, . . . ,ri−1,z) ∈ Zp[z].
(2) The verifier checks yi−1 = qi(0) + qi(1). If this is not the case, it rejects. Otherwise, it

chooses a random ri and sets yi = qi(ri). It sends ri to the prover.

Theorem 1 If (Φ,k) ∈ #SAT , the prover can convince the verifier with certainty. If If (Φ,k) 6∈
#SAT , the prover can fool the verifier with probability at most n ·n/2n.

Proof: If (Φ,k) ∈ #SAT , the prover sends qi = fi(r1, . . . ,ri−1,z) in round i.
Assume (Φ,k) 6∈ #SAT . Let q1 to qn be the sequence of polynomials sent by P. We claim

prob(yi−1 = fi−1(r1, . . . ,ri−1))≤ (i−1) ·n/2n

for 0 ≤ i ≤ n. This is true for i = 1, since y0 = k and f0 6= k. Assume now that yi−1 6=
fi−1(r1, . . . ,ri−1). The prover sends a polynomial qi and the verifier checks yi−1 = qi(0)+qi(1).
If we not have equality, the verifier rejects and we are done. So assume otherwise. Then

qi(0)+qi(1) = yi−1 6= fi−1(r1, . . . ,ri−1) = fi(r1, . . . ,ri−1,0)+ fi(r1, . . . ,ri−1,1)

and hence the polynomials qi(z) and fi(r1, . . . ,ri−1,x) are not identical. Hence there are at most
n arguments on which they agree. Thus prob(q(ri) = fi(r1, . . . ,ri) |yi−1 6= fi−1(r1, . . . ,ri−1)) ≤
n/q≤ n/2n and hence

prob(yi = fi(r1, . . . ,ri))

≤ prob(yi−1 = fi−1(r1, . . . ,ri−1))+prob(yi = fi(r1, . . . ,ri) |yi−1 6= fi−1(r1, . . . ,ri−1))

≤ (i−1) ·n/2n +n/2n = i ·n/2n.

2 PSPACE ⊆ IP
We need to show that quantified boolean formula are in IP.
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A First Approach. We proceed as in the preceding section. We first arithmetize the body of the
quantified formula. This gives us a polynomial p in n variables. Then we eliminate the variables.
We define

fi(x1, . . . ,xi) =

{
1 if Qi+1xi+1 . . .QnxnΦ(x1, . . . ,xi,xi+1, . . . ,xn) is true
0 otherwise.

Then f0 is the truth value of the quantified boolean formula, and we have the identities

• if Qi+1 = ∀: fi(x1, . . . ,xi) = fi+1(x1, . . . ,xi,0) · fi+1(x1, . . . ,xi,1)

• if Qi+1 = ∃: fi(x1, . . . ,xi) = fi+1(x1, . . . ,xi,0)∗ fi+1(x1, . . . ,xi,1)

where a ∗ b = 1− (1− a) · (1− b). There is one problem here. Each quantifier might double
the degree of the polynomial and hence we end up with polynomials of exponential degree.
This is bad, as it would take exponential time for the prover to transfer the coefficients of such
polynomials.

The Solution. We need one more technique: linearization. Let r be a polynomial in the variable
z. Consider r̂ defined as

r̂(z) = (1− z)r(0)+ zr(1).

Then r̂ is linear in z and agrees with r on binary arguments. It may agree with r on more
arguments.

Instead of Q1x1 . . .Qnxn p, we consider

Q1x1Rx1Q2x2Rx1Rx2 . . .QnxnRx1 . . .Rxn p;

here R stands for reduction or linearization. Let us write this as

S1z1 . . .Smzm p

where each Si stands for ∀, ∃ or R and each zi stands for one of the original variables.
Note that

Rx1 . . .Rxn p = ∑
(a1,...,an)∈{0,1}n

∏
i

x(ai)
i p(a1, . . . ,an),

where x(1)i = xi and x(0)i = 1− xi, i.e., we really do disjunctive normal form.
We now define a sequence of polynomials f0 to fm. fm has n variables and is the arithmeti-

zation of Φ. If Si is equal to ∀ or ∃, then fi−1 has one less variable than fi and

fi−1(. . .) =

{
fi(. . . ,0) · fi(. . . ,1) if Si = ∀,
fi(. . . ,0)∗ fi(. . . ,1) if Si = ∃.

If Sizi is equal to Rx j, fi−1 has the same number of variables as fi and

fi−1(. . . ,x j, . . .) = (1− x j) fi(. . . ,0, . . .)+ x j fi(. . . ,1, . . .).
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Then f0 = 1 if and only if the quantified boolean formula is true, f0 = 0 otherwise. Note that p,
the arithmetization of Φ has degree at most n. We then do n linearization steps, bringing all the
degrees down to 1. Forall and exists-quantors increase the degree again to 2. Note that the rules
for ∀ and ∃ square the degrees of the remaining variables, i.e, if Q is equal to ∀ or ∃, we obtain a
quadratic polynomial which we linearize then by reductions on all variables.

The protocol is quite similar to the protocol above. Initially, the verifier sets y0 = 1. The
prover wants to convince the verifier that y0 = f0. We proceed in rounds.

Consider the round corresponding to Sizi. fi−1 has a certain degree, say di−1. The verifier has
already chosen the corresponding number of random values r1, . . . ,rdi−1 . It also has a value yi−1.
The prover still has to convince the verifier that yi−1 = fi−1(r1, . . .).

The prover sends the coefficients of some univariate polynomial q(z) of degree at most n.
In an exchange corresponding to a true input, this is fi(r1, . . . ,z) if Si = ∀ or Si = ∃, and it is
fi(r1, . . . ,r j−1,z,r j+1, . . . ,rdi) if Sizi = Rx j. The verifier checks that q satisfies the recurrence
formulas for the fi’s where the left hand side is replaced by yi−1. yi−1 = q(0) ·q(1) if Si = ∀, and
yi−1 = q(0)∗q(1) if Si = ∃.
yi−1 = (1− r j)q(0)+ r jq(1) if Sizi = Rx j. If the check fails, V rejects.

Otherwise, V chooses a random value r, sets yi to q(r), and sends r to P. The r either extends
the sequence of random values (if Si is a quantifier) or replaces the value r j (if Sizi = Rx j).

Once we have worked through the prefix, V checks whether fm(r1, . . . ,rn) = ym. It accepts if
the equality holds.

Theorem 2 TQBF ∈ IP.

Proof: If the formula is true, the prover plays according to the rules and the verifier accepts.

If the formula is false, we have y0 6= f0. If the verifier accepts, we have fm(r1, . . . ,rn) = ym.
Hence there must be an i such that yi−1 6= fi−1(r1, . . .) and yi = fi(r1, . . . ,r).

If Si = ∀ or ∃, we have (⊕ stands for · or ∗)

qi(0)⊕qi(1) = yi−1 6= fi−1(r1, . . .) = fi(r1, . . . ,0)⊕ fi(r1, . . . ,1)

and hence qi(z) and fi(r1, . . . ,z) are distinct as polynomials in z. Thus the probability that yi =
fi(r1, . . . ,r) is at most n/size of the field.

If Sizi = Rx j, we have

(1−r j)qi(0)+r jqi(1)= yi−1 6= fi−1(r1, . . . ,r j, . . . ,rdi−1)= (1−r j) fi(r1, . . . ,0, . . . ,rdi−1)+r j fi(r1, . . . ,1, . . . ,rdi−1)

and hence qi(z) and fi(r1, . . . ,z, . . . ,rdi−1) . . . ,z) are distinct as polynomials in z. Thus the prob-
ability that yi = fi(r1, . . . ,rdi) is at most n/size of the field. In the last equation, r j has the new
random value chosen in this round.

.
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3 Graph Isomorphism
Given two graphs G1 and G2, the prover wants to convince the verifier that G1 and G2 are iso-
morphic.

1. The prover generates a graph H (isomorphic to G1 and G2) and shows it to the verifier.

2. The verifier chooses i∈ {1,2} at random and asks the verifier to show him an isomorphism
between H and Gi. He accepts if the prover can do so.

If G1 and G2 are isomorphic, the prover always wins. If G1 and G2 are not isomorphic, he is
caught with probability 1/2.

4 Graph Non-Isomorphism
Given two graphs G1 and G2, the prover wants to convince the verifier that G1 and G2 are not
isomorphic.

1. The verifier chooses i ∈ {1,2} at random and produces an isomorphic copy H of Gi. He
asks the verifier to tell him whether H is isomorphic to G1 or to G2.

If G1 and G2 are non-isomorphic, the prover always wins. If the two graphs are isomorphic, he
is caught with probability 1/2.
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