A Simple Test on 2-Vertex- and 2-Edge-Connectivity

Jens M. Schmidt
MPI für Informatik, Saarbrücken
(jens.schmidt@mpi-inf.mpg.de)

Abstract

Testing a graph on 2 -vertex- and 2 -edge-connectivity are two fundamental algorithmic graph problems. For both problems, different lineartime algorithms with simple implementations are known. Here, an even simpler linear-time algorithm is presented that computes a structure from which both the 2 -vertex- and 2-edge-connectivity of a graph can be easily "read off". The algorithm computes all bridges and cut vertices of the input graph in the same time.

1 Introduction

Testing a graph on 2-connectivity (i.e., 2-vertex-connectivity) and on 2-edgeconnectivity are fundamental algorithmic graph problems. Tarjan presented the first linear-time algorithms for these problems, respectively [11, 12]. Since then, many linear-time algorithms have been given (e.g., $[2,3,4,5,6,13,14,15]$) that compute structures which inherently characterize either the 2 - or 2-edgeconnectivity of a graph. Examples include open ear decompositions $[8,16]$, blockcut trees [7], bipolar orientations [2] and s-t-numberings [2] (all of which can be used to determine 2-connectivity) and ear decompositions [8] (the existence of which determines 2-edge-connectivity).

Most of the mentioned algorithms use a depth-first search-tree (DFS-tree) and compute so-called low-point values, which are defined in terms of a DFS-tree (see [11] for a definition of low-points). This is a concept Tarjan introduced in his first algorithms and that has been applied successfully to many graph problems later on. However, low-points do not always provide the most natural solution: Brandes [2] and Gabow [6] gave considerably simpler algorithms for computing most of the above-mentioned structures (and testing 2-connectivity) by using simple path-generating rules instead of low-points; they call these algorithms path-based.

The aim of this paper is a self-contained exposition of an even simpler lineartime algorithm that tests both the 2- and 2-edge-connectivity of a graph. It is suitable for teaching in introductory courses on algorithms. While Tarjan's two algorithms are currently the most popular ones used for teaching (see [6] for a list of 11 text books in which they appear), in my teaching experience, undergraduate students have difficulties with the details of using low-points.

The algorithm presented here uses a very natural path-based approach instead of low-points; similar approaches have been presented by Ramachandran [10] and Tsin [14] in the context of parallel and distributed algorithms, respectively. The approach is related to ear decompositions; in fact, it computes an (open) ear decomposition if the input graph has appropriate connectivity.

Notation. We use standard graph-theoretic terminology from [1]. Let $\delta(G)$ be the minimum degree of a graph G. A cut vertex is a vertex in a connected graph that disconnects the graph upon deletion. Similarly, a bridge is an edge in a connected graph that disconnects the graph upon deletion. A graph is 2 -connected if it is connected and contains at least 3 vertices, but no cut vertex. A graph is 2-edge-connected if it is connected and contains at least 2 vertices, but no bridge. Note that for very small graphs, different definitions of (edge)connectivity are used in literature; here, we chose the common definition that ensures consistency with Menger's Theorem [9]. It is easy to see that every 2 -connected graph is 2-edge-connected, as otherwise any bridge in this graph on at least 3 vertices would have an end point that is a cut vertex.

2 Decomposition into Chains

We will decompose the input graph into a set of paths and cycles, each of which will be called a chain. Some easy-to-check properties on these chains will then characterize both the 2- and 2-edge-connectivity of the graph. Let $G=(V, E)$ be the input graph and assume for convenience that G is simple and that $|V| \geq 3$.

We first perform a depth-first search on G. This implicitly checks G on being connected. If G is connected, we get a DFS-tree T that is rooted on a vertex r; otherwise, we stop, as G is neither 2- nor 2-edge-connected. The DFS assigns a depth-first index (DFI) to every vertex. We assume that all tree edges (i. e., edges in T) are oriented towards r and all backedges (i.e., edges that are in G but not in T) are oriented away from r. Thus, every backedge lies in exactly one directed cycle $C(e)$. Let every vertex be marked as unvisited.

We now decompose G into chains by applying the following procedure for each vertex v in ascending DFI-order: For every backedge e that starts at v, we traverse $C(e)$, beginning with v, and stop at the first vertex that is marked as visited. During such a traversal, every traversed vertex is marked as visited. Thus, a traversal stops at the latest at v and forms either a directed path or cycle, beginning with v; we call this path or cycle a chain and identify it with the list of vertices and edges in the order in which they were visited. The i th chain found by this procedure is referred to as C_{i}.

The chain C_{1}, if exists, is a cycle, as every vertex is unvisited at the beginning (note C_{1} does not have to contain r). There are $|E|-|V|+1$ chains, as every of the $|E|-|V|+1$ backedges creates exactly one chain. We call the set $C=$ $\left\{C_{1}, \ldots, C_{|E|-|V|+1}\right\}$ a chain decomposition; see Figure 1 for an example.

Clearly, a chain decomposition can be computed in linear time. This almost concludes the algorithmic part; we now state easy-to-check conditions on C that characterize 2 - and 2-edge-connectivity. All proofs will be given in the next section.

Theorem 1. Let C be a chain decomposition of a simple connected graph G. Then G is 2-edge-connected if and only if the chains in C partition E.

Figure 1: A graph G, its DFS-tree and a chain decomposition of G.

Theorem 2. Let C be a chain decomposition of a simple 2-edge-connected graph G. Then G is 2-connected if and only if C_{1} is the only cycle in C.

The properties in Theorems 1 and 2 can be efficiently tested: In order to check whether C partitions E, we mark every edge that is traversed by the chain decomposition. If G is 2-edge-connected, every C_{i} can be checked on forming a cycle by comparing its first and last vertex on identity. For pseudo-code, see Algorithm 1.

```
Algorithm 1 Check(graph \(G) \quad \triangleright G\) is simple and connected with \(|V| \geq 3\)
    Compute a DFS-tree \(T\) of \(G\)
    Compute a chain decomposition \(C\); mark every visited edge
    if \(G\) contains an unvisited edge then
        output "NOT 2-EDGE-CONNECTED"
    else if there is a cycle in \(C\) different from \(C_{1}\) then
        output "2-EDGE-CONNECTED BUT NOT 2-CONNECTED"
    else
        output "2-CONNECTED"
```

We state a variant of Theorem 2, which does not rely on edge-connectivity. Its proof is very similar to the one of Theorem 2.

Theorem 3. Let C be a chain decomposition of a simple connected graph G. Then G is 2-connected if and only if $\delta(G) \geq 2$ and C_{1} is the only cycle in C.

3 Proofs

It remains to give the proofs of Theorems 1 and 2 . For a tree T rooted at r and a vertex x in T, let $T(x)$ be the subtree of T that consists of x and all descendants of x (independent of the edge orientations of T). Theorem 1 is immediately implied by the following lemma.

Lemma 4. Let C be a chain decomposition of a simple connected graph G. An edge e in G is a bridge if and only if e is not contained in any chain in C.

Proof. Let e be a bridge and assume to the contrary that e is contained in a chain whose first edge (i. e., whose backedge) is b. The bridge e is not contained in any cycle of G, as otherwise the end points of e would still be connected when deleting e, contradicting that e is a bridge. This contradicts the fact that e is contained in the cycle $C(b)$.

Let e be an edge that is not contained in any chain in C. Let T be the DFS-tree that was used for computing C and let x be the end point of e that is farthest away from the root r of T, in particular $x \neq r$. Then e is a tree-edge, as otherwise e would be contained in a chain. For the same reason, there is no backedge with exactly one end point in $T(x)$. Deleting e therefore disconnects all vertices in $T(x)$ from r. Hence, e is a bridge.

The following lemma implies Theorem 2, as every 2-edge-connected graph has minimum degree 2 .

Lemma 5. Let C be a chain decomposition of a simple connected graph G with $\delta(G) \geq 2$. A vertex v in G is a cut vertex if and only if v is incident to a bridge or v is the first vertex of a cycle in $C \backslash C_{1}$.

Proof. Let v be a cut vertex in G; we may assume that v is not incident to a bridge. Let X and Y be connected components of $G \backslash v$. Then X and Y have to contain at least two neighbors of v in G, respectively. Let X^{+v} and Y^{+v} denote the subgraphs of G that are induced by $X \cup v$ and $Y \cup v$, respectively. Both X^{+v} and Y^{+v} contain a cycle through v, as both X and Y are connected. It follows that C_{1} exists; assume w.l.o.g. that $C_{1} \notin X^{+v}$. Then there is at least one backedge in X^{+v} that starts at v. When the first such backedge is traversed in the chain decomposition, every vertex in X is still unvisited. The traversal therefore closes a cycle that starts at v and is different from C_{1}, as $C_{1} \notin X^{+v}$.

If v is incident to a bridge, $\delta(G) \geq 2$ implies that v is a cut vertex. Let v be the first vertex of a cycle $C_{i} \neq C_{1}$ in C. If v is the root r of the DFS-tree T that was used for computing C, both cycles C_{1} and C_{i} end at v. Thus, v has at least two children in T and v must be a cut vertex. Otherwise $v \neq r$; let $w v$ be the last edge in C_{i}. Then no backedge starts at a vertex with smaller DFI than v and ends at a vertex in $T(w)$, as otherwise $v w$ would not be contained in C_{i}. Thus, deleting v separates r from all vertices in $T(w)$ and v is a cut vertex.

4 Extensions

We state how some additional structures can be computed from a chain decomposition. Note that Lemmas 4 and 5 can be used to compute all bridges and cut vertices of G in linear time. Having these, the 2-connected components (i. e., the
maximal 2-connected subgraphs) of G and the 2-edge-connected components (i. e., the maximal 2-edge-connected subgraphs) of G can be easily obtained. This gives the so-called block-cut tree [7] of G, which represents the dependence of the 2-connected components and cut vertices in G in a tree (it gives also the corresponding tree representing the 2-edge-connected components and bridges of G).

Additionally, the set of chains C computed by our algorithm is an ear decomposition if G is 2-edge-connected and an open ear decomposition if G is 2 -connected. Note that C is not an arbitrary (open) ear decomposition, as it depends on the DFS-tree. The existence of these ear decompositions characterize the 2-(edge-)connectivity of a graph $[8,16]$; Brandes [2] gives a simple lineartime transformation that computes a bipolar orientation and a s - t-numbering from such an open ear decomposition.

References

[1] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.
[2] U. Brandes. Eager st-Ordering. In Proceedings of the 10th European Symposium of Algorithms (ESA '02), pages 247-256, 2002.
[3] J. Ebert. st-Ordering the vertices of biconnected graphs. Computing, 30:19-33, 1983.
[4] S. Even and R. E. Tarjan. Computing an st-Numbering. Theor. Comput. Sci., 2(3):339-344, 1976.
[5] S. Even and R. E. Tarjan. Corrigendum: Computing an st-Numbering (TCS 2(1976):339-344). Theor. Comput. Sci., 4(1):123, 1977.
[6] H. N. Gabow. Path-based depth-first search for strong and biconnected components. Inf. Process. Lett., 74(3-4):107-114, 2000.
[7] F. Harary and G. Prins. The block-cutpoint-tree of a graph. Publ. Math. Debrecen, 13:103-107, 1966.
[8] L. Lovász. Computing ears and branchings in parallel. In Proceedings of the 26th Annual Symposium on Foundations of Computer Science (FOCS'85), pages 464-467, 1985.
[9] K. Menger. Zur allgemeinen Kurventheorie. Fund. Math., 10:96-115, 1927.
[10] V. Ramachandran. Parallel open ear decomposition with applications to graph biconnectivity and triconnectivity. In Synthesis of Parallel Algorithms, pages 275-340, 1993.
[11] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146-160, 1972.
[12] R. E. Tarjan. A note on finding the bridges of a graph. Information Processing Letters, 2(6):160-161, 1974.
[13] R. E. Tarjan. Two streamlined depth-first search algorithms. Fund. Inf., 9:85-94, 1986.
[14] Y. H. Tsin. On finding an ear decomposition of an undirected graph distributively. Inf. Process. Lett., 91:147-153, 2004.
[15] Y. H. Tsin and F. Y. Chin. A general program scheme for finding bridges. Information Processing Letters, 17(5):269-272, 1983.
[16] H. Whitney. Non-separable and planar graphs. Trans. Amer. Math. Soc., 34(1):339-362, 1932.

A Appendix

We omitted the proof of Theorem 3, as it is very similar to the one of Theorem 2. For completeness, we give the proof here.

Proof of Theorem 3: Let T be the DFS-tree that was used for computing C and let r be its root. First, let G be 2 -connected. Clearly, this implies $\delta(G) \geq 2$. Moreover, r has exactly one child, as otherwise r would be a cut vertex. Thus, r is incident to a backedge, which implies that C_{1} exists and is a cycle that starts at r. Assume to the contrary that v is the first vertex of a cycle $C_{i} \neq C_{1}$. If $v=r$, both cycles C_{1} and C_{i} end at v. Thus, v has at least two children in T. This implies that v is a cut vertex, which contradicts the 2 -connectivity of G. If $v \neq r$, let $w v$ be the last edge in C_{i}. There is no backedge that starts at a vertex with smaller DFI than v and ends at a vertex in $T(w)$, as otherwise $w v$ would be contained in a chain C_{j} with $j<i$. Thus, deleting v disconnects r from all vertices in $T(w)$, which contradicts the 2-connectivity of G.

Let $\delta(G) \geq 2$ and C_{1} be the only cycle in C and assume to the contrary that G is not 2 -connected. Then G contains a cut vertex v, as $\delta(G) \geq 2$ implies $|V| \geq 3$. Clearly, C_{1} can intersect with at most one connected component of $G \backslash v$. Let X be a connected component of $G \backslash v$ that does not contain any vertex of C_{1}. Let X^{+v} be the subgraph of G that is induced by $X \cup v$. There must be a cycle in X^{+v}, as otherwise X^{+v} would be a tree, whose leafs would contradict $\delta(G) \geq 2$. Hence, X^{+v} contains at least one backedge; let b be the first backedge in X^{+v} that is traversed by the chain decomposition. As $r \notin X$, all vertices in $D(b)$ except the start point w of b have greater DFIs than w. Thus, the traversal on b computes a chain $C_{i} \subset X^{+v}$ that is a cycle and that is distinct from C_{1}, as X does not contain any vertex of C_{1}.

