
Journal of Algorithms 42, 1–19 (2002)
doi:10.1006/jagm.2001.1200, available online at http://www.idealibrary.com on

Oblivious Gossiping on Tori1

Ulrich Meyer

Max-Planck-Institut für Informatik, Im Stadtwald, 66123 Saarbrücken, Germany
E-mail: umeyer@mpi-sb.mpg.de; http://www.mpi-sb.mpg.de/∼umeyer/

and

Jop F. Sibeyn

Department of Computing Science, Faculty of Science and Technology,
Umeå University, 90187 Umeå, Sweden

E-mail: jopsi@cs.umu.se; http://www.cs.umu.se/∼jopsi/

Received August 5, 1998

Near-optimal gossiping algorithms are given for two-dimensional and higher
dimensional tori, assuming the full-port store-and-forward communication model.
For two-dimensional tori, a previous algorithm achieved optimality in an intricate
way, with an adaptive routing pattern. In contrast, the processing units in our algo-
rithm forward the received packets always in the same way. We thus achieve almost
the same performance with patterns that might be hardwired. 2002 Elsevier Science

1. INTRODUCTION

Meshes and Tori. One of the most thoroughly investigated intercon-
nection schemes for parallel computation is the n × n mesh, in which n2

processing units, PUs, are connected by a two-dimensional grid of commu-
nication links. Its immediate generalizations are d-dimensional n× · · · × n
meshes. Despite their large diameter, meshes are of great importance due
to their simple structure and efficient layout.

Tori are the variant of meshes in which the PUs on the outside are
connected with “wraparound links” to the corresponding PUs at the other

1 Partially supported by the IST Programme of the EU under contract number IST-1999-
14186 (ALCOM-FT).

1

0196-6774/02 $35.00
 2002 Elsevier Science

All rights reserved.

2 meyer and sibeyn

end of the mesh. Tori are node symmetric. Furthermore, the bisection width
for tori is twice as large as that for meshes, whereas their diameter is smaller
by a factor of two. Numerous parallel machines, such as the Intel Paragon,
Cray T3D, and Cray T3E, have been built with two- and three-dimensional
mesh and torus topologies. Tori can be embedded in meshes with load 1,
dilation 2, and congestion 2. That is, for all those algorithms that run twice
as fast on tori as on meshes, one can assume without loss of performance
that the network is a torus.

Gossiping. Gossiping is a fundamental communication problem: Initially
each of the P PUs knows some data of size s bytes, which must be routed
so that in the end all PUs have the complete set of information of size
s · P bytes (this problem is also called all-to-all broadcast).

Gossiping appears as a subroutine in many important problems. For
example, if M numbers are to be sorted on P PUs, then a good approach
is to select a set of m splitters �13� 18� 20� which must be made available
in every PU. This means that we have to perform a gossip in which each
of the P PUs contributes s = m/P numbers. Gossiping is also used in
parallel implementations of matrix-multiplication, LU-factorization, House-
holder transformations, and basic linear algebra operations [8, 9]. Another
application of gossiping appears in algorithms for solving ordinary differen-
tial equations using parallel block predictor–corrector methods [19]. In each
application of the block method, computations corresponding to the pre-
diction are carried out by different PUs and these values are required by all
other PUs. More information about gossiping can be found in [6, 10, 11, 15].

Earlier Work. A substantial amount of research has been carried out on
variants of the gossiping problem on meshes and tori [3, 4, 7, 12, 16, 17].
Recently Šoch and Tvrd́ık [21] have analyzed the following variant of the
gossiping problem:

• Packets of size s can be transferred in one step between adjacent
PUs (store-and-forward model).

• In each step a PU can exchange packets with all its neighbors
(full-port model).

They show that on a two-dimensional n1 × n2 torus, the gossiping can be
solved in ��n1 · n2 − 1
/4� steps if n1� n2 ≥ 3. This is optimal for fixed
packet size s. The algorithm is based on time-arc-disjoint broadcast trees.
The algorithm is time-dependent in the sense that the pattern according to
which the PUs are forwarding the received packets is changing from step to
step. Thus, for every routing decision, a PU has to perform some non-trivial
computation. Precomputing all routing decisions once and for all and stor-
ing them in tables to facilitate fast lookup is practically not feasible as the
gossiping may be needed in many different partitions. Another drawback of

oblivious gossiping on tori 3

this algorithm is its requirement for a non-constant buffer space where the
PUs store packets which cannot be forwarded immediately. In subsequent
papers [23–26] the approach has been extended to three-dimensional tori
and the buffer size per PU has been reduced. However, the algorithm of
[21] already requires the distinction of many cases, and the description is
mainly in the form of pictures. The subsequent improvements resulted in
even more complicated algorithms. We think these weaknesses are inherent
to the time-dependent approach.

Alternatively, Yang and Wang [28] propose another optimal but simpler
scheme for d dimensional tori and meshes. They also use broadcast trees
but time-arc disjointness is circumvented by applying FIFO queues. Unfor-
tunately, the queues may have to store 	�P/d
 packets. In a setting where
huge packets are immediately processed upon receipt in their target PUs
this might be a considerable disadvantage.

Practical Considerations. Modern parallel computers mostly apply
worm-hole routing instead of the store-and-forward routing introduced
above. With worm-hole routing, packets are transferred between their ori-
gin and destination as a stream of “flits.” As long as there is no congestion,
the time for such a transfer is more or less independent of the distance.
For a packet of size s, it can be written as tstartup + s · tfeed/byte where tstartup
denotes the “startup time” which is independent of the packet size, and
tfeed/byte denotes the “feeding time” which is needed to transfer one byte
of a packet between a PU and the network.

Since routing patterns designed for the store-and-forward model are
obviously congestion-free (communication is restricted to neighboring
PUs), their time analysis using full-ported worm-hole routing is straight-
forward: if during each of T steps each PU transfers at most one packet
of size s to each of its adjacent PUs, then the routing takes at most
T · �tstartup + s · tfeed/byte
 time.

For the gossiping problem with initially s bytes in each PU it is not
required to have fixed packet size s. However, by splitting the initial infor-
mation sets of the PUs and transmitting packets of size s′ = s/k� k > 1
will require at least ��P − 1
 · k/�2 · d
� steps. Hence, due to the increased
number of startups this will never result in an improved routing time. Still,
it may allow much simpler routing schemes. The performance loss depends
on the ratios of s/s′ and tstartup/tfeed/byte.

New Results. In this paper, we analyze the same problem as Šoch and
Tvrd́ık did. Clearly, we cannot improve their optimality. Instead, we try to
determine the minimal concessions that must be made to obtain an algo-
rithm that is time-independent (also called oblivious) in the sense that the
pattern according to which the PUs are forwarding the received packets is
the same in every step of the algorithm. That is, in our gossiping algorithms,

4 meyer and sibeyn

after some ��d
 precomputation on a d-dimensional torus, a PU knows
once and for all that packets coming from direction xi have to be for-
warded in direction xj� 1 ≤ i� j ≤ d. No buffers are needed to store packets
until they can eventually be forwarded. Time-independence ensures that
the routing can be performed with minimal delay and PU internal memory.
For a fixed size network the pattern might even be built into the hardware.
This is also advantageous on a system in which the connections must be
somehow switched.

Our first approach for d-dimensional tori splits the s bytes of information
initially residing in each PU into d packets of size s/d each and routes them
along d fixed edge-disjoint Hamiltonian cycles. More concretely, the ith
packet of a PU is routed along both directions of the ith cycle. For packet
size s/d this achieves the optimal number of steps, ��P − 1
/2�. One might
ask whether the d edge-disjoint cycles could also be chosen so that there
is no need to split the packets and that routing the entire packets of size
s bytes along all d cycles in parallel for ��P − 1
/�2 · d
� steps would solve
the gossiping problem as well. In Section 3 we will show that this is not
possible: even for d = 2�	�P
 extra steps are needed.

Our second approach is to accept that an oblivious gossiping for packet
size s takes a non-optimal number of routing steps. However, we replace the
edge-disjoint Hamiltonian cycles by an improved routing scheme that limits
the number of extra steps to o�P
. For d = 2, the algorithm is particularly
simple and needs n1 · n2/4 + n1/2 + n2/2 + 2 steps, which is just slightly
more than optimal. Therefore, this algorithm might be preferable over the
one from [21]. Generally, we aim to perform the gossiping with packets of
size s in P/�2 · d
 + o�P
 steps on a d-dimensional torus by constructing
partial Hamiltonian cycles: on a d-dimensional torus, we construct d cycles,
which each cover P/d + o�P
 PUs. The layout of the cycles must fulfill the
demand that whenever a PU is not covered by some cycles then those cycles
are present in its adjacent PUs. Thus, a PU receives its packets either via
the cycles it takes part in or with a one time step delay via a neighboring
PU. For the practically relevant case d = 3, this gives the first simple and
explicit construction achieving close to optimally: on an n1 × n2 × n3 torus,
our schedule requires n1 · n2 · n3/6 + ��n1 · n2 + n1 · n3
 steps for packet
size s.

Contents. In Section 2, we describe the optimal time gossiping approach
that routes packets of size s/d� d ≥ 2, along d edge-disjoint Hamiltonian
cycles. In Section 3, we prove that this approach cannot give the optimal
number of steps for packets of size s on a two-dimensional torus, no matter
how the Hamiltonian cycles are chosen. Then, in Section 4, we describe
improved near-optimal time algorithms using packets of size s on two- and
three-dimensional tori. Finally, in Section 5, we numerically compare the

oblivious gossiping on tori 5

performance of the gossiping algorithms of this paper and determine their
range of optimality.

2. STEP-OPTIMAL ALGORITHMS

We assume that each PU initially holds some data of size s. In this section
we present optimal gossiping algorithms for two-dimensional n1 × n2 tori
using packets of size s/2; i.e., conceptually the input of each PU is split
into two packets, one for each cycle. The transfer of a packet between two
adjacent PUs takes one step. We show that the gossiping can be performed
in n1 · n2/2 steps. We distinguish a few cases, depending on the parity of
n1 and n2. Finally, we indicate how this idea can be generalized for higher
dimensional tori.

2.1. Two-Dimensional Tori, n1, and n2 Even

First we settle the indexing of the torus. The PU with index i will be
designated PU i. PU �0� 0
 lies in the upper-left corner. PU �i� j
 lies in
row i and column j. n1 gives the number of rows and n2 gives the number of
columns. The routing rules are very simple: PU �i� j
 determines whether
j is odd or even; then it sets its routing rules as

j < n2 − 1� j even: T ↔ R�B↔ L�

j < n2 − 1� j odd: T ↔ L�B↔ R�

Here T�B�L, and R designate the directions top, bottom, left, and right,
respectively. By T ↔ R, we mean that the packets coming from above
should be routed on to the right and vice versa. The other ↔ symbols are
to be interpreted analogously. Only in the special case j = n2 − 1 do we
have the rule

j = n2 − 1� T ↔ R�B↔ L�

The resulting routing scheme is illustrated in Fig. 1.

Theorem 1. If every PU of an n1 × n2 torus, with n1 and n2 even, holds
s bytes of information then gossiping can be performed in n1 · n2/2 steps using
packets of size s/2.

Proof. After splitting the initial s bytes of information every PU knows
two packets of size s/2, one for each cycle. In each step, it receives four
new packets, two from each cycle. In the last step only, a PU receives twice
the same two packets.

6 meyer and sibeyn

n1

(3,1)

(0,0)

n2

FIG. 1. A Hamiltonian cycle on a 6× 8 torus (black), whose complement (drawn with gray
lines) also gives a Hamiltonian cycle.

2.2. Two-Dimensional Tori, n1 Odd, and n2 Even

If n1 or n2 is odd, we must use a slightly modified schedule. In this section
we consider only the case n1 odd and n2 even. The case n1 even and n2
odd can be solved in a similar way. Here we do not construct complete
Hamiltonian cycles, but cycles that visit most PUs and pass within distance
one from the remaining PUs. The PUs in column n1 − 2 will store just one
packet instead of two. This situation can be reached within one step: By
assuming that each PU initially holds s bytes then for 0 ≤ i < n1� 1 ≤ j <
n2 − 1, PU �i� j
 transmits j · s/�2 · n2
 bytes of its own data to PU �i� j− 1
.
Furthermore, each PU in column n1 − 2 sends another s/�2 · n2
 bytes to
its right neighbor. Now the PUs can reorganize their data in packets of
size at most �1 + 1/n2
 · s/2, each according to our requirements. Except
for column n1 − 2, the rules governing how to pass on the packets are the
same as in the basic case. In column n1 − 2 we perform

i = n1 − 2� L↔ R�L→ T �L→ B�

PUs which do not lie on a given cycle, out-of-cycle-PUs, abbreviated
OOC-PUs, are provided with the packets which are transferred along this
cycle by their neighboring on-cycle-PUs, OC-PUs. With respect to different
cycles, a PU can be both out-of-cycle and on-cycle. The packets received
by an OOC-PU are not forwarded. This can be achieved in such a way that
a connection has to transfer only one packet in each step. The resulting
routing scheme is illustrated in Fig. 2.

oblivious gossiping on tori 7

363532312827

253433302926

24232219181514

13 16 17 20 21 12

111096521

3887430

A

n1

37

C

n2

B

f

f

b f

f b

fb

bf

b f

b f

bf

FIG. 2. Partial Hamiltonian cycles on a 6× 7 torus. The PUs in column 5 lie on only one
cycle. Such a PU passes the packets that are running forward (i.e., enter from left) on this
cycle to the PU above it, and those that are running backward (i.e., enter from right) to the
PU below it.

The optimal performance in the basic case (n1, n2 even) was achieved by
using both directions on every cycle, thus halving the circulation time. The
inclusion of OOC-PUs complicates this approach: We need two different
OC-PUs, A and B, in order to provide an OOC-PU C with packets from
both directions of that cycle. Let A transfer the packets that are walking
backward whereas B is responsible for the packets going forward. If m
denotes the cycle length, and A and B are not adjacent on the cycle, then
�m/2� circulation steps are not enough: some packets are received from
both directions, while others pass by without notice. In the example of
Fig. 2 we have m = 39 and the OOC-PU C receives the following packets
from the gray cycle (double-receives are marked with a star):

Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Rec. via A 10 11 12 13 14 15 16 17∗ 18∗ 19∗ 20∗ 21∗ 22∗ 23∗ 24 25 26 27 28 29 30 31 32 33 34 35 36∗

Rec. via B 23 22 21 20 19 18 17 16∗ 15∗ 14∗ 13∗ 12∗ 11∗ 10∗ 9 8 7 6 5 4 3 2 1 0 38 37 36

Let l be the number of OC-PUs from A to B in the forward direction.
Then during the first �l/2� steps, C receives two new packets in each step.
In the course of the next �l/2� steps at most one new packet is received.
Finally, the remaining packets are received during another �m/2 − l/2�
step. The cycles are chosen such that m = N − n1/2 and l = 2 · n2. Thus, the
whole algorithm with two packets per PU needs n1 · n2/2+ 1+ n2 steps. It
should also be taken into account that the packet size compared to the basic

8 meyer and sibeyn

case has been increased by a factor of �1+ 1/n2
 after the first step. Under
our assumption that s is large enough to make the feeding time dominant
over the startup costs, the increase in packet size also results in longer
feeding times. However, the time increase is bounded by an equivalent of
��n1 · n2 · �1+ 1/n2

 = ��n1
 steps.

If both n1 and n2 are odd, optimal gossiping for two packets per PU can
be achieved with a slightly modified schedule. Details are given in [14].

For d-dimensional tori, one should first construct d edge-disjoint Hamil-
tonian cycles. Such constructions are described in [1, 2, 5]. Then, if every PU
holds d packets of size s/d, each packet is forwarded for P/2 steps in both
directions along one of the Hamiltonian paths. In this way, after P/2 steps,
each PU has received all packets which are optimal for packet size s/d.
The routing is trivial, but the precomputation may be quite involved. In
particular, it is non-trivial to compute the local routing scheme for each
PU individually without computing the whole paths.

In the following section we will show that the approach above essentially
needs to split the initial data into smaller packets in order to achieve the
optimal bound for the number of steps. Otherwise, 	�P
 extra steps are
needed. Therefore, in Section 4 we give an alternative generic construction
that in principle works for arbitrary dimensions and which yields a routing
that can be performed in P/�2 · d
 + o�P
 steps.

3. A LOWER BOUND FOR GOSSIPING VIA
EDGE-DISJOINT HAMILTONIAN CYCLES

The communication network at hand imposes limits on the way one can
choose edge-disjoint Hamiltonian cycles; sometimes they do not exist at all.
In contrast to Section 2 we now consider the case that the s bytes of ini-
tial information in each PU are not split into two packets but are always
transferred as one packet of size s. We prove a lower bound for the num-
ber of steps needed if the packets are circulated in both directions on both
cycles in parallel. The result holds for any network whose underlying graph
is 4-regular; thus it holds in particular for two-dimensional tori.

Theorem 2. Consider a gossiping on a 4-regular graph network with P
PUs and one non-modifiable packet per PU such that each packet is bidirec-
tionally circulated via two edge-disjoint Hamiltonian cycles in parallel. Any
choice of the two cycles requires at least �11/40
 · P − ��1
 steps until all PUs
have seen all packets.

Proof. Let us assume that there exist two edge-disjoint Hamiltonian
cycles. Furthermore, we may assume that the PUs are indexed so that the
first cycle, A, visits the PUs in consecutive order: 0� 1� � � � � P − 2� P − 1.

oblivious gossiping on tori 9

Thus, during the routing PU i will receive the packets from PU �i −
j
modP and PU �i + j
modP in Step j, 0 < i� j < P . In the same step,
PU i will also receive along the second cycle, B, the packets from PU i−j
and PU i+j where � � � � i−2� i−1� i0� i+1� i+2� � � � denotes the order of the
second cycle relative to PU i.

i0

i+2i+1
i-2 i-1

0 1

i

i+1 i-1

2

P-2P-1

Cycle A

Cycle B

In the best case every PU should receive two new packets from each
cycle in every step unless all P − 1 packets are present. Then clearly T =
��P − 1
/4� steps would suffice to complete the gossiping. However, due
to a non-optimal choice of the cycles or limitations of the network double-
receives may occur: this means that during the first T steps a PU i receives
ki packets via both Hamiltonian cycles. These double-receives will delay
the gossiping by at least maxi�ki/4� steps since during each subsequent step
PU i can receive at most four of the so far missing packets. Using the above
notation we have ki = ��i ∩�i\�i��, where �i = ��i − T
modP� � � � � �i +
T
modP� and �i = �i−T � � � � � i+T�. In order to avoid tedious rounding we
will use T = P/4− ��1
.

In the following we will prove that a PU i with ki ≥ P/10− ��1
 exists,
causing at least P/40 − ��1
 extra receive steps. Let us first choose i =
�P/4�. If ki ≥ P/10, we are done. Otherwise at least 2 · T − P/10 = 2/5 ·
P − ��1
 elements from �i have indices in �i = �0� � � � � P − 1�\�i. Let
�i = �i ∩ �i. The new PU index i′ is set to the median of the elements
in ��P/4�. We will show that at least P/10− ��1
 elements from ��P/4� are
double-receives for PU i′.

Before we go on, we illustrate the above definitions with an example.

Example 1. Consider the following two cycles for P = 41 and T =
��P − 1
/4� = 10.

T T
Cycle A

Cycle B

10 11 12 13 14 15 16 17 18 19 20

39 22 13 26 10 21 38 27

0 4 986 7

23 35 32 36 37 34 8 29 5

51 2 3

31 33 24 28

i

We start by choosing i = �P/4� = 10. Then �10 = �0� � � � � 20���10 =
�21� � � � � 40� and �10 = �5� 8� 10� 13� 21� 22� 23� 24� 26, 27� 28� 29� 31� 32,
33� 34� 35� 36� 37� 38� 39�.

10 meyer and sibeyn

The set of double-receives is given by �10 ∩�10\�10� = �5� 8� 13�, and
thus k10 = 3 < P/10. We must choose another PU i′. For �10 = �10 ∩�10
we have

�10 = �21� 22� 23� 24� 26� 27� 28� 29� 31� 32� 33� 34� 35� 36� 37� 38� 39��

The median of the elements in �10 is i′ = 31. After realigning the cycles
according to PU i′ we have the following situation:

Cycle A

Cycle B

T T
21 22 23 24 25 26 27 38 39

13 26 10 21 38 24 27

28 29 30 31 32 33 34 35 36 37 0

36 37 34 8 29 5 3331 28

i´
40

Now �31 = �21� � � � � 40� 0�. Due to the incomplete specification of the sec-
ond cycle, �31 is not fully known. However, in any case

�31 ⊃ �5� 8� 10� 13� 21� 24� 26� 27� 28� 29� 31� 33� 34� 36� 37� 38��

Hence, �31 ∩�31\�31� ⊃ �21� 24� 25� 26� 27� 28� 29� 33, 34� 36� 37� 38�, and
therefore k31 ≥ 12 > P/10.

We only have to deal with the case that a new PU i′ �= �P/4� has to be
chosen. As i′ is set to the median of at least 2/5 · P − ��1
 elements out of
��P/4�� i′ ∈ �P/2 + P/5− ��1
� � � � � P − 1− P/5+ ��1
�. The relative posi-
tion of i′ on the cycle B compared to i = �P/4� and the other elements of
��P/4� determines how many elements of ��P/4� belong to �i′ and are there-
fore double-receives in PU i′: in the worst case, i′ is a neighbor of �P/4� on
B and all other elements of ��P/4� are positioned compactly around these
two indices. Then ���P/4�� − ��1
 ≥ 2/5 · P − ��1
 double-receives occur.
Here is an appropriate modification of our previous example:

Cycle A

Cycle B

T T

Cycle A

Cycle B

T T
Cycle A

Cycle B

T T
0

39 22 23 26 10 21 3813 35 32 36 37 34 29 33 2431 27 28 58

10 11 12 13 14 15 16 17 18 19 200 4 986 751 2 3
i

21 22 23 24 25 26 27 38 3928 29 30 31 32 33 34 35 36 37
i´

21 22 23 24 25 26 27 38 3928 29 30 31 32 33 34 35 36 37
i´

39 22 23 26 10 21 3835 32 36 37 34 29 33 2431 27 28 58

40

In the best case, PU i′ is followed on one side of the B cycle by at least P/4
PUs storing elements not belonging to �i′ . Let us assume that this is the
case on the left side; for example, �i′−P/4� � � � � i′−1� ∩�i′ = �. This situation
might occur, for example, when i′ was located just at the left end of �i,

oblivious gossiping on tori 11

i′ = i−P/4. Then superfluous receives for PU i′ may only arrive from the
right side. Let us again look at an example:

Cycle A

Cycle B

T T

Cycle A

Cycle B

T T
Cycle A

Cycle B

T T
30

10 11 12 13 14 15 16 17 18 19 200 4 986 751 2 3
i

i´i´

40 38 37 10 27 2429 13 39 36 35 33 25 2334 28 265 8 22

292826 272524232221

29

31 32 33 34 35 36 37 38 39

5 8 13 40 39 38 37 36 35 10

2019

21

We have ��i� ≥ 2/5 · P − ��1
; thus in the best case the first P/2 − 2/5 ·
P − ��1
 = P/10 + ��1
 elements received from the right side of the B
cycle may not belong to �i′ as well. After that, the number of double-
receives is minimized if �i consists of two chunks of elements: ���i�/2�
small elements so that the median i′ is as small too and ���i�/2� large
elements so that the biggest of them will not belong to �i′ and therefore will
not cause double-receives. Those big elements should float into PU i′ prior
to the smaller ones. See the example above. However, as observed before,
i′ ≥ P/2+ P/5− ��1
. Consequently, �i′ spans large elements up to at least
P/2+ P/5+ P/4− ��1
 = 19/20 · P − ��1
. Thus, at most P/20+ ��1
 big
elements from �i which do not belong to �i′ are received from the right
side.

Altogether, during the first P/4 steps PU i′ receives on the B cycle at
least P/4− P/10− P/20− ��1
 = P/10− ��1
 elements fitting into �i′ .

4. ONE-PACKET ALGORITHMS

In this section we give another practical alternative to the approach
in [21]: we present algorithms which require only one packet per PU; i.e.,
having s bytes of initial information in each PU, they operate with packets
of size s. They are optimal to within o�P
 steps. The simple idea is based
on partial Hamiltonian cycles that include only a faction of all PUs: we con-
struct d edge-disjoint cycles of length P/d + o�P
. Each of the cycles must
have the following special property: if a PU does not lie on a cycle, then
this PU must be adjacent to two PUs that do lie on the cycle. Each of these
two PUs will transmit the packets from one direction of the cycle to the
OOC-PU.

4.1. Two-Dimensional Tori

The construction of two partial Hamiltonian cycles with the desired
properties is easy for two-dimensional tori. At the same time, this clearly

12 meyer and sibeyn

n1

n2

f

b

f

b

b

b

f

b

f

f

b

f

b

f

f

b

f

b

f

f

b

f

b

b

f

b

f

b

f

b

f

b

f

f

b

f

b

b

f

b

f

b

b

f

b

f

b

f

b

f

b

f

f

b

f

b

f

b

f

b

f

b

b

f

b

f

b

f

b

f

b

f

f

b

b

f

b

f

f

b

f

b

b

f

f

b

f

b

f

f

f

b

FIG. 3. Two edge-disjoint cycles, each of which comes within distance at most one from
all PUs.

illustrates our intentions. There are two axes: the x1-axis, running horizon-
tally and the x2-axis running vertically. PU �0� 0
 is assumed to lie in the
upper-left corner. n1 and n2 denote the size of the torus in the x1 and x2
directions, respectively. We assume that n1 is even and that n2 ≥ 2.

The construction is somewhat similar to the approach presented in
Section 2.2. The two edge-disjoint cycles, which are illustrated in Fig. 3,
can be described as follows: In the lower part of all columns, they only
consist of vertical connections. In the highest two rows, there is a “zigzag”
pattern, consisting of a horizontal connection, followed by a vertical con-
nection, followed by a horizontal connection. Thus, starting in the PUs of
row 0, the cycles make positive moves along axes x1� x2, and x1 and then
n2 − 1 moves along the x2-axis. One more move along the x2-axis brings
us over the wraparound connection to the next zigzag. Both cycles have
total length n1 · n2/2 + n1. Binding of the OOC-PUs is done exactly as in
the algorithm in Section 2.2; the case of odd n1 can be treated by inserting
one special column.

Theorem 3. If every PU of an n1 × n2 torus holds s bytes of initial data,
then gossiping can be performed in n1 · n2/4 + n1/2 + n2/2 + 2 steps using
packets of size s.

Proof. Each of the cycles consists of n1 · n2/2 + n1 PUs, so using both
directions in parallel one needs n1 · n2/4+ n1/2 + 1 steps to spread all the

oblivious gossiping on tori 13

packets within the cycle. For every OOC-PU, the two supplying OC-PUs are
separated by n2 + 1 other PUs on their cycle. According to the discussion
of double-receives in Section 2.2 this accounts for additional ��n2 + 1
/2�
steps.

4.2. Three-Dimensional Tori

For three-dimensional tori, we generalize the scheme of Section 4.1,
showing more abstractly the underlying approach. PU �0� 0� 0
 is assumed
to lie in the upper-back-left corner. The three axes are denoted as x1� x2,
and x3. They run left-, front-, and downward, respectively. We consider an
n1 × n2 × n3 torus, for suitable n1� n2, and n3: we assume that n1 is a mul-
tiple of 3, that n2 is a multiple of n1, and that n3 ≥ 3. As a generalization
of the two-dimensional pattern, we construct a pattern that is similar to the
bundle of rods in a nuclear power plant.

For two-dimensional tori, there are two cycles, each a concatenation of
n1/2 laps. Each lap consists of a zigzag followed by a long move along the
x2-axis. The zigzags are needed to bring us two positions further, connect-
ing the laps of a cycle. For three-dimensional tori, there are three cycles.
These are isomorphic, except that they start in different positions: Cycle j,
0 ≤ j ≤ 2, starts in PU �j� 0� 0
. Here, the zigzags bring us three positions
further. The first type of zigzag consists of positive moves along the follow-
ing sequence of axes: �1� 3� 1� 3� 1
. A zigzag is followed by n3 − 2 moves
along the x3-axis, the last move traversing a wraparound connection. In
this way we can fill up a plane, but in order to get to the next plane, there
must be a second type of zigzag consisting of moves along the following
sequence of axes: �1� 3� 1� 3� 2
. Thus, a complete cycle is the concatena-
tion of n1/3 · n2 laps. After each n1/3 − 1 laps using a zigzag of the first
type, one lap with a zigzag of the second type follows. The cycles are illus-
trated in Fig. 4 and Fig. 5.

That the constructed cycles have all the desired properties can be tested
with the help of the following reduction.

Lemma 1. PU �x1 + 3 · k1� x2 + 3 · k2� x3
, k1� k2 ≥ 0, lies on the same
cycle as PU �x1� x2� x3
.

Proof. The �1� 3� 1� 3� 1
 zigzag brings us three positions further along
the x1-axis, This implies that the cycle in all positions �x1 + 3 · k� x2� x3

is the same as that in �x1� x2� x3
. The zigzag �1� 3� 1� 3� 2
 brings us two
positions further along the x1-axis and one position along the x2-axis. Thus,
in position �x1+ 6 ·k� x2 + 3 ·k� x3
 we are on the same cycles as in position
�x1� x2� x3
. But, according to the first rule we may shift along the x1-axis
over multiples of three. This gives the lemma.

14 meyer and sibeyn

cycle 1 cycle 2cycle 0

FIG. 4. One edge-disjoint cycle used in the one-packet algorithm on a three-dimensional
torus.

Combining this with the fact that for any given value of x3 > 3, the
structure of the rods is the same, gives

Corollary 1. For testing that the cycles are indeed cycles and edge-
disjoint and for testing that the locality structure is as desired, it is sufficient to
test these properties for a 3× 3× 4 torus.

The 3× 3× 4 torus is so small that it is easy to verify that the cycles are
edge-disjoint cycles. Cutting through the rods for x3 = 4 gives the following
pattern of cycle numbers:

0 1 2
1 2 0
2 0 1

In this way, PU �x1� x2� x3
� x3 > 3, on Cycle j can be supplied with pack-
ets which do not lie on its own cycle: it receives packets running for-
ward on Cycle �j + 1
mod 3 from the PU ��x1 − 1
mod n1� x2� x3
 and
packets running backward from PU ��x1� �x2 − 1
mod n2� x3
. Similarly,

oblivious gossiping on tori 15

n2

n1

n3

cycle 0

FIG. 5. Three edge-disjoint cycles used in the one-packet algorithm on a three-dimensional
torus.

it is supplied with packets running forward on Cycle �j − 1
mod 3 from
PU ��x1 + 1
mod n1� x2� x3
 and with backward-running packets from PU
��x1� �x2 + 1
mod n2� x3
. Each pair of supporting OC-PUs is separated by
�n1/3+ 1
 · n3 − 1 other PUs.

In the upper part of our reactor, exactly two cycles pass through each
PU P , and the shifts are so that the connections that are not used by cycle
traffic lead to PUs that lie on the third cycle. These facts can be easily
established for the 3 × 3 × 4 torus. At most 2 · �n1/3 + 1
 · n3 − 1 PUs lie
between two supporting OC-PUs.

Theorem 4. If every PU of an n1 × n2 × n3 torus, with n1 a multiple of 3,
n2 a multiple of n1, and n3 ≥ 3, holds s bytes of initial data, then gossiping
can be performed in n1 · n2 · n3/6+ ��n1 · n2 + n1 · n3
 steps using packets of
size s.

Proof. Each lap has length n3 + 3. There are n1/3 · n2 laps, so the cycles
have length n1 · n2 · n3/3 + n1 · n2. Packets are routed in both directions
along them, so after n1 · n2 · n3/6 + n1 · n2/2 steps, a PU has received all

16 meyer and sibeyn

the packets that have started in a PU that lies on the cycle(s) in which
the first-mentioned PU lies. The remaining packets running on the other
cycles are received from the PU’s neighbors one step after they received
those packets. Each pair of supporting OC-PUs is separated by ��n1 · n3

other PUs. Therefore, double-receives in the OOC-PUs can cause at most
��n1 · n3
 extra steps (compare Section 2.2).

The above idea can be extended to perform gossiping on d-dimensional
n1 × n2 × · · · × nd tori in �1+ o�1

 · n1 · n2 · · ·nd/�2 · d
 steps. In order to
achieve this, one must construct a more complex zigzag pattern, so that the
right locality structure is achieved among the rods (every rod on a given
cycle is adjacent to two rods that belong to any of the other d − 1 cycles)
and so that in the head every PU is adjacent to any cycle it is not lying
on. It is very hard though to come us with a convincing proof that such
constructions are correct, and because the practical importance of them is
limitted, we have omitted them here.

5. COMPARISON OF PERFORMANCES

In this section we numerically compare the performance of the gossip-
ing algorithms of this paper and determine their range of optimality. As
already pointed out in Section 1, the cost for a step of a store-and-forward
algorithm is determined by the start-up time, the packet size, and the speed
of the connections to adjacent neighbors: if during a step each PU trans-
fers at most one packet of size s′ to each of its adjacent PUs, then the step
takes at most tstartup + s′ · tfeed/byte time.

In the gossiping problem every PU initially holds s bytes of data. On
a d-dimensional n × · · · × n torus, the algorithms from Section 2 require
nd/2 steps, in each of which a PU sends packets of size s′ = s/d to all its
neighbors. This implies a routing time

Topt�n� d
 = nd/2 · �tstartup + s/d · tfeed/byte
�

The algorithms from Section 4 require nd/�2 · d
 + nd/�2 · n
 + 2 steps, in
each of which a PU sends packets of size s′ = s to all its neighbors. Thus,
for the corresponding routing time Tone we find

Tone�n� d
 nd−1/2 · �n/d + 1
 · �tstartup + s · tfeed/byte
�

The routing time Tstv for the algorithm from [21] is given by

Tstv�n� d
 nd/�2 · d
 · �tstartup + s · tfeed/byte
�

oblivious gossiping on tori 17

How much performance is lost by applying our simple time-independent
algorithms instead of the complicated approach of [21] depends on the
value of the ratio

r = tstartup/�s · tfeed/byte
�
For different parallel computers and values of s, the value of r can be
large (up to 104) or small (less than 1). We give a few examples: on a
cluster of workstations we found tstartup 10−3 s and tfeed/byte 10−7 s;
hence r 10�000/s. On a Cray T3E, we measured tstartup 5 · 10−6 s and
tfeed/byte 10−8 s, yielding r 5�000/s.

For r = 1, the time consumption for a step with packet size s is equally
split between the startup time and the feeding time. Hence, by replacing
such a step by two steps with packet size s/2, the total time will increase by
a factor of 1�5. The smaller r is, the less important is the number of steps,
provided that the same total amount of data is transferred.

Comparing Topt�n� d
 and Tstv�n� d
 we find

Topt�n� d

Tstv�n� d

 1+ d · r
1+ r

�

Thus, for example, on the T3E with its three-dimensional torus structure
our step-optimal algorithm with packet size s/3 needs s ≥ 5000 · 1�9/0�1 =
95�000 in order to be at most 10% slower than the time-dependent
approach of [21]. In contrast, our algorithms from Section 4 use the
same packet sizes as those in [21]. The performance loss due to time-
independence is bounded by a factor of 1+ ��d/P
; for the T3E with 512
PUs, this is less than 1% loss.

TABLE I
Comparison between Normalized Times Taken by the Algorithms from [22] (Top),

from Section 2 (Middle), and from Section 4 (Bottom)

r

n 0.01 0.1 1

4 11 4 12 8 21
4 4 11 5 14 12 43

6 19 7 21 12 37

65 689 70 751 128 1365
16 65 702 77 887 192 2730

73 818 79 891 144 1620

1034 44110 1126 48041 2048 87346
64 1044 44958 1229 56754 3072 174719

1067 46152 1162 50264 2112 91390

Note. In each cell we give the result for d = 2 (left) and d = 3 (right).

18 meyer and sibeyn

Normalized numerical results for some characteristic values of n and
r are given in Table I. The actual routing times can be obtained by
multiplication with the factor s · tfeed/byte. For r > 1, none of these
approaches makes sense, because then one should better apply a strategy
that requires non-optimal routing volume but substantially fewer startups
(see [4, 12, 16, 26, 27]). We see that mostly the one-packet algorithm from
Section 4 is hardly slower than the algorithm from [21], but it is much
simpler and far easier to generalize for higher dimensions. Therefore, we
think that in most cases it may constitute a practical alternative. The algo-
rithm from Section 2 may be attractive for d = 2 and small r: for that case
it is very simple, while it achieves almost optimal performance.

6. CONCLUSION

We have completed the analysis of the gossiping problem on full-port
store-and-forward tori. In [21] only one interesting aspect of this problem
was considered. We have shown that an almost equally good performance
can be achieved by simpler time-independent algorithms.

REFERENCES

1. B. Alspach, J.-C. Bermond, and D. Sotteau, Decomposition into cycles. I. Hamilton
decompositions, in “Proceedings of the Workshop on Cycles and Rays, Montreal, 1990.”

2. J. Aubert and B. Schneider, Decomposition de la Somme Cartesienne d’un Cycle et de
l’Union de Deux Cycles Hamiltoniens en Cycles Hamiltonien, Discrete Math. 38 (1982),
7–16.

3. M. Barnett, R. Littlefield, D. G. Payne, and R. van de Geijn, Global combine on mesh
architectures with wormhole routing, in “Proceedings of the 7th International Parallel
Processing Symposium,” pp. 13–16, IEEE, 1993.

4. O. Delmas and S. Perennes, Circuit-switched gossiping in 3-dimensional torus networks, in
“Proceedings of the 2nd International Euro-Par Conference,” Lecture Notes in Computer
Science, Vol. 1123, pp. 370–373, Springer-Verlag, Berlin/New York, 1996.

5. M. F. Foregger, Hamiltonian decomposition of products of cycles, Discrete Math. 24 (1978),
251–260.

6. P. Fraigniaud and E. Lazard, Methods and problems of communication in usual networks,
DAMATH Discrete Appl. Math. Combin. Oper. Res. Comput. Sci. 53 (1994), 79–133.

7. P. Fraigniaud and J. G. Peters, Structured communication in torus networks, in “Proceed-
ings of the 28th Hawaii Conference on System Science, 1995,” pp. 584–593.

8. G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker,
“Solving Problems on Concurrent Processors, Vol. 1, General Techniques and Regular
Problems,” Prentice-Hall International, Englewood Cliffs, NJ, 1988.

9. D. Gannon and J. Van Rosendale, On the impact of communication complexity on the
design of parallel numerical algorithms, IEEE Trans. Compu. C-33 (1984), 1180–1194.

10. S. M. Hedetniemi, T. Hedetniemi, and A. L. Liestman, A survey of gossiping and broad-
casting in communication networks, Networks 18 (1988), 319–349.

oblivious gossiping on tori 19

11. J. Hromkovič, R. Klasing, B. Monien, and R. Peine, Dissemination of information in inter-
connection networks (broadcasting and gossiping), in “Combinatorial Network Theory,”
(F. Hsu and D. Z. Du, Eds.), pp. 125–212, Kluwer Academic, Dordrecht/Norwell, MA,
1996.

12. B. Juurlink, J. F. Sibeyn, and P. S. Rao, Gossiping on meshes and tori, IEEE Trans. Parallel
and Distributed Systems 9, No. 6 (1998), 513–525.

13. M. Kaufmann and J. F. Sibeyn, Randomized multipacket routing and sorting on meshes,
Algorithmica 17 (1997), 224–244.

14. U. Meyer and J. F. Sibeyn, “Time-Independent Gossiping on Full-Port Tori,” Technical
Report MPI-I-98-1014, Max-Planck-Institut für Informatik, Saarbrücken, Germany, 1998.

15. A. Pelc, Fault-tolerant broadcasting and gossiping in communication networks, Networks
28 (1996), 143–156.

16. J. G. Peters and M. Syska, Circuit-switched broadcasting in torus networks, IEEE Trans.
Parallel and Distributed Systems 7 (1996), 246–255.

17. B. Plateau and D. Trystam, Optimal total exchange for a 3-D torus of processors, Inform.
Process. Lett. 42 (1992), 95–102.

18. S. Rajasekaran, k-k routing, k-k sorting, and cut-through routing on the mesh,
J. Algorithms 19 (1995), 361–382.

19. P. S. Rao and G. Mouney, “Data Communications in Parallel Block Predictor–Corrector
Methods for solving ODEs,” Technical Report 95399, LAAS-CNRS, France, 1995.

20. J. Reif and L. G. Valiant, A logarithmic time sort for linear size networks, J. ACM 34,
No. 1 (1987), 68–76.

21. M. Šoch and P. Tvrd́ık, Optimal gossip in store-and-forward noncombining 2-D tori, in
“Proceedings of the 3rd International Euro-Par Conference,” Lecture Notes in Computer
Science, Vol. 1300, pp. 234–241, Springer-Verlag, Berlin/New York, 1997.

22. M. Šoch and P. Tvrd́ık, Time-optimal gossip in noncombing 3-D tori, in “Proceedings of
the 5th International Colloquium on Structural Information and Communication Com-
plexity,” pp. 259–271, Carleton Scientific, Waterloo, Ontario, 1998.

23. M. Šoch and P. Tvrd́ık, Time-optimal gossip in noncombing 2-D tori with constant buffers,
in “Proceedings of the 4th International Euro-Par Conference,” Lecture Notes in Com-
puter Science, Vol. 1470, pp. 1047–1050, Springer-Verlag, Berlin/New York, 1998.

24. M. Šoch and P. Tvrd́ık, Time-optimal gossip in noncombining 3-D tori with constant
buffers, in Proceedings of the 2nd IASTED International Conference on Parallel and
Distributed Computing and Networks, pp. 666–671, Acta Press, Calgary, 1998.

25. M. Šoch and P. Tvrd́ık, “Bufferless Gossip of Large Packets in Noncombining 2-D Tori,”
Research Report DC-99-03, Department of CS&E, Czech Technical University, Prague,
1999.

26. Y.-J. Suh and S. Yalamanchili, All-to-all communication with minimum start-up costs in
2D/3D tori and meshes, IEEE Trans. Parallel and Distributed Systems 9, No. 5 (1988),
442–458.

27. Y.-J. Tsai and P. K. McKinley, An extended dominating node approach to broadcast and
global combine in multiport wormhole-routed mesh networks, IEEE Trans. Parallel and
Distributed Systems 8, No. 1 (1997), 41–58.

28. Y. Yang and J. Wang, Efficient all-to-all broadcast in all-port mesh and torus networks,
in “Proceedings of the Fifth International Symposium on High-Performance Computer
Architecture,” pp. 290–299, IEEE, 1999.

	1.INTRODUCTION
	2.STEP-OPTIMAL ALGORITHMS
	FIG.1.
	FIG.2.

	3.A LOWER BOUND FOR GOSSIPING VIA EDGE-DISJOINT HAMILTONIAN CYCLES
	4.ONE-PACKET ALGORITHMS
	FIG.3.
	FIG.4.
	FIG.5.

	5.COMPARISON OF PERFORMANCES
	TABLE I

	6.CONCLUSION
	REFERENCES

