Automated Reasoning

Harald Ganzinger Viorica Sofronie-Stokkermans Uwe Waldmann Summer Term 2004 Propositional logic syntax, semantics OBDDs, DPLL-procedure

First-order predicate logic syntax, semantics, model theory, ... resolution, tableaux

First-order predicate logic with equality term rewriting systems Knuth-Bendix completion, superposition

Implementation techniques indexing data structures

Emphasis in this Course

- introduction into logics and *deductive services* underlying important domains of application
- proof systems: soundness, completeness, complexity, implementation
- implementation of theoretical constructions
- efficient algorithms for specific deduction problems

Schöning: Logik für Informatiker, Spektrum

Fitting: First-Order Logic and Automated Theorem Proving, Springer

Baader and Nipkow: Term Rewriting and All That, Cambridge Univ. Press

Propositional logic

- logic of truth values
- decidable (but NP-complete)
- can be used to describe functions over a finite domain
- important for hardware applications (e.g., model checking)

1.1 Syntax

- propositional variables
- logical symbols
 - \Rightarrow Boolean combinations

Propositional Variables

Let Π be a set of propositional variables.

We use letters P, Q, R, S, to denote propositional variables.

 F_{Π} is the set of propositional formulas over Π defined as follows:

F, G, H	::=	\bot	(falsum)
		Т	(verum)
		P , $P \in \Pi$	(atomic formula)
		$\neg F$	(negation)
		$(F \land G)$	(conjunction)
		$(F \lor G)$	(disjunction)
		$(F \rightarrow G)$	(implication)
		$(F \leftrightarrow G)$	(equivalence)

Notational Conventions

• We omit brackets according to the following rules:

$$\neg \neg >_{p} \lor >_{p} \land >_{p} \rightarrow >_{p} \leftrightarrow$$
 (binding precedences)

- $\,\vee\,$ and $\,\wedge\,$ are associative and commutative
- \rightarrow is right-associative

In classical logic (dating back to Aristoteles) there are "only" two truth values "true" and "false" which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

A propositional variable has no intrinsic meaning. The meaning of a propositional variable has to be defined by a valuation.

A Π -valuation is a map

 $\mathcal{A}:\Pi
ightarrow\{0,1\}.$

where $\{0, 1\}$ is the set of truth values.

Given a Π -valuation \mathcal{A} , the function $\mathcal{A}^* : \Sigma$ -formulas $\rightarrow \{0, 1\}$ is defined inductively over the structure of F as follows:

For simplicity, we write \mathcal{A} instead of \mathcal{A}^* .

1.3 Models, Validity, and Satisfiability

F is valid in \mathcal{A} (\mathcal{A} is a model of *F*; *F* holds under \mathcal{A}):

 $\mathcal{A} \models \mathsf{F} : \Leftrightarrow \mathcal{A}(\mathsf{F}) = 1$

F is valid (or is a tautology):

 $\models F :\Leftrightarrow \mathcal{A} \models F \text{ for all } \Pi\text{-valuations } \mathcal{A}$

F is called satisfiable iff there exists an \mathcal{A} such that $\mathcal{A} \models F$. Otherwise *F* is called unsatisfiable (or contradictory). *F* entails (implies) *G* (or *G* is a consequence of *F*), written $F \models G$, if for all Π -valuations \mathcal{A} , whenever $\mathcal{A} \models F$ then $\mathcal{A} \models G$.

F and *G* are called equivalent if for all Π -valuations \mathcal{A} we have $\mathcal{A} \models F \Leftrightarrow \mathcal{A} \models G$.

Proposition 1.1: F entails G iff $(F \rightarrow G)$ is valid

Proposition 1.2:

F and G are equivalent iff $(F \leftrightarrow G)$ is valid.

Entailment and Equivalence

Extension to sets of formulas N in the "natural way", e.g., $N \models F$ if for all Π -valuations \mathcal{A} : if $\mathcal{A} \models G$ for all $G \in N$, then $\mathcal{A} \models F$. Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 1.3:

F valid $\Leftrightarrow \neg F$ unsatisfiable

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.

Q: In a similar way, entailment $N \models F$ can be reduced to unsatisfiability. How?

Every formula F contains only finitely many propositional variables. Obviously, $\mathcal{A}(F)$ depends only on the values of those finitely many variables in F under \mathcal{A} .

If F contains n distinct propositional variables, then it is sufficient to check 2^n valuations to see whether F is satisfiable or not.

 \Rightarrow truth table.

So the satisfiability problem is clearly deciadable (but, by Cook's Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check the satisfiability of a formula. (later more)

Substitution Theorem

Proposition 1.4:

Let F and G be equivalent formulas, let H be a formula in which F occurs as a subformula.

Then *H* is equivalent to *H'* where *H'* is obtained from *H* by replacing the occurrence of the subformula *F* by *G*. (Notation: H = H[F], H' = H[G].)

Proof: By induction over the formula structure of H.

Some Important Equivalences

Proposition 1.5:

The following equivalences are valid for all formulas F, G, H:

 $(F \land F) \leftrightarrow F$ $(F \lor F) \leftrightarrow F$ (Idempotency) $(F \land G) \leftrightarrow (G \land F)$ $(F \lor G) \leftrightarrow (G \lor F)$ (Commutativity) $(F \land (G \land H)) \leftrightarrow ((F \land G) \land H)$ $(F \lor (G \lor H)) \leftrightarrow ((F \lor G) \lor H)$ (Associativity) $(F \land (G \lor H)) \leftrightarrow ((F \land G) \lor (F \land H))$ $(F \lor (G \land H)) \leftrightarrow ((F \lor G) \land (F \lor H))$ (Distributivity)

The following equivalences are valid for all formulas F, G, H: $(F \land (F \lor G)) \leftrightarrow F$ $(F \lor (F \land G)) \leftrightarrow F$ (Absorption) $(\neg\neg F) \leftrightarrow F$ (Double Negation) $\neg (F \land G) \leftrightarrow (\neg F \lor \neg G)$ $\neg (F \lor G) \leftrightarrow (\neg F \land \neg G)$ (De Morgan's Laws) $(F \land G) \leftrightarrow F$, if G is a tautology $(F \lor G) \leftrightarrow \top$, if G is a tautology (Tautology Laws) $(F \land G) \leftrightarrow \bot$, if G is unsatisfiable $(F \lor G) \leftrightarrow F$, if G is unsatisfiable (Tautology Laws)