
Fairness

Problem:

If N is inconsistent, then N | ∅ | ∅
∗

. N ′ ∪ {⊥} | | .

Does this imply that every derivation starting from an

inconsistent set N eventually produces ⊥ ?

No: a clause could be kept in PPP without ever being used for

an inference.

1

Fairness

We need in addtion a fairness condition:

If an inference is possible forever (that is, none of its premises

is ever deleted), then it must be computed eventually.

One possible way to guarantee fairness:

Implement PPP as a queue

(there are other techniques to guarantee fairness).

With this additional requirement, we get a stronger result:

If N is inconsistent, then every fair derivation will eventually

produce ⊥.

2

Hyperresolution

There are many variants of resolution.

(We refer to [Bachmair, Ganzinger: Resolution Theorem

Proving] for further reading.)

One well-known example is hyperresolution (Robinson 1965):

Assume that several negative literals are selected in a clause D.

If we perform an inference with D, then one of the selected

literals is eliminated.

Suppose that the remaining selected literals of D are again

selected in the conclusion. Then we must eliminate the

remaining selected literals one by one by further resolution

steps.

3

Hyperresolution

Hyperresolution replaces these successive steps by a single

inference.

As for Res�
S

, the calculus is parameterized by an atom ordering

� and a selection function S .

4

Hyperresolution

C1 ∨ A1 . . . Cn ∨ An ¬B1 ∨ . . . ∨ ¬Bn ∨ D

(C1 ∨ . . . ∨ Cn ∨ D)σ

with σ = mgu(A1

.
= B1, . . . ,An

.
= Bn), if

(i) Aiσ strictly maximal in Ciσ, 1 ≤ i ≤ n;

(ii) nothing is selected in Ci ;

(iii) the indicated occurrences of the ¬Bi are exactly the ones

selected by S , or else nothing is selected in the right

premise and n = 1 and ¬B1σ is maximal in Dσ.

Similarly to resolution, hyperresolution has to be complemented

by a factoring inference.

5

Hyperresolution

As we have seen, hyperresolution can be simulated by iterated

binary resolution.

However this yields intermediate clauses which HR might not

derive, and many of them might not be extendable into a full

HR inference.

6

2.13 Example: Neuman-Stubblebine Protocol

• Formalization of a concrete application:

Neuman-Stubblebine key exchange protocol.

• State-of-the-art in automated theorem proving.

• Proof by refutation:

inconsistency ⇒ intruder can break the protocol.

• Proof by consistency:

consistency ⇒ no unsafe states exist.

• Termination requires elimination of redundancy.

7

The Problem

Automatic Analysis of Security Protocols using SPASS: An

Automated Theorem Prover for First-Order Logic with Equality

by Christoph Weidenbach

The growing importance of the internet causes a growing need for se-

curity protocols that protect transactions and communication. It turns

out that the design of such protocols is highly error-prone. Therefore,

there is a need for tools that automatically detect flaws like, e.g., at-

tacks by an intruder. Here we show that our automated theorem prover

SPASS can successfully be used to analyze the Neuman-Stubblebine

key exchange protocol [1]. To this end the protocol is formalized in

logic and then the security properties are automatically analyzed by

SPASS. A detailed description of the analysis can be found in [2].

8

The Problem

The animation successively shows two runs of the Neuman-Stubblebine

[1] key exchange protocol. The first run works the way the protocol

is designed to do, i.e., it establishes a secure key between Alice and

Bob.

The second run shows a potential problem of the protocol. An

intruder may intercept the final message sent from Alice to Bob,

replace it with a different message and may eventually own a key that

Bob believes to be a secure key with Alice. The initial situation for the

protocol is that the two participants Alice and Bob want to establish

a secure key for communication among them. They do so with the

help of a trusted server Trust where both already have a secure key

for communication with Trust. The below picture shows a sequence

of four message exchanges that eventually establishes the key.

9

� �� � �� �� � �� 	 �� �
 � ��

� � � � �� �� �� �� � �� � �
 � �
� �

�� � �
� �� �� �� � ���
�
� � �� � � � �

� � � � � � �� � � � � �� � � �� � � � �
 � �

� � � � � � � � � � �� � ��� � � �

 � �� � � ��� � �
 � �� �� � � �� � � � � ��
� � �

�� � � �
� � � � � � �
 � � �� �� � �

�
� � � � � � � �� � � � � � � � � ��

� �� � � � � � �� � 	 �� �
 � ��

�
 � !� � �
 �
�

#" � $
� � � � " �� � ��

�� � � � �
 � � � � � � � � � � � � �� � � �&% �

	 �� �
 � �
 � �� � � �' � ��
 � �� � � �

'
� �� � � �� �
� � � � �
� � � ' � ��

� � 	 � (� � � � � � � � 	 �� �
 � �� � �

" �� � ��) � � � � � � � �� �� � � �

� � �� ��� � �
 �� � �

� �� � � �� � � �

	 � � �� � �
 � �
� �
 �
� �
 � � � � � �

" � � � � � � � � � � � 	 � � �� � �
 � �

� !� � �
 �
�

" � $ � �
� � � � � � �� �

	 �� �
 � � �
�

#" � �� � � � � � � �

' � �� �� �� � ��� � �
 �� � � � � � � �� � �

��
 � � ��
� � �� � � � � � � � " �� � �

� �
 � � � " � � �� 	 � � �
� " � � � � �� �� �

�� � � �
 �� � � �� 	 �� � � �� �

� � �� ��
� � � � �� � �
 � � � � � ��

" �� � � � � � � � �� � 	 �� �
 � �*

� !�
 �
 �
�

�
�
#" � $
 � !� � �
 �
�
�
" � $

� � � � �� � � �� " �� � � � �
 � � �� � � � � � � � � �

	 �� �
 � �
 � �� � �
 � �� �� � � �' � �� � � �

� � ���
� � � � � � 	 	 � � � �
 �� � � � � �' � � �

�� � � �
� � � ��
� � � � � � � 	 �� �
 � �*

� � �� � � �� " � �� � �� � �
 � �

� !�
 �
 �
�

�
�
#" � $ �
� � � � � � � �� � � �

� � �� � � �
' � � � �
� �� � � �� � � � �
 � � � �

	 �
� � � � � �� � �'
 � � � � � � �� � � � � �

� � �
� � � 	 �� �
 � �� �

�� � � � � �� � � �� � 	 �� �
 � �� � !� � �
 �
�
�
#" � $

� !�
�
� � $ � � � �� � �� � � � � �
 � � 	 �� �
 � �*

� �� � �� �� �� �� � �� � �
 � � ' � �� �� � � �� � � �� � ���
 �

� � � � �
 � �� ' � �� " �� � �
� � �� � �
� �� �� � � � � � �� � ��

�� � 	 �� �
 � � �)� �
 � �� � � �
 �
 �� � � �' � � ���
� � � �

� � 	 	 � � � �
 �� � � ' � �� � �� � " � � � � � �� � �'
 � � � �� �

� �� � � � �
 � � �� " �� � �% � 	 �� �
 � � � � � � �� � � ' � ��

� !�
�
� � $ � � � �� �

�� � � � � � � � � � � � �� � 	 �� �
 � �+

�
�
�
) � � � � � � � �� �� � � � � � � � ��� � �
 �� � � �

� � � � �� � � ' � ��
 � � � � �

 �
� � � 	

� � 	 � � ��
� " � � � � �� � � � �� �
 � �

� � 	
� � �� � � �� � � � � , � � � � � � � � �

� � � � � � �� � � �� �
 �
 � �
� � � ��

� � 	 � � � � �� � � � � � � � � � � � � �� �

	 �� �
 � �� �

10

Neuman-Stubblebine: A Regular Run

1. A
A,Na

B

2. B
B,Nb,EKbt

(A,Na,Tb)
T

3. T
EKat

(B,Na,Kab,Tb),EKbt
(A,Kab,Tb),Nb

A

4. A
EKbt

(A,Kab ,Tb),EKab
(Nb)

B

11

What Can Happen?

How can an intruder now break this protocol? The key Kab

is only transmitted inside encrypted parts of messages and we

assume that an intruder cannot break any keys nor does he know

any of the initial keys Kat or Kbt . Here is the solution:

12

13

Breaking Neuman-Stubblebine

1. A
A,Na

B

2. B
B,Nb,EKbt

(A,Na,Tb)
T

3. T
EKat

(B,Na,Kab,Tb),EKbt
(A,Kab,Tb),Nb

A

4. A
EKbt

(A,Kab,Tb),EKab
(Nb)

B

3. I
EKbt

(A,Na,Tb),ENa
(Nb)

B

14

The Formalization

The key idea of the formalization is to describe the set of sent

messages. This is done by introducing a monadic predicate M in

first-order logic. Furthermore, every participant holds its set of known

keys, represented by the predicates Ak for Alice’s keys, Bk for Bob’s

keys, Tk for Trust’s keys and Ik for the keys the intruder knows. The

rest of the used symbols is introduced and explained with the first

appearance in a formula. Then the four messages can be translated

into the following formulae:

15

The Formalization

Step 1) A, Na

Ak(key(at, t)) (1)

M(sent(a, b, pair(a, na))) (2)

The two formulae express that initially Alice holds the key at for
communication with t (for Trust) and that she sends the first
message. In order to formalize messages we employ a three place
function sent where the first argument is the sender, the second the
receiver and the third the content of the message. So the constant a

represents Alice, b Bob, t Trust and i Intruder. The functions pair

(triple, quadr) simply form sequences of messages of the indicated
length.

16

The Formalization

Step 2) B, E(Kbt, A, Na,Tb), Nb

Bk(key(bt, t)) (3)

∀xa, xna [M(sent(xa, b, pair(xa, xna)))

→ M(sent(b, t, triple(b, nb(xna),

encr(triple(xa, xna, tb(xna)), bt)))))]

(4)

Bob holds the key bt for secure communication with Trust and
whenever he receives a message of the form of message 1 (formula
(2)), he sends a key request to Trust according to message 2. Note
that encryption is formalized by the two place function encr where
the first argument is the date and the second argument the key.
Every lowercase symbol starting with an x denotes a variable. The
functions nb and tb generate, respectively, a new nonce and time
span out of xa’s (Alice’s) request represented by her nonce xna.

17

The Formalization

Step 3) E(Kat, B, Na, Kab,Tb), E(Kbt, A,Kab, Tb), Nb

Tk(key(at, a))) ∧ Tk(key(bt, b)) (5)

∀xb,xnb, xa, xna, xbet, xbt, xat, xk

[(M(sent(xb, t, triple(xb, xnb, encr(triple(xa, xna, xbet), xbt))))

∧ Tk(key(xbt, xb))

∧ Tk(key(xat, xa)))

→ M(sent(t, xa, triple(encr(quadr(xb, xna, kt(xna), xbet), xat),

encr(triple(xa, kt(xna), xbet), xbt), xnb)))]

(6)

Trust holds the keys for Alice and Bob and answers appropriately to a
message in the format of message 2. Note that decryption is formalized
by unification with an appropriate term structure where it is checked
that the necessary keys are known to Trust. The server generates the
key by applying his key generation function kt to the nonce xna.

18

The Formalization

Step 4) E(Kbt, A, Kab,Tb), E(Kab,Nb)

∀xnb,xbet, xk, xm, xb, xna

[M(sent(t, a, triple(encr(quadr(xb, xna, xk, xbet), at), xm, xnb))

→ (M(sent(a, xb, pair(xm, encr(xnb, xk)))) ∧ Ak(key(xk, xb)))]

(7)

∀xbet,xk, xnb, xa, xna

[M(sent(xa, b, pair(encr(triple(xa, xk, tb(xna)), bt),

encr(nb(xna), xk))) → Bk(key(xk, xa))]

(8)

Finally, Alice answers according to the protocol to message 3 and
stores the generated key for communication, formula (7). Formula
(8) describes Bob’s behaviour when he receives Alice’s message. Bob
decodes this message and stores the new key as well.

19

A’s Formalization Part I

A
A,Na

B

P(a)

Ak(key(at, t))

M(sent(a, b, pair (a, na)))

Sa(pair(b, na))

Sa is Alice’s local store that will eventually be used to verify the
nonce when it is sent back to her in Step (3).

20

A’s Formalization Part II

T
EKat

(B,Na,Kab,Tb),EKbt
(A,Kab ,Tb),Nb

A

A
EKbt

(A,Kab,Tb),EKab
(Nb)

B

∀xb,xna, xnb, xk, xbet, xm

[M(sent(t, a, triple(encr(quadr(xb, xna, xk , xbet), at), xm, xnb)))

∧ Sa(pair(xb, xna))

→

M(sent(a, xb, pair(xm, encr(xnb, xk))))

∧ Ak(key(xk , xb))]

21

The Intruder

The Intruder is modeled as an exhaustive hacker. He records all

messages, decomposes the messages as far as possible and generates

all possible new compositions. Furthermore, any object he has at

hand is considered as a key and tried to used for encryption as well as

for decryption. All these messages are posted. The set of messages

the intruder has available is represented by the predicate Im.

The participants are Alice, Bob, Trust and Intruder:

P(a) ∧ P(b) ∧ P(t) ∧ P(i) (9)

The intruder records all messages:

∀xa, xb, xm [M(sent(xa, xb, xm)) → Im(xm)] (10)

22

The Intruder

He decomposes and decrypts all messages he owns the key for:

∀u, v [Im(pair(u, v)) → Im(u) ∧ Im(v)] (11)

∀u, v , w [Im(triple(u, v , w)) → Im(u) ∧ Im(v) ∧ Im(w)] (12)

∀u, v , w , z [Im(quadr(u, v , w , z)) → Im(u) ∧ Im(v) ∧ Im(w) ∧ Im(z)]

(13)

∀u, v , w [Im(encr(u, v)) ∧ Ik(key(v , w)) → Im(u)] (14)

He composes all possible messages:

∀u, v [Im(u) ∧ Im(v) → Im(pair(u, v))] (15)

∀u, v , w [Im(u) ∧ Im(v) ∧ Im(w) → Im(triple(u, v , w))] (16)

∀u, v , w , x [Im(u) ∧ Im(v) ∧ Im(w) ∧ Im(x) → Im(quadr(u, v , w , x))]

(17)

23

The Intruder

He considers every item to be a key and uses it for encryption:

∀v , w [Im(v) ∧ P(w) → Ik(key(v , w))] (18)

∀u, v , w [Im(u) ∧ Ik(key(v , w)) ∧ P(w) → Im(encr(u, v))] (19)

He sends everything:

∀x , y , u [P(x) ∧ P(y) ∧ Im(u) → M(sent(x , y , u))] (20)

Finally we must formalize the insecurity requirement. Intruder must

not have any key for communication with Bob that Bob believes to

be a secure key for Alice:

∃x [Ik(key(x , b)) ∧ Bk(key(x , a))]

24

SPASS Solves the Problem

Now the protocol formulae together with the intruder formulae

(9)-(20) and the insecurity formula above can be given to SPASS.

Then SPASS automatically proves that this formula holds and that

the problematic key is the nonce Na. The protocol can be repaired

by putting type checks on the keys, such that keys can no longer be

confused with nonces. This can be added to the SPASS first-order

logic formalization. Then SPASS disproves the insecurity formula

above. This capability is currently unique to SPASS. Although some

other provers might be able to prove that the insecurity formula

holds in the formalization without type checks, we are currently not

aware of any prover that can disprove the insecurity formula in the

formalization with type checking. Further details can be found in

[2], below. The experiment is available in full detail from the SPASS

home page in the download area.

25

SPASS Solves the Problem

References:

[1] Neuman, B. C. and Stubblebine, S. G., 1993, A note on the use

of timestamps as nonces, ACM SIGOPS, Operating Systems Review,

27(2), 10-14.

[2] Weidenbach, C., 1999, Towards an automatic analysis of security

protocols in first-order logic, in 16th International Conference on

Automated Deduction, CADE-16, Vol. 1632 of LNAI, Springer, pp.

378-382.

26

2.14 Summary: Resolution Theorem Proving

• Resolution is a machine calculus.

• Subtle interleaving of enumerating ground instances and

proving inconsistency through the use of unification.

• Parameters: atom ordering � and selection function S .

On the non-ground level, ordering constraints can (only) be

solved approximatively.

• Completeness proof by constructing candidate models from

productive clauses C ∨ A, A � C ; inferences with those

reduce counterexamples.

27

Summary: Resolution Theorem Proving

• Local restrictions of inferences via � and S

⇒ fewer proof variants.

• Global restrictions of the search space via elimination of

redundancy

⇒ computing with “smaller” clause sets;

⇒ termination on many decidable fragments.

• However: not good enough for dealing with orderings,

equality and more specific algebraic theories (lattices,

abelian groups, rings, fields)

⇒ further specialization of inference systems required.

28

