Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by, e.g., resolution theorem provers.

Equality is theoretically difficult:

First-order functional programming is Turing-complete.

But: resolution theorem provers cannot even solve problems that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the theorem prover.

3.1 Handling Equality Naively

Proposition 3.1:

Let F be a closed first-order formula with equality. Let $\sim \notin \Pi$ be a new predicate symbol. The set $Eq(\Sigma)$ contains the formulas

$$\begin{array}{c} \forall x (x \sim x) \\ \forall x, y (x \sim y \rightarrow y \sim x) \\ \forall x, y, z (x \sim y \wedge y \sim z \rightarrow x \sim z) \\ \forall \vec{x}, \vec{y} (x_1 \sim y_1 \wedge \dots \wedge x_n \sim y_n \rightarrow f(x_1, \dots, x_n) \sim f(y_1, \dots, y_n)) \\ \forall \vec{x}, \vec{y} (x_1 \sim y_1 \wedge \dots \wedge x_n \sim y_n \wedge p(x_1, \dots, x_n) \rightarrow p(y_1, \dots, y_n)) \end{array}$$

for every $f/n \in \Omega$ and $p/n \in \Pi$. Let \tilde{F} be the formula that one obtains from F if every occurrence of \approx is replaced by \sim . Then F is satisfiable if and only if $Eq(\Sigma) \cup \{\tilde{F}\}$ is satisfiable.

By giving the equality axioms explicitly, first-order problems with equality can in principle be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence axioms).

Roadmap

How to proceed:

- Arbitrary binary relations.
- Equations (unit clauses with equality):

Term rewrite systems. Expressing semantic consequence syntactically. Entailment for equations.

• Equational clauses:

Entailment for clauses with equality.

Abstract reduction system: (A, \rightarrow) , where

A is a set,

 $\rightarrow \subseteq A \times A$ is a binary relation on A.

$$\begin{array}{l} \rightarrow^{0} = \{(x,x) \mid x \in A\} \\ \rightarrow^{i+1} = \rightarrow^{i} \circ \rightarrow \\ \rightarrow^{+} = \bigcup_{i \geq 0} \rightarrow^{i} \\ \rightarrow^{*} = \bigcup_{i \geq 0} \rightarrow^{i} = \rightarrow^{+} \cup \rightarrow^{0} \\ \rightarrow^{=} = \rightarrow \cup \rightarrow^{0} \\ \rightarrow^{-1} = \leftarrow = \{(x,y) \mid y \rightarrow x\} \\ \leftrightarrow = \rightarrow \cup \leftarrow \\ \leftrightarrow^{+} = (\leftrightarrow)^{+} \\ \leftrightarrow^{*} = (\leftrightarrow)^{*} \end{array}$$

identity i + 1-fold composition transitive closure reflexive transitive closure reflexive closure inverse symmetric closure transitive symmetric closure refl. trans. symmetric closure

 $x \in A$ is reducible, if there is a y such that $x \to y$.

x is in normal form (irreducible), if it is not reducible.

y is a normal form of x, if $x \to^* y$ and y is in normal form. Notation: $y = x \downarrow$ (if the normal form of x is unique).

x and y are joinable, if there is a z such that $x \to^* z \leftarrow^* y$. Notation: $x \downarrow y$. A relation \rightarrow is called

Church-Rosser, if $x \leftrightarrow^* y$ implies $x \downarrow y$.

confluent, if $x \leftarrow^* z \rightarrow^* y$ implies $x \downarrow y$.

locally confluent, if $x \leftarrow z \rightarrow y$ implies $x \downarrow y$.

terminating, if there is no infinite decreasing chain $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$.

normalizing, if every $x \in A$ has a normal form.

convergent, if it is confluent and terminating.

Lemma 3.2: If \rightarrow is terminating, then it is normalizing.

Note: The reverse implication does not hold.

Theorem 3.3:

The following properties are equivalent:

(i) \rightarrow has the Church-Rosser property.

(ii) \rightarrow is confluent.

Proof:

(i) \Rightarrow (ii): trivial.

(ii) \Rightarrow (i): by induction on the number of peaks in the derivation $x \leftrightarrow^* y$.

Lemma 3.4: If \rightarrow is confluent, then every element has at most one normal form.

Corollary 3.5: If \rightarrow is normalizing and confluent, then every element x has a unique normal form.

Proposition 3.6: If \rightarrow is normalizing and confluent, then $x \leftrightarrow^* y$ if and only if $x \downarrow = y \downarrow$.

Well-Founded Orderings

Lemma 3.7: If \rightarrow is a terminating binary relation over A, then \rightarrow^+ is a well-founded partial ordering.

Lemma 3.8: If > is a well-founded partial ordering and $\rightarrow \subseteq >$, then \rightarrow is terminating. Theorem 3.9 ("Newman's Lemma"):

If a terminating relation \rightarrow is locally confluent, then it is confluent.

Proof:

Let \rightarrow be a terminating and locally confluent relation. Then \rightarrow^+ is a well-founded ordering. Define $P(z) \Leftrightarrow (\forall x, y : x \leftarrow^* z \rightarrow^* y \Rightarrow x \downarrow y)$. Prove P(z) for all $x \in A$ by well-founded induction over \rightarrow^+ : Case 1: $x \leftarrow^0 z \rightarrow^* y$: trivial. Case 2: $x \leftarrow^* z \rightarrow^0 y$: trivial. Case 3: $x \leftarrow^* x' \leftarrow z \rightarrow y' \rightarrow^* y$: use local confluence, then use the induction hypothesis.

Proving Termination: Monotone Mappings

Let $(A, >_A)$ and $(B, >_B)$ be partial orderings. A mapping $\varphi : A \to B$ is called monotone, if $x >_A y$ implies $\varphi(x) >_B \varphi(y)$ for all $x, y \in A$.

Lemma 3.10: If $\varphi : A \to B$ is a monotone mapping from $(A, >_A)$ to $(B, >_B)$ and $(B, >_B)$ is well-founded, then $(A, >_A)$ is well-founded. Some notation:

Positions of a term s: $pos(x) = \{\varepsilon\},\$ $pos(f(s_1,\ldots,s_n)) = \{\varepsilon\} \cup \bigcup_{i=1}^n \{ip \mid p \in pos(s_i)\}.$ Size of a term s: |s| = cardinality of pos(s).Prefix order for $p, q \in pos(s)$: p above q: $p \leq q$ if pp' = q for some p', p strictly above q: p < q if $p \leq q$ and not $q \leq p$, p and q parallel: $p \parallel q$ if neither $p \leq q$ nor $q \leq p$.

Rewrite Systems

Some notation:

Subterm of s at a position $p \in pos(s)$:

$$s/\varepsilon = s,$$

 $f(s_1, \ldots, s_n)/ip = s_i/p.$

Replacement of the subterm at position $p \in pos(s)$ by t:

$$s[t]_{\varepsilon} = t,$$

 $f(s_1, \ldots, s_n)[t]_{ip} = f(s_1, \ldots, s_i[t]_p, \ldots, s_n).$

Rewrite Relations

Let E be a set of equations.

The rewrite relation $\rightarrow_E \subseteq \mathsf{T}_{\Sigma}(X) \times \mathsf{T}_{\Sigma}(X)$ is defined by

$$s \rightarrow_E t$$
 iff there exist $(l \approx r) \in E$, $p \in pos(s)$,
and $\sigma : X \rightarrow T_{\Sigma}(X)$,
such that $s/p = l\sigma$ and $t = s[r\sigma]_p$.

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expression).

Contracting a redex means replacing it with the corresponding instance of the rhs (right-hand side) of the rule.

An equation $l \approx r$ is also called a rewrite rule, if l is not a variable and $var(l) \supseteq var(r)$.

Notation: $I \rightarrow r$.

A set of rewrite rules is called a term rewrite system (TRS).

We say that a set of equations E or a TRS R is terminating, if the rewrite relation \rightarrow_E or \rightarrow_R has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.

Let *E* be a set of closed equations. A Σ -algebra \mathcal{A} is called an *E*-algebra, if $\mathcal{A} \models \forall \vec{x} (s \approx t)$ for all $\forall \vec{x} (s \approx t) \in E$.

If $E \models \forall \vec{x} (s \approx t)$ (i.e., $\forall \vec{x} (s \approx t)$ is valid in all *E*-algebras), we write this also as $s \approx_E t$.

Goal:

Use the rewrite relation \rightarrow_E to express the semantic consequence relation syntactically:

 $s \approx_E t$ if and only if $s \leftrightarrow_E^* t$.

Let *E* be a set of equations over $T_{\Sigma}(X)$. The following inference system allows to derive consequences of *E*:

 $E \vdash t \approx t$ (Reflexivity) $E \vdash t \approx t'$ (Symmetry) $\overline{F} \vdash t' \approx t$ $E \vdash t \approx t'$ $E \vdash t' \approx t''$ (Transitivity) $F \vdash t \approx t''$ $\frac{E \vdash t_1 \approx t'_1 \quad \dots \quad E \vdash t_n \approx t'_n}{E \vdash f(t_1, \dots, t_n) \approx f(t'_1, \dots, t'_n)}$ (Congruence) $E \vdash t\sigma \approx t'\sigma$ (Instance) if $(t \approx t') \in E$ and $\sigma : X \to \mathsf{T}_{\Sigma}(X)$

Lemma 3.11:

The following properties are equivalent:

(i) $s \leftrightarrow_E^* t$ (ii) $E \vdash s \approx t$ is derivable.

Proof:

(i) \Rightarrow (ii): $s \leftrightarrow_E t$ implies $E \vdash s \approx t$ by induction on the depth of the position where the rewrite rule is applied;

then $s \leftrightarrow_E^* t$ implies $E \vdash s \approx t$ by induction on the number of rewrite steps in $s \leftrightarrow_E^* t$.

(ii) \Rightarrow (i): By induction on the size of the derivation for $E \vdash s \approx t$.

Constructing a quotient algebra:

Let X be a set of variables.

For $t \in T_{\Sigma}(X)$ let $[t] = \{ t' \in T_{\Sigma}(X) \mid E \vdash t \approx t' \}$ be the congruence class of t.

Define a Σ -algebra $T_{\Sigma}(X)/E$ (abbreviated by \mathcal{T}) as follows:

$$U_{\mathcal{T}} = \{ [t] \mid t \in \mathsf{T}_{\Sigma}(X) \}.$$

$$f_{\mathcal{T}}([t_1], \dots, [t_n]) = [f(t_1, \dots, t_n)] \text{ for } f/n \in \Omega.$$

Lemma 3.12: f_T is well-defined: If $[t_i] = [t'_i]$, then $[f(t_1, ..., t_n)] = [f(t'_1, ..., t'_n)]$.

Proof:

Follows directly from the *Congruence* rule for \vdash .

Lemma 3.13: $T = T_{\Sigma}(X)/E$ is an *E*-algebra.

Proof:

Let $\forall x_1 \dots x_n (s \approx t)$ be an equation in E; let β be an arbitrary assignment.

We have to show that $\mathcal{T}(\beta)(\forall \vec{x}(s \approx t)) = 1$, or equivalently, that $\mathcal{T}(\gamma)(s) = \mathcal{T}(\gamma)(t)$ for all $\gamma = \beta[x_i \mapsto [t_i] \mid 1 \leq i \leq n]$ with $[t_i] \in U_T$.

Let
$$\sigma = [t_1/x_1, \ldots, t_n/x_n]$$
, then $s\sigma \in \mathcal{T}(\gamma)(s)$ and $t\sigma \in \mathcal{T}(\gamma)(t)$.
By the *Instance* rule, $E \vdash s\sigma \approx t\sigma$ is derivable,
hence $\mathcal{T}(\gamma)(s) = [s\sigma] = [t\sigma] = \mathcal{T}(\gamma)(t)$.

Lemma 3.14:

Let X be a countably infinite set of variables; let $s, t \in T_{\Sigma}(X)$. If $T_{\Sigma}(X)/E \models \forall \vec{x}(s \approx t)$, then $E \vdash s \approx t$ is derivable.

Proof:

Assume that $\mathcal{T} \models \forall \vec{x}(s \approx t)$, i.e., $\mathcal{T}(\beta)(\forall \vec{x}(s \approx t)) = 1$. Consequently, $\mathcal{T}(\gamma)(s) = \mathcal{T}(\gamma)(t)$ for all $\gamma = \beta[x_i \mapsto [t_i] \mid i \in I]$ with $[t_i] \in U_{\mathcal{T}}$.

Choose $t_i = x_i$, then $[s] = \mathcal{T}(\gamma)(s) = \mathcal{T}(\gamma)(t) = [t]$, so $E \vdash s \approx t$ is derivable by definition of \mathcal{T} .

Theorem 3.15 ("Birkhoff's Theorem"):

Let X be a countably infinite set of variables, let E be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in T_{\Sigma}(X)$:

(i)
$$s \leftrightarrow_E^* t$$
.
(ii) $E \vdash s \approx t$ is derivable.
(iii) $s \approx_E t$, i.e., $E \models \forall \vec{x} (s \approx t)$.
(iv) $\mathsf{T}_{\Sigma}(X)/E \models \forall \vec{x} (s \approx t)$.

Proof:

(i) \Leftrightarrow (ii): See above (slide 23).

(ii) \Rightarrow (iii): By induction on the size of the derivation for $E \vdash s \approx t$.

(iii) \Rightarrow (iv): Obvious, since $\mathcal{T} = \mathcal{T}_E(X)$ is an *E*-algebra. (iv) \Rightarrow (ii): See above (slide 27). $T_{\Sigma}(X)/E = T_{\Sigma}(X)/\approx_{E} = T_{\Sigma}(X)/\leftrightarrow_{E}^{*}$ is called the free *E*-algebra with generating set $X/\approx_{E} = \{ [x] \mid x \in X \}$:

Every mapping $\varphi : X / \approx_E \to \mathcal{B}$ for some *E*-algebra \mathcal{B} can be extended to a homomorphism $\hat{\varphi} : T_{\Sigma}(X) / E \to \mathcal{B}$.

 $\mathsf{T}_{\Sigma}(\emptyset)/E = \mathsf{T}_{\Sigma}(\emptyset)/\approx_{E} = \mathsf{T}_{\Sigma}(\emptyset)/\leftrightarrow_{E}^{*}$ is called the initial *E*-algebra.

 $\approx_E = \{ (s, t) \mid E \models s \approx t \}$ is called the equational theory of *E*.

$$\approx'_{E} = \{ (s, t) \mid \mathsf{T}_{\Sigma}(\emptyset) / E \models s \approx t \}$$

is called the inductive theory of *E*.

Example:

Let
$$E = \{ \forall x(x + 0 \approx x), \forall x \forall y(x + s(y) \approx s(x + y)) \}$$
.
Then $x + y \approx'_E y + x$, but $x + y \not\approx_E y + x$.

Rewrite Relations

Corollary 3.16: If *E* is convergent (i.e., terminating and confluent), then $s \approx_E t$ if and only if $s \leftrightarrow_F^* t$ if and only if $s \downarrow_E = t \downarrow_E$.

Corollary 3.17: If *E* is finite and convergent, then \approx_E is decidable.

Reminder: If *E* is terminating, then it is confluent if and only if it is locally confluent.

Rewrite Relations

Problems:

- Show local confluence of E.
- Show termination of E.
- Transform E into an equivalent set of equations that is locally confluent and terminating.