
Part 3: First-Order Logic with Equality

Equality is the most important relation in mathematics and

functional programming.

In principle, problems in first-order logic with equality can be

handled by, e.g., resolution theorem provers.

Equality is theoretically difficult:

First-order functional programming is Turing-complete.

But: resolution theorem provers cannot even solve problems

that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be

integrated into the theorem prover.

1

3.1 Handling Equality Naively

Proposition 3.1:

Let F be a closed first-order formula with equality. Let ∼ /∈ Π be

a new predicate symbol. The set Eq(Σ) contains the formulas

∀x (x ∼ x)

∀x , y (x ∼ y → y ∼ x)

∀x , y , z (x ∼ y ∧ y ∼ z → x ∼ z)

∀~x ,~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn → f (x1, . . . , xn) ∼ f (y1, . . . , yn))

∀~x ,~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn ∧ p(x1, . . . , xn)→ p(y1, . . . , yn))

for every f /n ∈ Ω and p/n ∈ Π. Let F̃ be the formula that one

obtains from F if every occurrence of ≈ is replaced by ∼. Then

F is satisfiable if and only if Eq(Σ) ∪ {F̃} is satisfiable.

2

Handling Equality Naively

By giving the equality axioms explicitly, first-order problems with

equality can in principle be solved by a standard resolution or

tableaux prover.

But this is unfortunately not efficient

(mainly due to the transitivity and congruence axioms).

3

Roadmap

How to proceed:

• Arbitrary binary relations.

• Equations (unit clauses with equality):

Term rewrite systems.

Expressing semantic consequence syntactically.

Entailment for equations.

• Equational clauses:

Entailment for clauses with equality.

4

3.2 Abstract Reduction Systems

Abstract reduction system: (A,→), where

A is a set,

→ ⊆ A× A is a binary relation on A.

5

Abstract Reduction Systems

→0 = { (x , x) | x ∈ A } identity

→i+1 = →i ◦→ i + 1-fold composition

→+ =
⋃

i>0
→i transitive closure

→∗ =
⋃

i≥0
→i = →+ ∪→0 reflexive transitive closure

→= = →∪→0 reflexive closure

→−1 = ← = { (x , y) | y → x } inverse

↔ = →∪← symmetric closure

↔+ = (↔)+ transitive symmetric closure

↔∗ = (↔)∗ refl. trans. symmetric closure

6

Abstract Reduction Systems

x ∈ A is reducible, if there is a y such that x → y .

x is in normal form (irreducible), if it is not reducible.

y is a normal form of x , if x →∗ y and y is in normal form.

Notation: y = x↓ (if the normal form of x is unique).

x and y are joinable, if there is a z such that x →∗ z ←∗ y .

Notation: x ↓ y .

7

Abstract Reduction Systems

A relation → is called

Church-Rosser, if x ↔∗ y implies x ↓ y .

confluent, if x ←∗ z →∗ y implies x ↓ y .

locally confluent, if x ← z → y implies x ↓ y .

terminating, if there is no infinite decreasing chain

x0 → x1 → x2 →

normalizing, if every x ∈ A has a normal form.

convergent, if it is confluent and terminating.

8

Abstract Reduction Systems

Lemma 3.2:

If → is terminating, then it is normalizing.

Note: The reverse implication does not hold.

9

Abstract Reduction Systems

Theorem 3.3:

The following properties are equivalent:

(i) → has the Church-Rosser property.

(ii) → is confluent.

Proof:

(i)⇒(ii): trivial.

(ii)⇒(i): by induction on the number of peaks in

the derivation x ↔∗ y .

10

Abstract Reduction Systems

Lemma 3.4:

If → is confluent, then every element has at most one

normal form.

Corollary 3.5:

If → is normalizing and confluent, then every element x

has a unique normal form.

Proposition 3.6:

If → is normalizing and confluent, then x ↔∗ y if and only if

x↓ = y↓.

11

Well-Founded Orderings

Lemma 3.7:

If → is a terminating binary relation over A,

then →+ is a well-founded partial ordering.

Lemma 3.8:

If > is a well-founded partial ordering and → ⊆ >,

then → is terminating.

12

Proving Confluence

Theorem 3.9 (“Newman’s Lemma”):

If a terminating relation → is locally confluent, then it is

confluent.

Proof:

Let → be a terminating and locally confluent relation.

Then →+ is a well-founded ordering.

Define P(z) ⇔
(

∀x , y : x ←∗ z →∗ y ⇒ x ↓ y
)

.

Prove P(z) for all x ∈ A by well-founded induction over →+:

Case 1: x ←0 z →∗ y : trivial.

Case 2: x ←∗ z →0 y : trivial.

Case 3: x ←∗ x ′ ← z → y ′ →∗ y : use local confluence, then

use the induction hypothesis.

13

Proving Termination: Monotone Mappings

Let (A,>A) and (B,>B) be partial orderings.

A mapping ϕ : A→ B is called monotone,

if x >A y implies ϕ(x) >B ϕ(y) for all x , y ∈ A.

Lemma 3.10:

If ϕ : A→ B is a monotone mapping from (A,>A) to (B,>B)

and (B,>B) is well-founded, then (A,>A) is well-founded.

14

3.3 Rewrite Systems

Some notation:

Positions of a term s:

pos(x) = {ε},

pos(f (s1, . . . , sn)) = {ε} ∪
⋃n

i=1
{ i p | p ∈ pos(si) }.

Size of a term s:

|s| = cardinality of pos(s).

Prefix order for p, q ∈ pos(s):

p above q: p ≤ q if pp′ = q for some p′,

p strictly above q: p < q if p ≤ q and not q ≤ p,

p and q parallel: p ‖ q if neither p ≤ q nor q ≤ p.

15

Rewrite Systems

Some notation:

Subterm of s at a position p ∈ pos(s):

s/ε = s,

f (s1, . . . , sn)/i p = si/p.

Replacement of the subterm at position p ∈ pos(s) by t:

s[t]ε = t,

f (s1, . . . , sn)[t]ip = f (s1, . . . , si [t]p, . . . , sn).

16

Rewrite Relations

Let E be a set of equations.

The rewrite relation →E ⊆ TΣ(X)× TΣ(X) is defined by

s →E t iff there exist (l ≈ r) ∈ E , p ∈ pos(s),

and σ : X → TΣ(X),

such that s/p = lσ and t = s[rσ]p.

An instance of the lhs (left-hand side) of an equation is called a

redex (reducible expression).

Contracting a redex means replacing it with the corresponding

instance of the rhs (right-hand side) of the rule.

17

Rewrite Relations

An equation l ≈ r is also called a rewrite rule, if l is not a

variable and var(l) ⊇ var(r).

Notation: l → r .

A set of rewrite rules is called a term rewrite system (TRS).

18

Rewrite Relations

We say that a set of equations E or a TRS R is terminating,

if the rewrite relation →E or →R has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.

19

E-Algebras

Let E be a set of closed equations. A Σ-algebra A is called an

E -algebra, if A |= ∀~x(s ≈ t) for all ∀~x(s ≈ t) ∈ E .

If E |= ∀~x(s ≈ t) (i.e., ∀~x(s ≈ t) is valid in all E -algebras), we

write this also as s ≈E t.

Goal:

Use the rewrite relation→E to express the semantic consequence

relation syntactically:

s ≈E t if and only if s ↔∗
E t.

20

E-Algebras

Let E be a set of equations over TΣ(X). The following inference

system allows to derive consequences of E :

21

E-Algebras

E ` t ≈ t (Reflexivity)

E ` t ≈ t′

E ` t′ ≈ t
(Symmetry)

E ` t ≈ t′ E ` t′ ≈ t′′

E ` t ≈ t′′
(Transitivity)

E ` t1 ≈ t′

1 . . . E ` tn ≈ t′

n

E ` f (t1, . . . , tn) ≈ f (t′

1, . . . , t
′

n)
(Congruence)

E ` tσ ≈ t′σ (Instance)

if (t ≈ t′) ∈ E and σ : X → TΣ(X)

22

E-Algebras

Lemma 3.11:

The following properties are equivalent:

(i) s ↔∗
E t

(ii) E ` s ≈ t is derivable.

Proof:

(i)⇒(ii): s ↔E t implies E ` s ≈ t by induction on the depth

of the position where the rewrite rule is applied;

then s ↔∗
E t implies E ` s ≈ t by induction on the number of

rewrite steps in s ↔∗
E t.

(ii)⇒(i): By induction on the size of the derivation for E ` s ≈ t.

23

E-Algebras

Constructing a quotient algebra:

Let X be a set of variables.

For t ∈ TΣ(X) let [t] = { t′ ∈ TΣ(X) | E ` t ≈ t′ } be the

congruence class of t.

Define a Σ-algebra TΣ(X)/E (abbreviated by T) as follows:

UT = { [t] | t ∈ TΣ(X) }.

fT ([t1], . . . , [tn]) = [f (t1, . . . , tn)] for f /n ∈ Ω.

24

E-Algebras

Lemma 3.12:

fT is well-defined:

If [ti] = [t′

i], then [f (t1, . . . , tn)] = [f (t′

1, . . . , t
′

n)].

Proof:

Follows directly from the Congruence rule for `.

25

E-Algebras

Lemma 3.13:

T = TΣ(X)/E is an E -algebra.

Proof:

Let ∀x1 . . . xn(s ≈ t) be an equation in E ; let β be an arbitrary

assignment.

We have to show that T (β)(∀~x(s ≈ t)) = 1, or equivalently,

that T (γ)(s) = T (γ)(t) for all γ = β[xi 7→ [ti] | 1 ≤ i ≤ n]

with [ti] ∈ UT .

Let σ = [t1/x1, . . . , tn/xn], then sσ ∈ T (γ)(s) and tσ ∈ T (γ)(t).

By the Instance rule, E ` sσ ≈ tσ is derivable,

hence T (γ)(s) = [sσ] = [tσ] = T (γ)(t).

26

E-Algebras

Lemma 3.14:

Let X be a countably infinite set of variables; let s, t ∈ TΣ(X).

If TΣ(X)/E |= ∀~x(s ≈ t), then E ` s ≈ t is derivable.

Proof:

Assume that T |= ∀~x(s ≈ t), i.e., T (β)(∀~x(s ≈ t)) = 1.

Consequently, T (γ)(s) = T (γ)(t) for all γ = β[xi 7→ [ti] | i ∈ I]

with [ti] ∈ UT .

Choose ti = xi , then [s] = T (γ)(s) = T (γ)(t) = [t],

so E ` s ≈ t is derivable by definition of T .

27

E-Algebras

Theorem 3.15 (“Birkhoff’s Theorem”):

Let X be a countably infinite set of variables, let E be a set of

(universally quantified) equations. Then the following properties

are equivalent for all s, t ∈ TΣ(X):

(i) s ↔∗
E t.

(ii) E ` s ≈ t is derivable.

(iii) s ≈E t, i.e., E |= ∀~x(s ≈ t).

(iv) TΣ(X)/E |= ∀~x(s ≈ t).

28

E-Algebras

Proof:

(i)⇔(ii): See above (slide 23).

(ii)⇒(iii): By induction on the size of the derivation for

E ` s ≈ t.

(iii)⇒(iv): Obvious, since T = TE (X) is an E -algebra.

(iv)⇒(ii): See above (slide 27).

29

Universal Algebra

TΣ(X)/E = TΣ(X)/≈E = TΣ(X)/↔∗
E is called the

free E -algebra with generating set X/≈E = { [x] | x ∈ X }:

Every mapping ϕ : X/≈E → B for some E -algebra B can be

extended to a homomorphism ϕ̂ : TΣ(X)/E → B.

TΣ(∅)/E = TΣ(∅)/≈E = TΣ(∅)/↔∗
E is called the

initial E -algebra.

30

Universal Algebra

≈E = { (s, t) | E |= s ≈ t }

is called the equational theory of E .

≈I
E = { (s, t) | TΣ(∅)/E |= s ≈ t }

is called the inductive theory of E .

Example:

Let E = {∀x(x + 0 ≈ x), ∀x∀y(x + s(y) ≈ s(x + y))}.

Then x + y ≈I
E y + x , but x + y 6≈E y + x .

31

Rewrite Relations

Corollary 3.16:

If E is convergent (i.e., terminating and confluent),

then s ≈E t if and only if s ↔∗
E t if and only if s↓E = t↓E .

Corollary 3.17:

If E is finite and convergent, then ≈E is decidable.

Reminder:

If E is terminating, then it is confluent if and only if

it is locally confluent.

32

Rewrite Relations

Problems:

Show local confluence of E .

Show termination of E .

Transform E into an equivalent set of equations that is

locally confluent and terminating.

33

