Part 3: First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by, e.g., resolution theorem provers.

Equality is theoretically difficult:
First-order functional programming is Turing-complete.
But: resolution theorem provers cannot even solve problems that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the theorem prover.

3.1 Handling Equality Naively

Proposition 3.1:

Let F be a closed first-order formula with equality. Let $\sim \notin \Pi$ be a new predicate symbol. The set $E q(\Sigma)$ contains the formulas

$$
\begin{gathered}
\forall x(x \sim x) \\
\forall x, y(x \sim y \rightarrow y \sim x) \\
\forall x, y, z(x \sim y \wedge y \sim z \rightarrow x \sim z) \\
\forall \vec{x}, \vec{y}\left(x_{1} \sim y_{1} \wedge \cdots \wedge x_{n} \sim y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \sim f\left(y_{1}, \ldots, y_{n}\right)\right) \\
\forall \vec{x}, \vec{y}\left(x_{1} \sim y_{1} \wedge \cdots \wedge x_{n} \sim y_{n} \wedge p\left(x_{1}, \ldots, x_{n}\right) \rightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)
\end{gathered}
$$

for every $f / n \in \Omega$ and $p / n \in \Pi$. Let \tilde{F} be the formula that one obtains from F if every occurrence of \approx is replaced by \sim. Then F is satisfiable if and only if $E q(\Sigma) \cup\{\tilde{F}\}$ is satisfiable.

Handling Equality Naively

By giving the equality axioms explicitly, first-order problems with equality can in principle be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence axioms).

Roadmap

How to proceed:

- Arbitrary binary relations.
- Equations (unit clauses with equality):

Term rewrite systems.
Expressing semantic consequence syntactically. Entailment for equations.

- Equational clauses:

Entailment for clauses with equality.

3.2 Abstract Reduction Systems

Abstract reduction system: (A, \rightarrow), where
A is a set,
$\rightarrow \subseteq A \times A$ is a binary relation on A.

Abstract Reduction Systems

$$
\begin{array}{ll}
\rightarrow^{0}=\{(x, x) \mid x \in A\} & \text { identity } \\
\rightarrow^{i+1}=\rightarrow^{i} \circ \rightarrow & i+1 \text { 1-fold composition } \\
\rightarrow^{+}=\bigcup_{i>0} \rightarrow^{i} & \text { transitive closure } \\
\rightarrow^{*}=\bigcup_{i \geq 0} \rightarrow^{i}=\rightarrow^{+} \cup \rightarrow^{0} & \text { reflexive transitive closure } \\
\rightarrow^{=}=\rightarrow \cup \rightarrow^{0} & \text { reflexive closure } \\
\rightarrow^{-1}=\leftarrow=\{(x, y) \mid y \rightarrow x\} & \text { inverse } \\
\leftrightarrow^{=}=\rightarrow \cup \leftarrow & \text { symmetric closure } \\
\leftrightarrow^{+}=(\leftrightarrow)^{+} & \text {transitive symmetric closure } \\
\leftrightarrow^{*}=(\leftrightarrow)^{*} & \text { refl. trans. symmetric closure }
\end{array}
$$

Abstract Reduction Systems

$x \in A$ is reducible, if there is a y such that $x \rightarrow y$.
x is in normal form (irreducible), if it is not reducible.
y is a normal form of x, if $x \rightarrow^{*} y$ and y is in normal form.
Notation: $y=x \downarrow$ (if the normal form of x is unique).
x and y are joinable, if there is a z such that $x \rightarrow^{*} z \leftarrow^{*} y$.
Notation: $x \downarrow y$.

Abstract Reduction Systems

A relation \rightarrow is called
Church-Rosser, if $x \leftrightarrow^{*} y$ implies $x \downarrow y$. confluent, if $x \leftarrow^{*} z \rightarrow^{*} y$ implies $x \downarrow y$.
locally confluent, if $x \leftarrow z \rightarrow y$ implies $x \downarrow y$.
terminating, if there is no infinite decreasing chain $x_{0} \rightarrow x_{1} \rightarrow x_{2} \rightarrow \ldots$
normalizing, if every $x \in A$ has a normal form.
convergent, if it is confluent and terminating.

Abstract Reduction Systems

Lemma 3.2:
If \rightarrow is terminating, then it is normalizing.

Note: The reverse implication does not hold.

Abstract Reduction Systems

Theorem 3.3:
The following properties are equivalent:
(i) \rightarrow has the Church-Rosser property.
(ii) \rightarrow is confluent.

Proof:
(i) \Rightarrow (ii): trivial.
(ii) \Rightarrow (i): by induction on the number of peaks in the derivation $x \leftrightarrow^{*} y$.

Abstract Reduction Systems

Lemma 3.4:
If \rightarrow is confluent, then every element has at most one normal form.

Corollary 3.5:
If \rightarrow is normalizing and confluent, then every element x
has a unique normal form.

Proposition 3.6:
If \rightarrow is normalizing and confluent, then $x \leftrightarrow^{*} y$ if and only if
$x \downarrow=y \downarrow$.

Well-Founded Orderings

Lemma 3.7:
If \rightarrow is a terminating binary relation over A, then \rightarrow^{+}is a well-founded partial ordering.

Lemma 3.8:
If $>$ is a well-founded partial ordering and $\rightarrow \subseteq>$, then \rightarrow is terminating.

Proving Confluence

Theorem 3.9 ("Newman's Lemma"):
If a terminating relation \rightarrow is locally confluent, then it is confluent.

Proof:

Let \rightarrow be a terminating and locally confluent relation.
Then \rightarrow^{+}is a well-founded ordering.
Define $P(z) \Leftrightarrow\left(\forall x, y: x \leftarrow^{*} z \rightarrow^{*} y \Rightarrow x \downarrow y\right)$.
Prove $P(z)$ for all $x \in A$ by well-founded induction over \rightarrow^{+}:
Case 1: $x \leftarrow^{0} z \rightarrow^{*} y$: trivial.
Case 2: $x \leftarrow^{*} z \rightarrow^{0} y$: trivial.
Case 3: $x \leftarrow^{*} x^{\prime} \leftarrow z \rightarrow y^{\prime} \rightarrow^{*} y$: use local confluence, then use the induction hypothesis.

Proving Termination: Monotone Mappings

Let $\left(A,>_{A}\right)$ and $\left(B,>_{B}\right)$ be partial orderings.
A mapping $\varphi: A \rightarrow B$ is called monotone,
if $x>_{A} y$ implies $\varphi(x)>_{B} \varphi(y)$ for all $x, y \in A$.

Lemma 3.10:
If $\varphi: A \rightarrow B$ is a monotone mapping from $\left(A,>_{A}\right)$ to $\left(B,>_{B}\right)$ and $\left(B,>_{B}\right)$ is well-founded, then $\left(A,>_{A}\right)$ is well-founded.

3.3 Rewrite Systems

Some notation:
Positions of a term s :

$$
\begin{aligned}
& \operatorname{pos}(x)=\{\varepsilon\}, \\
& \operatorname{pos}\left(f\left(s_{1}, \ldots, s_{n}\right)\right)=\{\varepsilon\} \cup \bigcup_{i=1}^{n}\left\{i p \mid p \in \operatorname{pos}\left(s_{i}\right)\right\} .
\end{aligned}
$$

Size of a term s :
$|s|=$ cardinality of $\operatorname{pos}(s)$.
Prefix order for $p, q \in \operatorname{pos}(s)$:
p above $q: p \leq q$ if $p p^{\prime}=q$ for some p^{\prime},
p strictly above q : $p<q$ if $p \leq q$ and not $q \leq p$,
p and q parallel: $p \| q$ if neither $p \leq q$ nor $q \leq p$.

Rewrite Systems

Some notation:
Subterm of s at a position $p \in \operatorname{pos}(s)$:

$$
\begin{aligned}
& s / \varepsilon=s \\
& f\left(s_{1}, \ldots, s_{n}\right) / i p=s_{i} / p .
\end{aligned}
$$

Replacement of the subterm at position $p \in \operatorname{pos}(s)$ by t :

$$
\begin{aligned}
& s[t]_{\varepsilon}=t, \\
& f\left(s_{1}, \ldots, s_{n}\right)[t]_{i p}=f\left(s_{1}, \ldots, s_{i}[t]_{p}, \ldots, s_{n}\right) .
\end{aligned}
$$

Rewrite Relations

Let E be a set of equations.
The rewrite relation $\rightarrow_{E} \subseteq \mathrm{~T}_{\Sigma}(X) \times \mathrm{T}_{\Sigma}(X)$ is defined by

$$
\begin{aligned}
s \rightarrow_{E} t \quad \text { iff } & \text { there exist }(I \approx r) \in E, p \in \operatorname{pos}(s), \\
& \text { and } \sigma: X \rightarrow \mathrm{~T}_{\Sigma}(X), \\
& \text { such that } s / p=I \sigma \text { and } t=s[r \sigma]_{p} .
\end{aligned}
$$

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expression).
Contracting a redex means replacing it with the corresponding instance of the rhs (right-hand side) of the rule.

Rewrite Relations

An equation $I \approx r$ is also called a rewrite rule, if I is not a variable and $\operatorname{var}(I) \supseteq \operatorname{var}(r)$.

Notation: $l \rightarrow r$.
A set of rewrite rules is called a term rewrite system (TRS).

Rewrite Relations

We say that a set of equations E or a TRS R is terminating, if the rewrite relation \rightarrow_{E} or \rightarrow_{R} has this property.
(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.

E-Algebras

Let E be a set of closed equations. A Σ-algebra \mathcal{A} is called an E-algebra, if $\mathcal{A} \models \forall \vec{x}(s \approx t)$ for all $\forall \vec{x}(s \approx t) \in E$.

If $E \models \forall \vec{x}(s \approx t$) (i.e., $\forall \vec{x}(s \approx t)$ is valid in all E-algebras), we write this also as $s \approx_{E} t$.

Goal:
Use the rewrite relation \rightarrow_{E} to express the semantic consequence relation syntactically:

$$
s \approx_{E} t \text { if and only if } s \leftrightarrow_{E}^{*} t .
$$

E-Algebras

Let E be a set of equations over $T_{\Sigma}(X)$. The following inference system allows to derive consequences of E :

E-Algebras

$$
\begin{aligned}
& E \vdash t \approx t \\
& \frac{E \vdash t \approx t^{\prime}}{E \vdash t^{\prime} \approx t} \\
& \frac{E \vdash t \approx t^{\prime} \quad E \vdash t^{\prime} \approx t^{\prime \prime}}{E \vdash t \approx t^{\prime \prime}} \\
& \frac{E \vdash t_{1} \approx t_{1}^{\prime} \quad \ldots \quad E \vdash t_{n} \approx t_{n}^{\prime}}{E \vdash f\left(t_{1}, \ldots, t_{n}\right) \approx f\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)} \\
& E \vdash t \sigma \approx t^{\prime} \sigma \\
& \quad \text { if }\left(t \approx t^{\prime}\right) \in E \text { and } \sigma: X \rightarrow \mathrm{~T}_{\Sigma}(X)
\end{aligned}
$$

E-Algebras

Lemma 3.11:

The following properties are equivalent:
(i) $s \leftrightarrow_{E}^{*} t$
(ii) $E \vdash s \approx t$ is derivable.

Proof:
(i) \Rightarrow (ii): $s \leftrightarrow_{E} t$ implies $E \vdash s \approx t$ by induction on the depth
of the position where the rewrite rule is applied; then $s \leftrightarrow{ }_{E}^{*} t$ implies $E \vdash s \approx t$ by induction on the number of rewrite steps in $s \leftrightarrow_{E}^{*} t$.
$(\mathrm{ii}) \Rightarrow(\mathrm{i})$: By induction on the size of the derivation for $E \vdash s \approx t$.

E-Algebras

Constructing a quotient algebra:
Let X be a set of variables.
For $t \in \mathrm{~T}_{\Sigma}(X)$ let $[t]=\left\{t^{\prime} \in \mathrm{T}_{\Sigma}(X) \mid E \vdash t \approx t^{\prime}\right\}$ be the congruence class of t.

Define a Σ-algebra $\mathrm{T}_{\Sigma}(X) / E$ (abbreviated by \mathcal{T}) as follows:

$$
\begin{aligned}
& U_{\mathcal{T}}=\left\{[t] \mid t \in \mathrm{~T}_{\Sigma}(X)\right\} . \\
& f_{\mathcal{T}}\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)=\left[f\left(t_{1}, \ldots, t_{n}\right)\right] \text { for } f / n \in \Omega
\end{aligned}
$$

E-Algebras

Lemma 3.12:
$f_{\mathcal{T}}$ is well-defined:
If $\left[t_{i}\right]=\left[t_{i}^{\prime}\right]$, then $\left[f\left(t_{1}, \ldots, t_{n}\right)\right]=\left[f\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)\right]$.
Proof:
Follows directly from the Congruence rule for \vdash.

E-Algebras

Lemma 3.13:
$\mathcal{T}=\mathrm{T}_{\Sigma}(X) / E$ is an E-algebra.

Proof:

Let $\forall x_{1} \ldots x_{n}(s \approx t)$ be an equation in E; let β be an arbitrary assignment.

We have to show that $\mathcal{T}(\beta)(\forall \vec{x}(s \approx t))=1$, or equivalently, that $\mathcal{T}(\gamma)(s)=\mathcal{T}(\gamma)(t)$ for all $\gamma=\beta\left[x_{i} \mapsto\left[t_{i}\right] \mid 1 \leq i \leq n\right]$ with $\left[t_{i}\right] \in U_{\mathcal{T}}$.
Let $\sigma=\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]$, then $s \sigma \in \mathcal{T}(\gamma)(s)$ and $t \sigma \in \mathcal{T}(\gamma)(t)$.
By the Instance rule, $E \vdash s \sigma \approx t \sigma$ is derivable,
hence $\mathcal{T}(\gamma)(s)=[s \sigma]=[t \sigma]=\mathcal{T}(\gamma)(t)$.

E-Algebras

Lemma 3.14:
Let X be a countably infinite set of variables; let $s, t \in \mathrm{~T}_{\Sigma}(X)$. If $\mathrm{T}_{\Sigma}(X) / E \models \forall \vec{X}(s \approx t$), then $E \vdash s \approx t$ is derivable.

Proof:
Assume that $\mathcal{T} \models \forall \vec{x}(s \approx t)$, i.e., $\mathcal{T}(\beta)(\forall \vec{x}(s \approx t))=1$.
Consequently, $\mathcal{T}(\gamma)(s)=\mathcal{T}(\gamma)(t)$ for all $\gamma=\beta\left[x_{i} \mapsto\left[t_{i}\right] \mid i \in I\right]$ with $\left[t_{i}\right] \in U_{\mathcal{T}}$.

Choose $t_{i}=x_{i}$, then $[s]=\mathcal{T}(\gamma)(s)=\mathcal{T}(\gamma)(t)=[t]$,
so $E \vdash s \approx t$ is derivable by definition of \mathcal{T}.

E-Algebras

Theorem 3.15 ("Birkhoff's Theorem"):
Let X be a countably infinite set of variables, let E be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in \mathrm{~T}_{\Sigma}(X)$:
(i) $s \leftrightarrow_{E}^{*} t$.
(ii) $E \vdash s \approx t$ is derivable.
(iii) $s \approx_{E} t$, i.e., $E \models \forall \vec{x}(s \approx t)$.
(iv) $\mathrm{T}_{\Sigma}(X) / E \models \forall \vec{x}(s \approx t)$.

E-Algebras

Proof:
(i) \Leftrightarrow (ii): See above (slide 23).
(ii) \Rightarrow (iii): By induction on the size of the derivation for $E \vdash s \approx t$.
(iii) \Rightarrow (iv): Obvious, since $\mathcal{T}=\mathcal{T}_{E}(X)$ is an E-algebra.
(iv) \Rightarrow (ii): See above (slide 27).

Universal Algebra

$\mathrm{T}_{\Sigma}(X) / E=\mathrm{T}_{\Sigma}(X) / \approx_{E}=\mathrm{T}_{\Sigma}(X) / \leftrightarrow_{E}^{*}$ is called the free E-algebra with generating set $X / \approx_{E}=\{[x] \mid x \in X\}$:

Every mapping $\varphi: X / \approx_{E} \rightarrow \mathcal{B}$ for some E-algebra \mathcal{B} can be extended to a homomorphism $\hat{\varphi}: \mathrm{T}_{\Sigma}(X) / E \rightarrow \mathcal{B}$.
$\mathrm{T}_{\Sigma}(\emptyset) / E=\mathrm{T}_{\Sigma}(\emptyset) / \approx_{E}=\mathrm{T}_{\Sigma}(\emptyset) / \leftrightarrow_{E}^{*}$ is called the initial E-algebra.

Universal Algebra

$\approx_{E}=\{(s, t) \mid E \models s \approx t\}$
is called the equational theory of E.

$$
\approx_{E}^{\prime}=\left\{(s, t) \mid \mathrm{T}_{\Sigma}(\emptyset) / E \models s \approx t\right\}
$$

is called the inductive theory of E.
Example:
Let $E=\{\forall x(x+0 \approx x), \forall x \forall y(x+s(y) \approx s(x+y))\}$.
Then $x+y \approx_{E}^{\prime} y+x$, but $x+y \not \nsim E_{E} y+x$.

Rewrite Relations

Corollary 3.16:
If E is convergent (i.e., terminating and confluent), then $s \approx_{E} t$ if and only if $s \leftrightarrow_{E}^{*} t$ if and only if $s \downarrow_{E}=t \downarrow_{E}$.

Corollary 3.17 :
If E is finite and convergent, then \approx_{E} is decidable.

Reminder:
If E is terminating, then it is confluent if and only if it is locally confluent.

Rewrite Relations

Problems:
Show local confluence of E.
Show termination of E.
Transform E into an equivalent set of equations that is locally confluent and terminating.

