3.4 Critical Pairs

Showing local confluence (Sketch):
Problem: If $t_{1} \leftarrow_{E} t_{0} \rightarrow_{E} t_{2}$, does there exist a term s such that $t_{1} \rightarrow_{E}^{*} s \leftarrow_{E}^{*} t_{2}$?

If the two rewrite steps happen in different subtrees (disjoint redexes): yes.

If the two rewrite steps happen below each other (overlap at or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable position: needs further investigation.

Critical Pairs

Showing local confluence (Sketch):
Question:
Are there rewrite rules $I_{1} \rightarrow r_{1}$ and $I_{2} \rightarrow r_{2}$ such that some subterm I_{1} / p and I_{2} have a common instance $\left(I_{1} / p\right) \sigma_{1}=I_{2} \sigma_{2}$?

Observation:
If we assume w.o.l.o.g. that the two rewrite rules do not have common variables, then only a single substitution is necessary: $\left(I_{1} / p\right) \sigma=I_{2} \sigma$.

Further observation:
The mgu of I_{1} / p and I_{2} subsumes all unifiers σ of I_{1} / p and I_{2}.

Critical Pairs

Let $l_{i} \rightarrow r_{i}(i=1,2)$ be two rewrite rules in a TRS R
whose variables have been renamed such that
$\operatorname{var}\left(\left\{l_{1}, r_{1}\right\}\right) \cap \operatorname{var}\left(\left\{l_{2}, r_{2}\right\}\right)=\emptyset$.
Let $p \in \operatorname{pos}\left(I_{1}\right)$ be a position such that I_{1} / p is not a variable and σ is an mgu of I_{1} / p and I_{2}.

Then $r_{1} \sigma \leftarrow I_{1} \sigma \rightarrow\left(I_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.
$\left\langle r_{1} \sigma,\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right\rangle$ is called a critical pair of R.

The critical pair is joinable (or: converges), if $r_{1} \sigma \downarrow_{R}\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.

Critical Pairs

Theorem 3.18 ("Critical Pair Theorem"):
A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof:

"only if": obvious, since joinability of a critical pair is a special case of local confluence.

Critical Pairs

Proof:

"if": Suppose s rewrites to t_{1} and t_{2} using rewrite rules $I_{i} \rightarrow r_{i} \in R$ at positions $p_{i} \in \operatorname{pos}(s)$, where $i=1,2$.
Without loss of generality, we can assume that the two rules are variable disjoint, hence $s / p_{i}=l_{i} \theta$ and $t_{i}=s\left[r_{i} \theta\right]_{p_{i}}$.

We distinguish between two cases: Either p_{1} and p_{2} are in disjoint subtrees $\left(p_{1} \| p_{2}\right)$, or one is a prefix of the other (w.o.l.o.g., $p_{1} \leq p_{2}$).

Critical Pairs

Case 1: $p_{1} \| p_{2}$.
Then $s=s\left[I_{1} \theta\right]_{p_{1}}\left[I_{2} \theta\right]_{p_{2}}$,
and therefore $t_{1}=s\left[r_{1} \theta\right]_{p_{1}}\left[I_{2} \theta\right]_{p_{2}}$ and $t_{2}=s\left[I_{1} \theta\right]_{p_{1}}\left[r_{2} \theta\right]_{p_{2}}$.
Let $t_{0}=s\left[r_{1} \theta\right]_{p_{1}}\left[r_{2} \theta\right]_{p_{2}}$.
Then clearly $t_{1} \rightarrow_{R} t_{0}$ using $I_{2} \rightarrow r_{2}$ and $t_{2} \rightarrow_{R} t_{0}$ using $l_{1} \rightarrow r_{1}$.

Critical Pairs

Case 2: $p_{1} \leq p_{2}$.
Case 2.1: $p_{2}=p_{1} q_{1} q_{2}$, where I_{1} / q_{1} is some variable x.
In other words, the second rewrite step takes place at or below a variable in the first rule. Suppose that x occurs m times in I_{1} and n times in r_{1} (where $m \geq 1$ and $n \geq 0$).
Then $t_{1} \rightarrow_{R}^{*} t_{0}$ by applying $l_{2} \rightarrow r_{2}$ at all positions $p_{1} q^{\prime} q_{2}$, where q^{\prime} is a position of x in r_{1}.

Conversely, $t_{2} \rightarrow_{R}^{*} t_{0}$ by applying $t_{2} \rightarrow r_{2}$ at all positions $p_{1} q q_{2}$, where q is a position of x in I_{1} different from q_{1}, and by applying $I_{1} \rightarrow r_{1}$ at p_{1} with the substitution θ^{\prime}, where $\theta^{\prime}=\theta\left[x \mapsto(x \theta)\left[r_{2} \theta\right]_{q_{2}}\right]$.

Critical Pairs

Case 2.2: $p_{2}=p_{1} p$, where p is a non-variable position of l_{1}.
Then $s / p_{2}=l_{2} \theta$ and $s / p_{2}=\left(s / p_{1}\right) / p=\left(l_{1} \theta\right) / p=\left(l_{1} / p\right) \theta$, so θ is a unifier of I_{2} and I_{1} / p.

Let σ be the mgu of I_{2} and I_{1} / p, then $\theta=\tau \circ \sigma$ and $\left\langle r_{1} \sigma,\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right\rangle$ is a critical pair.

By assumption, it is joinable, so $r_{1} \sigma \rightarrow_{R}^{*} v \leftarrow_{R}^{*}\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.
Consequently, $t_{1}=s\left[r_{1} \theta\right]_{p_{1}}=s\left[r_{1} \sigma \tau\right]_{p_{1}} \rightarrow_{R}^{*} s[v \tau]_{p_{1}}$ and
$t_{2}=s\left[r_{2} \theta\right]_{p_{2}}=s\left[\left(l_{1} \theta\right)\left[r_{2} \theta\right]_{p}\right]_{p_{1}}=s\left[\left(l_{1} \sigma \tau\right)\left[r_{2} \sigma \tau\right]_{p}\right]_{p_{1}}=$ $s\left[\left(\left(I_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right) \tau\right]_{p_{1}} \rightarrow_{R}^{*} s[v \tau]_{p_{1}}$.

This completes the proof of the Critical Pair Theorem.

Critical Pairs

Note: Critical pairs between a rule and (a renamed variant of) itself must be considered - except if the overlap is at the root (i.e., $p=\varepsilon$).

Critical Pairs

Corollary 3.19 :
A terminating TRS R is confluent if and only if all its critical pairs are joinable.

Proof:
By Newman's Lemma and the Critical Pair Theorem.

Critical Pairs

Corollary 3.20 :
For a finite terminating TRS, confluence is decidable.
Proof:
For every pair of rules and every non-variable position in the first rule there is at most one critical pair $\left\langle u_{1}, u_{2}\right\rangle$.

Reduce every u_{i} to some normal form u_{i}^{\prime}. If $u_{1}^{\prime}=u_{2}^{\prime}$ for every critical pair, then R is confluent, otherwise there is some non-confluent situation $u_{1}^{\prime} \leftarrow_{R}^{*} u_{1} \leftarrow_{R} s \rightarrow_{R} u_{2} \rightarrow_{R}^{*} u_{2}^{\prime}$.

3.5 Termination

Termination problems:
Given a finite TRS R and a term t, are all R-reductions starting from t terminating?

Given a finite TRS R, are all R-reductions terminating?
Proposition 3.21:
Both termination problems for TRSs are undecidable in general.
Proof:
Encode Turing machines using rewrite rules and reduce the (uniform) halting problems for TMs to the termination problems for TRSs.

Termination

Consequence:
Decidable criteria for termination are not complete.

Reduction Orderings

Goal:
Given a finite TRS R, show termination of R by looking at finitely many rules $I \rightarrow r \in R$, rather than at infinitely many possible replacement steps $s \rightarrow_{R} s^{\prime}$.

Reduction Orderings

A binary relation \sqsupset over $\mathrm{T}_{\Sigma}(X)$ is called compatible with Σ-operations, if $s \sqsupset s^{\prime}$ implies $f\left(t_{1}, \ldots, s, \ldots, t_{n}\right) \sqsupset f\left(t_{1}, \ldots, s^{\prime}, \ldots, t_{n}\right)$ for all $f / n \in \Omega$ and $s, s^{\prime}, t_{i} \in \mathrm{~T}_{\Sigma}(X)$.

Lemma 3.22:
The relation \sqsupset is compatible with Σ-operations, if and only if $s \sqsupset s^{\prime}$ implies $t[s]_{p} \sqsupset t\left[s^{\prime}\right]_{p}$ for all $s, s^{\prime}, t \in \mathrm{~T}_{\Sigma}(X)$ and $p \in \operatorname{pos}(t)$.
(compatible with \sum-operations $=$ compatible with contexts)

Reduction Orderings

A binary relation \sqsupset over $\mathrm{T}_{\Sigma}(X)$ is called stable under substitutions, if $s \sqsupset s^{\prime}$ implies $s \sigma \sqsupset s^{\prime} \sigma$ for all $s, s^{\prime} \in \mathrm{T}_{\Sigma}(X)$ and substitutions σ.

Reduction Orderings

A binary relation \sqsupset is called a rewrite relation, if it is compatible with Σ-operations and stable under substitutions.

Example: If R is a TRS, then \rightarrow_{R} is a rewrite relation.

A strict partial ordering over $\mathrm{T}_{\Sigma}(X)$ that is a rewrite relation is called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.

Reduction Orderings

Theorem 3.23:
A TRS R terminates if and only if there exists a reduction ordering \succ such that $I \succ r$ for every rule $I \rightarrow r \in R$.

Proof:
"if": $s \rightarrow_{R} s^{\prime}$ if and only if $s=t[/ \sigma]_{p}, s^{\prime}=t[r \sigma]_{p}$.
If $I \succ r$, then $I \sigma \succ r \sigma$ and therefore $t[/ \sigma]_{p} \succ t[r \sigma]_{p}$.
This implies $\rightarrow_{R} \subseteq \succ$.
Since \succ is a well-founded ordering, \rightarrow_{R} is terminating.
"only if": Define $\succ=\rightarrow_{R}^{+}$.
If \rightarrow_{R} is terminating, then \succ is a reduction ordering.

The Interpretation Method

Proving termination by interpretation:

Let \mathcal{A} be a Σ-algebra;
let \succ be a well-founded strict partial ordering on its universe.

Define the ordering $\succ_{\mathcal{A}}$ over $\mathrm{T}_{\Sigma}(X)$ by $s \succ_{\mathcal{A}} t$ iff $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(t)$ for all assignments $\beta: X \rightarrow U_{\mathcal{A}}$.

Is $\succ_{\mathcal{A}}$ a reduction ordering?

The Interpretation Method

Lemma 3.24:
$\succ_{\mathcal{A}}$ is stable under substitutions.
Proof:
Let $s \succ_{\mathcal{A}} s^{\prime}$, that is,
$\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)\left(s^{\prime}\right)$ for all assignments $\beta: X \rightarrow U_{\mathcal{A}}$.
Let σ be a substitution. We have to show that
$\mathcal{A}(\gamma)(s \sigma) \succ \mathcal{A}(\gamma)\left(s^{\prime} \sigma\right)$ for all assignments $\gamma: X \rightarrow U_{\mathcal{A}}$.
Choose $\beta=\gamma \circ \sigma$, then by the substitution lemma,
$\mathcal{A}(\gamma)(s \sigma)=\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)\left(s^{\prime}\right)=\mathcal{A}(\gamma)\left(s^{\prime} \sigma\right)$.
Therefore $s \sigma \succ_{\mathcal{A}} s^{\prime} \sigma$.

The Interpretation Method

A function $F: U_{\mathcal{A}}^{n} \rightarrow U_{\mathcal{A}}$ is called monotone (w.r.t. \succ), if $a \succ a^{\prime}$ implies
$F\left(b_{1}, \ldots, a, \ldots, b_{n}\right) \succ F\left(b_{1}, \ldots, a^{\prime}, \ldots, b_{n}\right)$
for all $a, a^{\prime}, b_{i} \in U_{\mathcal{A}}$.

The Interpretation Method

Lemma 3.25:
If the interpretation $f_{\mathcal{A}}$ of every function symbol f is monotone w.r.t. $\succ_{\text {, then }}^{\succ_{\mathcal{A}}}$ is compatible with Σ-operations.

Proof:
Let $s \succ s^{\prime}$, that is, $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)\left(s^{\prime}\right)$ for all $\beta: X \rightarrow U_{\mathcal{A}}$.
Let $\beta: X \rightarrow U_{\mathcal{A}}$ be an arbitrary assignment.
Then $\mathcal{A}(\beta)\left(f\left(t_{1}, \ldots, s, \ldots, t_{n}\right)\right)$
$=f_{\mathcal{A}}\left(\mathcal{A}(\beta)\left(t_{1}\right), \ldots, \mathcal{A}(\beta)(s), \ldots, \mathcal{A}(\beta)\left(t_{n}\right)\right)$
$\succ f_{\mathcal{A}}\left(\mathcal{A}(\beta)\left(t_{1}\right), \ldots, \mathcal{A}(\beta)\left(s^{\prime}\right), \ldots, \mathcal{A}(\beta)\left(t_{n}\right)\right)$
$=\mathcal{A}(\beta)\left(f\left(t_{1}, \ldots, s^{\prime}, \ldots, t_{n}\right)\right)$.
Therefore $f\left(t_{1}, \ldots, s, \ldots, t_{n}\right) \succ_{\mathcal{A}} f\left(t_{1}, \ldots, s^{\prime}, \ldots, t_{n}\right)$.

The Interpretation Method

Theorem 3.26:
If the interpretation $f_{\mathcal{A}}$ of every function symbol f is monotone w.r.t. $\succ_{\text {, then }} \succ_{\mathcal{A}}$ is a reduction ordering.

Proof:
By the previous two lemmas, $\succ_{\mathcal{A}}$ is a rewrite relation.
If there were an infinite chain $s_{1} \succ_{\mathcal{A}} s_{2} \succ_{\mathcal{A}} \ldots$, then it would correspond to an infinite chain $\mathcal{A}(\beta)\left(s_{1}\right) \succ \mathcal{A}(\beta)\left(s_{2}\right) \succ \ldots$ (with β chosen arbitrarily).
Thus $\succ_{\mathcal{A}}$ is well-founded.
Irreflexivity and transitivity are proved similarly.

Polynomial Orderings

Polynomial orderings:

Instance of the interpretation method:
The carrier set $U_{\mathcal{A}}$ is some subset of the natural numbers.
To every n-ary function symbol f associate a polynomial $P_{f}\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{N}\left[X_{1}, \ldots, X_{n}\right]$ with coefficients in \mathbb{N} and indeterminates X_{1}, \ldots, X_{n}.
Then define $f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)=P_{f}\left(a_{1}, \ldots, a_{n}\right)$ for $a_{i} \in U_{\mathcal{A}}$.

Polynomial Orderings

Requirement 1:
If $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$, then $f_{A}\left(a_{1}, \ldots, a_{n}\right) \in U_{\mathcal{A}}$.
(Otherwise, \mathcal{A} would not be a Σ-algebra.)

Polynomial Orderings

Requirement 2:
f_{A} must be monotone (w.r.t. \succ).
From now on:

$$
\begin{aligned}
& U_{\mathcal{A}}=\{n \in \mathbb{N} \mid n \geq 2\} \\
& \text { If } f / 0 \in \Omega, \text { then } P_{f} \text { is a constant } \geq 2 .
\end{aligned}
$$

If $f / n \in \Omega$ with $n \geq 1$, then P_{f} is a polynomial $P\left(X_{1}, \ldots, X_{n}\right)$, such that every X_{i} occurs in some monomial with exponent at least 1 and non-zero coefficient.
\Rightarrow Requirements 1 and 2 are satisfied.

Polynomial Orderings

The mapping from function symbols to polynomials can be extended to terms:
A term t containing the variables x_{1}, \ldots, x_{n} yields a polynomial P_{t} with indeterminates X_{1}, \ldots, X_{n} (where X_{i} corresponds to $\beta\left(x_{i}\right)$).

Example:

$$
\begin{aligned}
& \Omega=\{a / 0, f / 1, g / 3\}, \\
& U_{\mathcal{A}}=\{n \in \mathbb{N} \mid n \geq 2\}, \\
& P_{a}=3, \quad P_{f}\left(X_{1}\right)=X_{1}^{2}, \quad P_{g}\left(X_{1}, X_{2}, X_{3}\right)=X_{1}+X_{2} X_{3} . \\
& \text { Let } t=g(f(a), f(x), y), \text { then } P_{t}(X, Y)=9+X^{2} Y .
\end{aligned}
$$

Polynomial Orderings

If P, Q are polynomials in $\mathbb{N}\left[X_{1}, \ldots, X_{n}\right]$, we write $P>Q$ if $P\left(a_{1}, \ldots, a_{n}\right)>Q\left(a_{1}, \ldots, a_{n}\right)$ for all $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$.

Clearly, $I \succ_{\mathcal{A}} r$ iff $P_{I}>P_{r}$.
Question: Can we check $P_{l}>P_{r}$ automatically?

Polynomial Orderings

Hilbert's 10th Problem:

Given a polynomial $P \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ with integer coefficients, is $P=0$ for some n-tuple of natural numbers?

Theorem 3.27:
Hilbert's 10th Problem is undecidable.

Proposition 3.28:
Given a polynomial interpretation and two terms l, r, it is undecidable whether $P_{l}>P_{r}$.

Proof:
By reduction of Hilbert's 10th Problem.

Polynomial Orderings

One possible solution:

> Test whether $P_{l}\left(a_{1}, \ldots, a_{n}\right)>P_{r}\left(a_{1}, \ldots, a_{n}\right)$ for all $a_{1}, \ldots, a_{n} \in\{x \in \mathbb{R} \mid x \geq 2\}$.

This is decidable (but very slow).
Since $U_{\mathcal{A}} \subseteq\{x \in \mathbb{R} \mid x \geq 2\}$, it implies $P_{I}>P_{r}$.

Polynomial Orderings

Another solution (Ben Cherifa and Lescanne):
Consider the difference $P_{l}\left(X_{1}, \ldots, X_{n}\right)-P_{r}\left(X_{1}, \ldots, X_{n}\right)$ as a polynomial with real coefficients and apply the following inference system to it to show that it is positive for all $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$:

Polynomial Orderings

$P \Rightarrow B C L \quad$,
if P contains at least one monomial with a positive coefficient and no monomial with a negative coefficient.

$$
\begin{aligned}
& P+c X_{1}^{p_{1}} \cdots X_{n}^{p_{n}}-d X_{1}^{q_{1}} \cdots X_{n}^{q_{n}} \Rightarrow B C L \\
& \text { if } c, d>0, p_{i} \geq q_{i}^{\prime} X_{1}^{p_{1}} \ldots X_{n}^{p_{n}}, \\
& \text { and } c^{\prime}=c-d \cdot 2^{\left(q_{1}-p_{1}\right)+\cdots+\left(q_{n}-p_{n}\right)} \geq 0 . \\
& P+c X_{1}^{p_{1}} \cdots X_{n}^{p_{n}}-d X_{1}^{q_{1}} \cdots X_{n}^{q_{n}} \Rightarrow B C L P-d^{\prime} X_{1}^{q_{1}} \cdots X_{n}^{q_{n}}, \\
& \text { if } c, d>0, p_{i} \geq q_{i} \text { for all } i, \\
& \text { and } d^{\prime}=d-c \cdot 2^{\left(p_{1}-q_{1}\right)+\cdots+\left(p_{n}-q_{n}\right)}>0 .
\end{aligned}
$$

Polynomial Orderings

Lemma 3.29:
If $P \Rightarrow{ }_{B C L} P^{\prime}$, then $P\left(a_{1}, \ldots, a_{n}\right) \geq P^{\prime}\left(a_{1}, \ldots, a_{n}\right)$ for all $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$.

Proof:
Follows from the fact that $a_{i} \in U_{\mathcal{A}}$ implies $a_{i} \geq 2$.

Proposition 3.30:
If $P \Rightarrow{ }_{B C L}^{+} \top$, then $P\left(a_{1}, \ldots, a_{n}\right)>0$ for all $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$.

