Showing local confluence (Sketch):

Problem: If $t_1 \leftarrow_E t_0 \rightarrow_E t_2$, does there exist a term *s* such that $t_1 \rightarrow_E^* s \leftarrow_E^* t_2$?

If the two rewrite steps happen in different subtrees (disjoint redexes): yes.

If the two rewrite steps happen below each other (overlap at or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable position: needs further investigation.

Showing local confluence (Sketch):

Question:

Are there rewrite rules $l_1 \rightarrow r_1$ and $l_2 \rightarrow r_2$ such that some subterm l_1/p and l_2 have a common instance $(l_1/p)\sigma_1 = l_2\sigma_2$?

Observation:

If we assume w.o.l.o.g. that the two rewrite rules do not have common variables, then only a single substitution is necessary: $(l_1/p)\sigma = l_2\sigma$.

Further observation:

The mgu of l_1/p and l_2 subsumes all unifiers σ of l_1/p and l_2 .

Let $l_i \rightarrow r_i$ (i = 1, 2) be two rewrite rules in a TRS Rwhose variables have been renamed such that $var(\{l_1, r_1\}) \cap var(\{l_2, r_2\}) = \emptyset$.

Let $p \in pos(l_1)$ be a position such that l_1/p is not a variable and σ is an mgu of l_1/p and l_2 .

Then
$$r_1 \sigma \leftarrow l_1 \sigma \rightarrow (l_1 \sigma)[r_2 \sigma]_p$$
.

 $\langle r_1\sigma, (l_1\sigma)[r_2\sigma]_p \rangle$ is called a critical pair of R.

The critical pair is joinable (or: converges), if $r_1 \sigma \downarrow_R (l_1 \sigma)[r_2 \sigma]_p$.

Theorem 3.18 ("Critical Pair Theorem"):

A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof:

"only if": obvious, since joinability of a critical pair is a special case of local confluence.

Proof:

"if": Suppose *s* rewrites to t_1 and t_2 using rewrite rules $l_i \rightarrow r_i \in R$ at positions $p_i \in pos(s)$, where i = 1, 2. Without loss of generality, we can assume that the two rules are variable disjoint, hence $s/p_i = l_i\theta$ and $t_i = s[r_i\theta]_{p_i}$.

We distinguish between two cases: Either p_1 and p_2 are in disjoint subtrees $(p_1 || p_2)$, or one is a prefix of the other (w.o.l.o.g., $p_1 \leq p_2$).

Case 1: $p_1 || p_2$. Then $s = s[l_1\theta]_{p_1}[l_2\theta]_{p_2}$, and therefore $t_1 = s[r_1\theta]_{p_1}[l_2\theta]_{p_2}$ and $t_2 = s[l_1\theta]_{p_1}[r_2\theta]_{p_2}$. Let $t_0 = s[r_1\theta]_{p_1}[r_2\theta]_{p_2}$. Then clearly $t_1 \rightarrow_R t_0$ using $l_2 \rightarrow r_2$ and $t_2 \rightarrow_R t_0$ using $l_1 \rightarrow r_1$.

Case 2: $p_1 \le p_2$.

Case 2.1: $p_2 = p_1 q_1 q_2$, where l_1/q_1 is some variable x.

In other words, the second rewrite step takes place at or below a variable in the first rule. Suppose that x occurs m times in I_1 and n times in r_1 (where $m \ge 1$ and $n \ge 0$).

Then $t_1 \rightarrow_R^* t_0$ by applying $l_2 \rightarrow r_2$ at all positions $p_1 q' q_2$, where q' is a position of x in r_1 .

Conversely, $t_2 \to_R^* t_0$ by applying $l_2 \to r_2$ at all positions $p_1 q q_2$, where q is a position of x in l_1 different from q_1 , and by applying $l_1 \to r_1$ at p_1 with the substitution θ' , where $\theta' = \theta[x \mapsto (x\theta)[r_2\theta]_{q_2}].$

Case 2.2: $p_2 = p_1 p$, where p is a non-variable position of l_1 . Then $s/p_2 = l_2\theta$ and $s/p_2 = (s/p_1)/p = (l_1\theta)/p = (l_1/p)\theta$, so θ is a unifier of l_2 and l_1/p . Let σ be the mgu of I_2 and I_1/p , then $\theta = \tau \circ \sigma$ and $\langle r_1 \sigma, (I_1 \sigma) [r_2 \sigma]_p \rangle$ is a critical pair. By assumption, it is joinable, so $r_1 \sigma \rightarrow^*_R v \leftarrow^*_R (l_1 \sigma) [r_2 \sigma]_p$. Consequently, $t_1 = s[r_1\theta]_{D_1} = s[r_1\sigma\tau]_{D_1} \rightarrow^*_R s[v\tau]_{D_1}$ and $t_2 = s[r_2\theta]_{p_2} = s[(l_1\theta)[r_2\theta]_p]_{p_1} = s[(l_1\sigma\tau)[r_2\sigma\tau]_p]_{p_1} =$ $s[((I_1\sigma)[r_2\sigma]_p)\tau]_{p_1} \rightarrow^*_R s[v\tau]_{p_1}.$

This completes the proof of the Critical Pair Theorem.

Note: Critical pairs between a rule and (a renamed variant of) itself must be considered – except if the overlap is at the root (i.e., $p = \varepsilon$).

Corollary 3.19: A terminating TRS R is confluent if and only if all its critical pairs are joinable.

Proof:

By Newman's Lemma and the Critical Pair Theorem.

Corollary 3.20: For a finite terminating TRS, confluence is decidable.

Proof:

For every pair of rules and every non-variable position in the first rule there is at most one critical pair $\langle u_1, u_2 \rangle$.

Reduce every u_i to some normal form u'_i . If $u'_1 = u'_2$ for every critical pair, then R is confluent, otherwise there is some non-confluent situation $u'_1 \leftarrow_R^* u_1 \leftarrow_R s \rightarrow_R u_2 \rightarrow_R^* u'_2$. Termination problems:

Given a finite TRS R and a term t, are all R-reductions starting from t terminating?

Given a finite TRS R, are all R-reductions terminating?

Proposition 3.21:

Both termination problems for TRSs are undecidable in general.

Proof:

Encode Turing machines using rewrite rules and reduce the (uniform) halting problems for TMs to the termination problems for TRSs.

Termination

Consequence:

Decidable criteria for termination are not complete.

Reduction Orderings

Goal:

Given a finite TRS R, show termination of R by looking at finitely many rules $I \rightarrow r \in R$, rather than at infinitely many possible replacement steps $s \rightarrow_R s'$.

Reduction Orderings

A binary relation \Box over $T_{\Sigma}(X)$ is called compatible with Σ -operations, if $s \Box s'$ implies $f(t_1, \ldots, s, \ldots, t_n) \Box f(t_1, \ldots, s', \ldots, t_n)$ for all $f/n \in \Omega$ and $s, s', t_i \in T_{\Sigma}(X)$.

Lemma 3.22:

The relation \Box is compatible with Σ -operations, if and only if $s \sqsupseteq s'$ implies $t[s]_p \sqsupset t[s']_p$ for all $s, s', t \in T_{\Sigma}(X)$ and $p \in pos(t)$.

(compatible with Σ -operations = compatible with contexts)

Reduction Orderings

A binary relation \Box over $T_{\Sigma}(X)$ is called stable under substitutions, if $s \sqsupset s'$ implies $s\sigma \sqsupset s'\sigma$ for all $s, s' \in T_{\Sigma}(X)$ and substitutions σ . A binary relation \Box is called a rewrite relation, if it is compatible with Σ -operations and stable under substitutions.

Example: If R is a TRS, then \rightarrow_R is a rewrite relation.

A strict partial ordering over $T_{\Sigma}(X)$ that is a rewrite relation is called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.

Theorem 3.23:

A TRS *R* terminates if and only if there exists a reduction ordering \succ such that $l \succ r$ for every rule $l \rightarrow r \in R$.

Proof:

"if": $s \to_R s'$ if and only if $s = t[I\sigma]_p$, $s' = t[r\sigma]_p$. If $I \succ r$, then $I\sigma \succ r\sigma$ and therefore $t[I\sigma]_p \succ t[r\sigma]_p$. This implies $\to_R \subseteq \succ$. Since \succ is a well-founded ordering, \to_R is terminating.

"only if": Define $\succ = \rightarrow_R^+$. If \rightarrow_R is terminating, then \succ is a reduction ordering. Proving termination by interpretation:

Let \mathcal{A} be a Σ -algebra;

let \succ be a well-founded strict partial ordering on its universe.

Define the ordering $\succ_{\mathcal{A}}$ over $\mathsf{T}_{\Sigma}(X)$ by $s \succ_{\mathcal{A}} t$ iff $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(t)$ for all assignments $\beta : X \to U_{\mathcal{A}}$.

Is $\succ_{\mathcal{A}}$ a reduction ordering?

Lemma 3.24:

 $\succ_{\mathcal{A}}$ is stable under substitutions.

Proof:

Let $s \succ_{\mathcal{A}} s'$, that is, $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(s')$ for all assignments $\beta : X \to U_{\mathcal{A}}$. Let σ be a substitution. We have to show that $\mathcal{A}(\gamma)(s\sigma) \succ \mathcal{A}(\gamma)(s'\sigma)$ for all assignments $\gamma : X \to U_{\mathcal{A}}$. Choose $\beta = \gamma \circ \sigma$, then by the substitution lemma, $\mathcal{A}(\gamma)(s\sigma) = \mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(s') = \mathcal{A}(\gamma)(s'\sigma)$. Therefore $s\sigma \succ_{\mathcal{A}} s'\sigma$.

A function $F : U_{\mathcal{A}}^n \to U_{\mathcal{A}}$ is called monotone (w.r.t. \succ), if $a \succ a'$ implies $F(b_1, \ldots, a, \ldots, b_n) \succ F(b_1, \ldots, a', \ldots, b_n)$ for all $a, a', b_i \in U_{\mathcal{A}}$.

Lemma 3.25:

If the interpretation $f_{\mathcal{A}}$ of every function symbol f is monotone w.r.t. \succ , then $\succ_{\mathcal{A}}$ is compatible with Σ -operations.

Proof:

Let $s \succ s'$, that is, $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(s')$ for all $\beta : X \to U_{\mathcal{A}}$. Let $\beta : X \to U_{\mathcal{A}}$ be an arbitrary assignment. Then $\mathcal{A}(\beta)(f(t_1, \ldots, s, \ldots, t_n))$ $= f_{\mathcal{A}}(\mathcal{A}(\beta)(t_1), \ldots, \mathcal{A}(\beta)(s), \ldots, \mathcal{A}(\beta)(t_n))$ $\succ f_{\mathcal{A}}(\mathcal{A}(\beta)(t_1), \ldots, \mathcal{A}(\beta)(s'), \ldots, \mathcal{A}(\beta)(t_n)))$ $= \mathcal{A}(\beta)(f(t_1, \ldots, s', \ldots, t_n)).$ Therefore $f(t_1, \ldots, s, \ldots, t_n) \succ_{\mathcal{A}} f(t_1, \ldots, s', \ldots, t_n).$

Theorem 3.26:

```
If the interpretation f_{\mathcal{A}} of every function symbol f is monotone w.r.t. \succ, then \succ_{\mathcal{A}} is a reduction ordering.
```

Proof:

By the previous two lemmas, $\succ_{\mathcal{A}}$ is a rewrite relation. If there were an infinite chain $s_1 \succ_{\mathcal{A}} s_2 \succ_{\mathcal{A}} \ldots$, then it would correspond to an infinite chain $\mathcal{A}(\beta)(s_1) \succ \mathcal{A}(\beta)(s_2) \succ \ldots$ (with β chosen arbitrarily).

Thus $\succ_{\mathcal{A}}$ is well-founded.

Irreflexivity and transitivity are proved similarly.

Polynomial orderings:

Instance of the interpretation method:

The carrier set U_A is some subset of the natural numbers.

To every *n*-ary function symbol *f* associate a polynomial $P_f(X_1, \ldots, X_n) \in \mathbb{N}[X_1, \ldots, X_n]$ with coefficients in \mathbb{N} and indeterminates X_1, \ldots, X_n . Then define $f_{\mathcal{A}}(a_1, \ldots, a_n) = P_f(a_1, \ldots, a_n)$ for $a_i \in U_{\mathcal{A}}$.

Polynomial Orderings

Requirement 1:

If
$$a_1, \ldots, a_n \in U_A$$
, then $f_A(a_1, \ldots, a_n) \in U_A$.
(Otherwise, A would not be a Σ -algebra.)

Requirement 2:

 f_A must be monotone (w.r.t. \succ).

From now on:

 $U_{\mathcal{A}} = \{ n \in \mathbb{N} \mid n \geq 2 \}.$

If $f/0 \in \Omega$, then P_f is a constant ≥ 2 .

If $f/n \in \Omega$ with $n \ge 1$, then P_f is a polynomial $P(X_1, \ldots, X_n)$, such that every X_i occurs in some monomial with exponent at least 1 and non-zero coefficient.

 \Rightarrow Requirements 1 and 2 are satisfied.

The mapping from function symbols to polynomials can be extended to terms:

A term t containing the variables x_1, \ldots, x_n yields a polynomial P_t with indeterminates X_1, \ldots, X_n (where X_i corresponds to $\beta(x_i)$).

Example:

$$\begin{split} \Omega &= \{a/0, f/1, g/3\}, \\ U_{\mathcal{A}} &= \{ n \in \mathbb{N} \mid n \geq 2 \}, \\ P_{a} &= 3, \quad P_{f}(X_{1}) = X_{1}^{2}, \quad P_{g}(X_{1}, X_{2}, X_{3}) = X_{1} + X_{2}X_{3}. \\ \text{Let } t &= g(f(a), f(x), y), \text{ then } P_{t}(X, Y) = 9 + X^{2}Y. \end{split}$$

Polynomial Orderings

If P, Q are polynomials in $\mathbb{N}[X_1, \ldots, X_n]$, we write P > Qif $P(a_1, \ldots, a_n) > Q(a_1, \ldots, a_n)$ for all $a_1, \ldots, a_n \in U_A$.

```
Clearly, l \succ_{\mathcal{A}} r iff P_l > P_r.
```

Question: Can we check $P_l > P_r$ automatically?

Hilbert's 10th Problem:

Given a polynomial $P \in \mathbb{Z}[X_1, \ldots, X_n]$ with integer coefficients, is P = 0 for some *n*-tuple of natural numbers?

Theorem 3.27: Hilbert's 10th Problem is undecidable.

Proposition 3.28:

Given a polynomial interpretation and two terms I, r, it is undecidable whether $P_I > P_r$.

Proof:

By reduction of Hilbert's 10th Problem.

Polynomial Orderings

One possible solution:

Test whether $P_l(a_1, \ldots, a_n) > P_r(a_1, \ldots, a_n)$ for all $a_1, \ldots, a_n \in \{x \in \mathbb{R} \mid x \ge 2\}$.

This is decidable (but very slow). Since $U_{\mathcal{A}} \subseteq \{ x \in \mathbb{R} \mid x \ge 2 \}$, it implies $P_I > P_r$. Another solution (Ben Cherifa and Lescanne):

Consider the difference $P_l(X_1, \ldots, X_n) - P_r(X_1, \ldots, X_n)$ as a polynomial with real coefficients and apply the following inference system to it to show that it is positive for all $a_1, \ldots, a_n \in U_A$:

Polynomial Orderings

 $P \Rightarrow_{BCL} \top$,

if P contains at least one monomial with a positive coefficient and no monomial with a negative coefficient.

$$P + c X_1^{p_1} \cdots X_n^{p_n} - d X_1^{q_1} \cdots X_n^{q_n} \Rightarrow_{BCL} P + c' X_1^{p_1} \dots X_n^{p_n},$$

if $c, d > 0, p_i \ge q_i$ for all $i,$
and $c' = c - d \cdot 2^{(q_1 - p_1) + \dots + (q_n - p_n)} \ge 0.$

$$P + c X_1^{p_1} \cdots X_n^{p_n} - d X_1^{q_1} \cdots X_n^{q_n} \Rightarrow_{BCL} P - d' X_1^{q_1} \dots X_n^{q_n},$$

if $c, d > 0, p_i \ge q_i$ for all $i,$
and $d' = d - c \cdot 2^{(p_1 - q_1) + \dots + (p_n - q_n)} > 0.$

Polynomial Orderings

Lemma 3.29: If $P \Rightarrow_{BCL} P'$, then $P(a_1, \ldots, a_n) \ge P'(a_1, \ldots, a_n)$ for all $a_1, \ldots, a_n \in U_A$.

Proof:

Follows from the fact that $a_i \in U_A$ implies $a_i \ge 2$.

Proposition 3.30: If $P \Rightarrow_{BCL}^+ \top$, then $P(a_1, \ldots, a_n) > 0$ for all $a_1, \ldots, a_n \in U_A$.