Simplification Orderings

The proper subterm ordering \triangleright is defined by $s \triangleright t$ if and only if $s / p=t$ for some position $p \neq \varepsilon$ of s.

Simplification Orderings

A rewrite ordering \succ over $\mathrm{T}_{\Sigma}(X)$ is called simplification ordering, if it has the subterm property:
$s \triangleright t$ implies $s \succ t$ for all $s, t \in \mathrm{~T}_{\Sigma}(X)$.
Example:
Let $R_{\text {emb }}$ be the rewrite system
$R_{\text {emb }}=\left\{f\left(x_{1}, \ldots, x_{n}\right) \rightarrow x_{i} \mid f / n \in \Omega, n \geq 1,1 \leq i \leq n\right\}$.
Define $\triangleright_{\mathrm{emb}}=\rightarrow_{R_{\mathrm{emb}}}^{+}$and $\unrhd_{\mathrm{emb}}=\rightarrow_{R_{\mathrm{emb}}}^{*}$
("homeomorphic embedding relation").
$\triangleright_{\mathrm{emb}}$ is a simplification ordering.

Simplification Orderings

Lemma 3.31:
If \succ is a simplification ordering, then $s \triangleright_{\text {emb }} t$ implies $s \succ t$ and $s \unrhd_{\text {emb }} t$ implies $s \succeq t$.

Proof:
Since \succ is transitive and \succeq is transitive and reflexive, it suffices to show that $s \rightarrow_{R_{\text {emb }}} t$ implies $s \succ t$.
By definition, $s \rightarrow_{R_{\text {emb }}} t$ if and only if $s=s[/ \sigma]$ and $t=s[r \sigma]$
for some rule $I \rightarrow r \in R_{\text {emb }}$.
Obviously, $I \triangleright r$ for all rules in $R_{\text {emb }}$, hence $I \succ r$.
Since \succ is a rewrite relation, $s=s[/ \sigma] \succ s[r \sigma]=t$.

Simplification Orderings

Goal:
Show that every simplification ordering is well-founded (and therefore a reduction ordering).

Note: This works only for finite signatures!
To fix this for infinite signatures, the definition of simplification orderings and the definition of embedding have to be modified.

Kruskal's Theorem

A (usually not strict) partial ordering \succeq on a set A is called well-partial-ordering (wpo), if for every infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$ there are indices $i<j$ such that $a_{i} \preceq a_{j}$.

Terminology:
An infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$ is called good, if there exist $i<j$ such that $a_{i} \preceq a_{j}$; otherwise it is called bad.

Therefore: \succeq is a wpo iff every infinite sequence is good.

Kruskal's Theorem

Lemma 3.32:
If \succeq is a wpo, then every infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$ has an infinite ascending subsequence $a_{i_{1}} \preceq a_{i_{2}} \preceq a_{i_{3}} \preceq \ldots$, where $i_{1}<i_{2}<i_{3}<\ldots$.

Proof:
Let $a_{1}, a_{2}, a_{3}, \ldots$ be an infinite sequence. We call an index $m \geq 1$ terminal, if there is no $n>m$ such that $a_{m} \preceq a_{n}$.
There are only finitely many terminal indices $m_{1}, m_{2}, m_{3}, \ldots$; otherwise the sequence $a_{m_{1}}, a_{m_{2}}, a_{m_{3}}, \ldots$ would be bad. Choose $p>1$ such that all $m \geq p$ are not terminal; define $i_{1}=p$; define recursively i_{j+1} such that $i_{j+1}>i_{j}$ and $a_{i_{j+1}} \succeq a_{i_{j}}$.

Kruskal's Theorem

Lemma 3.33:
If $\succeq_{1}, \ldots, \succeq_{n}$ are wpo's on A_{1}, \ldots, A_{n}, then \succeq defined by

$$
\left(a_{1}, \ldots, a_{n}\right) \succeq\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \text { iff } a_{i} \succeq_{i} a_{i}^{\prime} \text { for all } i
$$

is a wpo on $A_{1} \times \cdots \times A_{n}$.

Proof:

The case $n=1$ is trivial.
Otherwise let $\left(a_{1}^{(1)}, \ldots, a_{n}^{(1)}\right),\left(a_{1}^{(2)}, \ldots, a_{n}^{(2)}\right), \ldots$ be an infinite sequence. By the previous lemma, there are infinitely many indices $i_{1}<i_{2}<i_{3}<\ldots$ such that $a_{n}^{\left(i_{1}\right)} \preceq a_{n}^{\left(i_{2}\right)} \preceq a_{n}^{\left(i_{3}\right)} \preceq \ldots$. By induction on n, there are $k<I$ such that $a_{1}^{\left(i_{k}\right)} \preceq a_{1}^{\left(i_{1}\right)} \wedge \cdots \wedge$ $a_{n-1}^{\left(i_{k}\right)} \preceq a_{n-1}^{\left(i_{1}\right)}$. Therefore $\left(a_{1}^{\left(i_{k}\right)}, \ldots, a_{n}^{\left(i_{k}\right)}\right) \preceq\left(a_{1}^{\left(i_{1}\right)}, \ldots, a_{n}^{\left(i_{1}\right)}\right)$.

Kruskal's Theorem

Theorem 3.34 ("Kruskal's Theorem"):
Let Σ be a finite signature, let X be a finite set of variables.
Then $\unrhd_{\text {emb }}$ is a wpo on $\mathrm{T}_{\Sigma}(X)$.
Proof:
Baader and Nipkow, page 114/115.

Simplification Orderings

Theorem 3.35 (Dershowitz):
If Σ is a finite signature, then every simplification ordering \succ on $\mathrm{T}_{\Sigma}(X)$ is well-founded (and therefore a reduction ordering).

Proof:

Suppose that $t_{1} \succ t_{2} \succ t_{3} \succ \ldots$ is an infinite decreasing chain.
First assume that there is an $x \in \operatorname{var}\left(t_{i+1}\right) \backslash \operatorname{var}\left(t_{i}\right)$.
Let $\sigma=\left[t_{i} / x\right]$, then $t_{i+1} \sigma \unrhd x \sigma=t_{i}$ and therefore
$t_{i}=t_{i} \sigma \succ t_{i+1} \sigma \succeq t_{i}$, contradicting reflexivity.
Consequently, $\operatorname{var}\left(t_{i}\right) \supseteq \operatorname{var}\left(t_{i+1}\right)$ and $t_{i} \in \mathrm{~T}_{\Sigma}(V)$ for all i, where V is the finite set $\operatorname{var}\left(t_{1}\right)$. By Kruskal's Theorem, there are $i<j$ with $t_{i} \unlhd_{\mathrm{emb}} t_{j}$. Hence $t_{i} \preceq t_{j}$, contradicting $t_{i} \succ t_{j}$.

Simplification Orderings

There are reduction orderings that are not simplification orderings and terminating TRSs that are not contained in any simplification ordering.

Example:
Let $R=\{f(f(x)) \rightarrow f(g(f(x)))\}$.
R terminates and \rightarrow_{R}^{+}is therefore a reduction ordering.
Assume that \rightarrow_{R} were contained in a simplification ordering \succ.
Then $f(f(x)) \rightarrow_{R} f(g(f(x)))$ implies $f(f(x)) \succ f(g(f(x)))$, and $f(g(f(x))) \unrhd_{\text {emb }} f(f(x))$ implies $f(g(f(x))) \succeq f(f(x))$, hence $f(f(x)) \succ f(f(x))$.

Recursive Path Orderings

Let $\Sigma=(\Omega, \Pi)$ be a finite signature, let \succ be a strict partial ordering ("precedence") on Ω.

The lexicographic path ordering $\succ_{\text {lpo }}$ on $\mathrm{T}_{\Sigma}(X)$ induced by \succ is defined by: $s \succ_{\text {lpo }} t$ iff
(1) $t \in \operatorname{var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(a) $s_{i} \succeq_{\text {lpo }} t$ for some i, or
(b) $f \succ g$ and $s \succ_{\text {lpo }} t_{j}$ for all j, or
(c) $f=g, s \succ_{\mathrm{lpo}} t_{j}$ for all j, and

$$
\left(s_{1}, \ldots, s_{m}\right)\left(\succ_{\text {lpo }}\right)_{\text {lex }}\left(t_{1}, \ldots, t_{n}\right) .
$$

Recursive Path Orderings

Lemma 3.36:
$s \succ_{\text {lpo }} t$ implies $\operatorname{var}(s) \supseteq \operatorname{var}(t)$.
Proof:
By induction on $|s|+|t|$ and case analysis.

Recursive Path Orderings

Theorem 3.37:
$\succ_{\text {lpo }}$ is a simplification ordering on $T_{\Sigma}(X)$.
Proof:
Show transitivity, subterm property, stability under substitutions, compatibility with \sum-operations, and irreflexivity, usually by induction on the sum of the term sizes and case analysis.
Details: Baader and Nipkow, page 119/120.

Recursive Path Orderings

Theorem 3.38:
If the precedence \succ is total, then the lexicographic path ordering
$\succ_{\text {lpo }}$ is total on ground terms, i. e., for all $s, t \in \mathrm{~T}_{\Sigma}(\emptyset)$:
$s \succ_{\mathrm{lpo}} t \vee t \succ_{\mathrm{lpo}} s \vee s=t$.
Proof:
By induction on $|s|+|t|$ and case analysis.

Recursive Path Orderings

Recapitulation:
Let $\Sigma=(\Omega, \Pi)$ be a finite signature, let \succ be a strict partial ordering ("precedence") on Ω. The lexicographic path ordering
$\succ_{\text {lpo }}$ on $\mathrm{T}_{\Sigma}(X)$ induced by \succ is defined by: $s \succ_{\text {lpo }} t$ iff
(1) $t \in \operatorname{var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(a) $s_{i} \succeq_{\text {lpo }} t$ for some i, or
(b) $f \succ g$ and $s \succ_{\text {lpo }} t_{j}$ for all j, or
(c) $f=g, s \succ_{\text {lpo }} t_{j}$ for all j, and

$$
\left(s_{1}, \ldots, s_{m}\right)\left(\succ_{\mathrm{lpo}}\right)_{\operatorname{lex}}\left(t_{1}, \ldots, t_{n}\right) .
$$

Recursive Path Orderings

There are several possibilities to compare subterms in (2)(c): compare list of subterms lexicographically left-to-right ("lexicographic path ordering (lpo)", Kamin and Lévy) compare list of subterms lexicographically right-to-left (or according to some permutation π)
compare multiset of subterms using the multiset extension ("multiset path ordering (mpo)", Dershowitz)
to each function symbol f / n associate a status $\in\{m u l\} \cup\left\{l e x_{\pi} \mid \pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}\right\}$ and compare according to that status ("recursive path ordering (rpo) with status")

The Knuth-Bendix Ordering

Let $\Sigma=(\Omega, \Pi)$ be a finite signature, let \succ be a strict partial ordering ("precedence") on Ω, let $w: \Omega \cup X \rightarrow \mathbb{R}_{0}^{+}$be a weight function, such that the following admissibility conditions are satisfied:

$$
\begin{aligned}
& w(x)=w_{0} \in \mathbb{R}^{+} \text {for all variables } x \in X \\
& w(c) \geq w_{0} \text { for all constants } c / 0 \in \Omega . \\
& \text { If } w(f)=0 \text { for some } f / 1 \in \Omega, \text { then } f \succeq g \text { for all } g \in \Omega .
\end{aligned}
$$

w can be extended to terms as follows:

$$
w(t)=\sum_{x \in \operatorname{var}(t)} w(x) \cdot \#(x, t)+\sum_{f \in \Omega} w(f) \cdot \#(f, t) .
$$

The Knuth-Bendix Ordering

The Knuth-Bendix ordering $\succ_{\text {kbo }}$ on $\mathrm{T}_{\Sigma}(X)$ induced by \succ and w is defined by: $s \succ_{\mathrm{kbo}} t$ iff
(1) $\#(x, s) \geq \#(x, t)$ for all variables x and $w(s)>w(t)$, or
(2) $\#(x, s) \geq \#(x, t)$ for all variables $x, w(s)=w(t)$, and
(a) $t=x, s=f^{n}(x)$ for some $n \geq 1$, or
(b) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and $f \succ g$, or
(c) $s=f\left(s_{1}, \ldots, s_{m}\right), t=f\left(t_{1}, \ldots, t_{m}\right)$, and

$$
\left(s_{1}, \ldots, s_{m}\right)\left(\succ_{\mathrm{kbo}}\right)_{\mathrm{lex}}\left(t_{1}, \ldots, t_{m}\right)
$$

The Knuth-Bendix Ordering

Theorem 3.39:
The Knuth-Bendix ordering induced by \succ and w is a simplification ordering on $\mathrm{T}_{\Sigma}(X)$.

Proof:
Baader and Nipkow, pages 125-129.

3.6 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an equivalent convergent set R of rewrite rules.

How to ensure termination?
Fix a reduction ordering \succ and construct R in such a way
that $\rightarrow_{R} \subseteq \succ$ (i. e., $I \succ r$ for every $I \rightarrow r \in R$).
How to ensure confluence?
Check that all critical pairs are joinable.

Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules working on a set of equations E and a set of rules R :
$E_{0}, R_{0} \vdash E_{1}, R_{1} \vdash E_{2}, R_{2} \vdash \ldots$
At the beginning, $E=E_{0}$ is the input set and $R=R_{0}$ is empty. At the end, E should be empty; then R is the result.

For each step $E, R \vdash E^{\prime}, R^{\prime}$, the equational theories of $E \cup R$ and $E^{\prime} \cup R^{\prime}$ agree: $\approx_{E \cup R}=\approx_{E^{\prime} \cup R^{\prime}}$.

Knuth-Bendix Completion: Inference Rules

Notations:
The formula $s \dot{\approx} t$ denotes either $s \approx t$ or $t \approx s$.
$\mathrm{CP}(R)$ denotes the set of all critical pairs between rules in R.

Knuth-Bendix Completion: Inference Rules

Orient:

$$
\frac{E \cup\{s \dot{\sim} t\}, \quad R}{E, R \cup\{s \rightarrow t\}} \quad \text { if } s \succ t
$$

Note: There are equations $s \approx t$ that cannot be oriented,
i. e., neither $s \succ t$ nor $t \succ s$.

Knuth-Bendix Completion: Inference Rules

Trivial equations cannot be oriented - but we don't need them anyway:

Delete:
$\frac{E \cup\{s \approx s\}, \quad R}{E, R}$

Knuth-Bendix Completion: Inference Rules

Critical pairs between rules in R are turned into additional equations:

Deduce:

$$
\frac{E, R}{E \cup\{s \approx t\}, \quad R} \quad \text { if }\langle s, t\rangle \in \mathrm{CP}(R) \text {. }
$$

Note: If $\langle s, t\rangle \in \mathrm{CP}(R)$ then $s \leftarrow_{R} u \rightarrow_{R} t$ and hence $R \models s \approx t$.

Knuth-Bendix Completion: Inference Rules

The following inference rules are not absolutely necessary, but very useful (e.g., to get rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq:

$$
\frac{E \cup\{s \dot{\sim} t\},}{E \cup\{u \approx t\},} \quad R \quad \text { if } s \rightarrow_{R} u
$$

Knuth-Bendix Completion: Inference Rules

Simplification of the right-hand side of a rule is unproblematic.
R-Simplify-Rule:

$$
\begin{array}{ll}
E, & R \cup\{s \rightarrow t\} \\
E, & R \cup\{s \rightarrow u\}
\end{array} \quad \text { if } t \rightarrow_{R} u .
$$

Simplification of the left-hand side may influence orientability and orientation. Therefore, it yields an equation:

L-Simplify-Rule:

$$
\frac{E, R \cup\{s \rightarrow t\}}{E \cup\{u \approx t\}, R} \quad \begin{array}{ll}
\text { if } s \rightarrow_{R} u \text { using a rule } I \rightarrow r \in R \\
\text { such that } s \sqsupset I \text { (see next slide). }
\end{array}
$$

Knuth-Bendix Completion: Inference Rules

For technical reasons, the lhs of $s \rightarrow t$ may only be simplified using a rule $I \rightarrow r$, if $I \rightarrow r$ cannot be simplified using $s \rightarrow t$, that is, if $s \sqsupset I$, where the encompassment quasi-ordering \sqsupset is defined by

$$
s \sqsupset I \text { if } s / p=I \sigma \text { for some } p \text { and } \sigma
$$

and $\sqsupset=\beth \backslash \underset{\sim}{~ i s ~ t h e ~ s t r i c t ~ p a r t ~ o f ~} \beth$.

Lemma 3.40:
\sqsupset is a well-founded strict partial ordering.

Knuth-Bendix Completion: Inference Rules

Lemma 3.41:
If $E, R \vdash E^{\prime}, R^{\prime}$, then $\approx_{E \cup R}=\approx_{E^{\prime} \cup R^{\prime}}$.
Lemma 3.42:
If $E, R \vdash E^{\prime}, R^{\prime}$ and $\rightarrow_{R} \subseteq \succ$, then $\rightarrow_{R^{\prime}} \subseteq \succ$.

Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations, different things can happen:
(1) We reach a state where no more inference rules are applicable and E is not empty.
\Rightarrow Failure (try again with another ordering?)
(2) We reach a state where E is empty and all critical pairs between the rules in the current R have been checked.
(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some definitions.

Knuth-Bendix Completion: Correctness Proof

A (finite or infinite sequence) $E_{0}, R_{0} \vdash E_{1}, R_{1} \vdash E_{2}, R_{2} \vdash \ldots$ with $R_{0}=\emptyset$ is called a run of the completion procedure with input E_{0} and \succ.

For a run, $E_{\infty}=\bigcup_{i \geq 0} E_{i}$ and $R_{\infty}=\bigcup_{i \geq 0} R_{i}$.
The sets of persistent equations or rules of the run are $E_{*}=\bigcup_{i \geq 0} \bigcap_{j \geq i} E_{j}$ and $R_{*}=\bigcup_{i \geq 0} \bigcap_{j \geq i} R_{j}$.
Note: If the run is finite and ends with E_{n}, R_{n}, then $E_{*}=E_{n}$ and $R_{*}=R_{n}$.

Knuth-Bendix Completion: Correctness Proof

A run is called fair, if $C P\left(R_{*}\right) \subseteq E_{\infty}$
(i.e., if every critical pair between persisting rules is computed at some step of the derivation).

Goal:
Show: If a run is fair and E_{*} is empty, then R_{*} is convergent and equivalent to E_{0}.

In particular: If a run is fair and E_{*} is empty, then $\approx_{E_{0}}=\approx_{E_{\infty} \cup R_{\infty}}=\leftrightarrow E_{\infty} \cup R_{\infty}=\downarrow_{R_{*}}$.

Knuth-Bendix Completion: Correctness Proof

General assumptions from now on:
$E_{0}, R_{0} \vdash E_{1}, R_{1} \vdash E_{2}, R_{2} \vdash \ldots$ is a fair run.
R_{0} and E_{*} are empty.

Knuth-Bendix Completion: Correctness Proof

A proof of $s \approx t$ in $E_{\infty} \cup R_{\infty}$ is a finite sequence $\left(s_{0}, \ldots, s_{n}\right)$ such that $s=s_{0}, t=s_{n}$, and for all $i \in\{1, \ldots, n\}$:
(1) $s_{i-1} \leftrightarrow E_{\infty} s_{i}$, or
(2) $s_{i-1} \rightarrow R_{\infty} s_{i}$, or
(3) $s_{i-1} \leftarrow R_{\infty} s_{i}$.

The pairs $\left(s_{i-1}, s_{i}\right)$ are called proof steps.
A proof is called a rewrite proof in R_{*},
if there is a $k \in\{0, \ldots, n\}$ such that $s_{i-1} \rightarrow_{R_{*}} s_{i}$ for $1 \leq i \leq k$ and $s_{i-1} \leftarrow R_{*} s_{i}$ for $k+1 \leq i \leq n$

Knuth-Bendix Completion: Correctness Proof

Idea (Bachmair, Dershowitz, Hsiang):
Define a well-founded ordering on proofs, such that for every proof that is not a rewrite proof in R_{*} there is an equivalent smaller proof.

Consequence: For every proof there is an equivalent rewrite proof in R_{*}.

Knuth-Bendix Completion: Correctness Proof

We associate a cost $c\left(s_{i-1}, s_{i}\right)$ with every proof step as follows:
(1) If $s_{i-1} \leftrightarrow E_{\infty} s_{i}$, then $c\left(s_{i-1}, s_{i}\right)=\left(\left\{s_{i-1}, s_{i}\right\},-,-\right)$, where the first component is a multiset of terms and denotes an arbitrary (irrelevant) term.
(2) If $s_{i-1} \rightarrow R_{\infty} s_{i}$ using $I \rightarrow r$, then $c\left(s_{i-1}, s_{i}\right)=\left(\left\{s_{i-1}\right\}, l, s_{i}\right)$.
(3) If $s_{i-1} \leftarrow R_{\infty} s_{i}$ using $l \rightarrow r$, then $c\left(s_{i-1}, s_{i}\right)=\left(\left\{s_{i}\right\}, l, s_{i-1}\right)$.

Proof steps are compared using the lexicographic combination of the multiset extension of reduction ordering \succ, the encompassment ordering \sqsupset, and the reduction ordering \succ.

Knuth-Bendix Completion: Correctness Proof

The cost $c(P)$ of a proof P is the multiset of the costs of its proof steps.

The proof ordering \succ_{c} compares the costs of proofs using the multiset extension of the proof step ordering.

Lemma 3.43:
\succ_{C} is a well-founded ordering.

Knuth-Bendix Completion: Correctness Proof

Lemma 3.44:
Let P be a proof in $E_{\infty} \cup R_{\infty}$. If P is not a rewrite proof in R_{*}, then there exists an equivalent proof P^{\prime} in $E_{\infty} \cup R_{\infty}$ such that $P \succ_{C} P^{\prime}$.

Proof:

If P is not a rewrite proof in R_{*}, then it contains
(a) a proof step that is in E_{∞}, or
(b) a proof step that is in $R_{\infty} \backslash R_{*}$, or
(c) a subproof $s_{i-1} \leftarrow R_{*} s_{i} \rightarrow R_{*} s_{i+1}$ (peak).

We show that in all three cases the proof step or subproof can be replaced by a smaller subproof:

Knuth-Bendix Completion: Correctness Proof

Case (a): A proof step using an equation $s \dot{\sim} t$ is in E_{∞}.
This equation must be deleted during the run.
If $s \dot{\sim} t$ is deleted using Orient:

$$
\ldots s_{i-1} \leftrightarrow E_{\infty} s_{i} \ldots \quad \Longrightarrow \quad \ldots s_{i-1} \rightarrow R_{\infty} s_{i} \ldots
$$

If $s \dot{\approx} t$ is deleted using Delete:

$$
\ldots s_{i-1} \leftrightarrow E_{\infty} s_{i-1} \ldots \quad \Longrightarrow \quad \ldots s_{i-1} \ldots
$$

If $s \dot{\sim} t$ is deleted using Simplify-Eq:

$$
\ldots s_{i-1} \leftrightarrow E_{\infty} s_{i} \ldots \quad \Longrightarrow \quad \ldots s_{i-1} \rightarrow R_{\infty} s^{\prime} \leftrightarrow_{E_{\infty}} s_{i} \ldots
$$

Knuth-Bendix Completion: Correctness Proof

Case (b): A proof step using a rule $s \rightarrow t$ is in $R_{\infty} \backslash R_{*}$.
This rule must be deleted during the run.
If $s \rightarrow t$ is deleted using R-Simplify-Rule:

$$
\ldots s_{i-1} \rightarrow R_{\infty} s_{i} \ldots \quad \Longrightarrow \quad \ldots s_{i-1} \rightarrow R_{\infty} s^{\prime} \leftarrow R_{\infty} s_{i} \ldots
$$

If $s \rightarrow t$ is deleted using L-Simplify-Rule:

$$
\ldots s_{i-1} \rightarrow_{R_{\infty}} s_{i} \ldots \quad \Longrightarrow \quad \ldots s_{i-1} \rightarrow R_{\infty} s^{\prime} \leftrightarrow E_{\infty} s_{i} \ldots
$$

Knuth-Bendix Completion: Correctness Proof

Case (c): A subproof has the form $s_{i-1} \leftarrow R_{*} s_{i} \rightarrow R_{*} s_{i+1}$.
If there is no overlap or a non-critical overlap:

$$
\ldots s_{i-1} \leftarrow R_{*} s_{i} \rightarrow R_{*} s_{i+1} \ldots \Longrightarrow \ldots s_{i-1} \rightarrow_{R_{*}}^{*} s^{\prime} \leftarrow_{R_{*}}^{*} s_{i+1} \ldots
$$

If there is a critical pair that has been added using Deduce:

$$
\ldots s_{i-1} \leftarrow R_{*} s_{i} \rightarrow R_{*} s_{i+1} \ldots \quad \ldots \quad \ldots s_{i-1} \leftrightarrow E_{\infty} s_{i} \ldots
$$

In all cases, checking that the replacement subproof is smaller than the replaced subproof is routine.

Knuth-Bendix Completion: Correctness Proof

Theorem 3.45:
Let $E_{0}, R_{0} \vdash E_{1}, R_{1} \vdash E_{2}, R_{2} \vdash \ldots$ be a fair run and let R_{0} and E_{*} be empty. Then
(1) every proof in $E_{\infty} \cup R_{\infty}$ is equivalent to a rewrite proof in R_{*},
(2) R_{*} is equivalent to E_{0}, and
(3) R_{*} is convergent.

Knuth-Bendix Completion: Correctness Proof

Proof:

(1) By well-founded induction on \succ_{c} using the previous lemma.
(2) Clearly $\approx_{E_{\infty} \cup R_{\infty}}=\approx_{E_{0}}$.

Since $R_{*} \subseteq R_{\infty}$, we get $\approx_{R_{*}} \subseteq \approx_{E_{\infty} \cup R_{\infty}}$.
On the other hand, by (1), $\approx_{E_{\infty} \cup R_{\infty}} \subseteq \approx_{R_{*}}$.
(3) Since $\rightarrow_{R_{*}} \subseteq \succ, R_{*}$ is terminating.

By (1), R_{*} is confluent.

Knuth-Bendix Completion: Outlook

Classical completion:
Fails, if an equation can neither be oriented nor deleted.

Unfailing Completion:

Use an ordering \succ that is total on ground terms.
If an equation cannot be oriented, use it in both directions for rewriting (except if that would yield a larger term).
In other words, consider the relation $\leftrightarrow_{E} \cap \npreceq$.
Special case of superposition (see next chapter).

