2.4 Algorithmic Problems

Validity $(F): \models F$?
Satisfiability (F) : F satisfiable?
Entailment (F, G) : does F entail G ?
$\operatorname{Model}(A, F): \quad A \models F$?
Solve (A, F) : find an assignment β such that $A, \beta \models F$
Solve(F): find a substitution σ such that $\models F \sigma$
Abduce (F) : find G with "certain properties" such that G entails F

Gödel's Famous Theorems

1. For most signatures Σ, validity is undecidable for \sum-formulas. (One can easily encode Turing machines in most signatures.)
2. For each signature Σ, the set of valid Σ-formulas is recursively enumerable. (We will prove this by giving complete deduction systems.)
3. For $\Sigma=\Sigma_{P A}$ and $\mathbb{N}_{*}=(\mathbb{N}, 0, s,+, *)$, the theory $\operatorname{Th}\left(\mathbb{N}_{*}\right)$ is not recursively enumerable.

These complexity results motivate the study of subclasses of formulas (fragments) of first-order logic
Q : Can you think of any fragments of first-order logic for which validity is decidable?

Some Decidable Fragments

Some decidable fragments:

- Monadic class: no function symbols, all predicates unary; validity is NEXPTIME-complete.
- Variable-free formulas without equality: satisfiability is NP-complete. (why?)
- Variable-free Horn clauses (clauses with at most one positive atom): entailment is decidable in linear time.
- Finite model checking is decidable in time polynomial in the size of the structure and the formula.

2.5 Normal Forms and Skolemization

Study of normal forms motivated by

- reduction of logical concepts,
- efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent normal form transformations are intended to eliminate many of them.

Prenex Normal Form

Prenex formulas have the form

$$
Q_{1} x_{1} \ldots Q_{n} x_{n} F
$$

where F is quantifier-free and $Q_{i} \in\{\forall, \exists\}$;
we call $Q_{1} x_{1} \ldots Q_{n} x_{n}$ the quantifier prefix and F the matrix of the formula.

Prenex Normal Form

Computing prenex normal form by the rewrite relation \Rightarrow_{p} :

$$
\begin{aligned}
(F \leftrightarrow G) & \Rightarrow_{P} \quad(F \rightarrow G) \wedge(G \rightarrow F) \\
\neg Q \times F & \Rightarrow_{P} \quad \bar{Q} x \neg F \\
(Q \times F \rho G) & \Rightarrow_{P} \quad Q y(F[y / x] \rho G), y \text { fresh, } \rho \in\{\wedge, \vee\} \\
(Q \times F \rightarrow G) & \Rightarrow_{P} \quad \bar{Q} y(F[y / x] \rightarrow G), y \text { fresh } \\
(F \rho Q \times G) & \Rightarrow_{P} \quad Q y(F \rho G[y / x]), y \text { fresh, } \rho \in\{\wedge, \vee, \rightarrow\}
\end{aligned}
$$

Here \bar{Q} denotes the quantifier dual to Q, i.e., $\bar{\forall}=\exists$ and $\bar{\exists}=\forall$.

Skolemization

Intuition: replacement of $\exists y$ by a concrete choice function computing y from all the arguments y depends on.

Transformation \Rightarrow_{s} (to be applied outermost, not in subformulas):

$$
\forall x_{1}, \ldots, x_{n} \exists y F \quad \Rightarrow_{s} \quad \forall x_{1}, \ldots, x_{n} F\left[f\left(x_{1}, \ldots, x_{n}\right) / y\right]
$$

where f / n is a new function symbol (Skolem function).

Skolemization

Together: $F \stackrel{*}{*}_{P} \underbrace{G}_{\text {prenex }}{ }^{*} S \underbrace{H}_{\text {prenex, no } \exists}$

Theorem 2.9
Let F, G, and H as defined above and closed. Then
(i) F and G are equivalent.
(ii) $H \models G$ but the converse is not true in general.
(iii) G satisfiable (wrt. Σ-Alg) $\Leftrightarrow H$ satisfiable (wrt. Σ^{\prime}-Alg) where $\Sigma^{\prime}=(\Omega \cup S K F, \Pi)$, if $\Sigma=(\Omega, \Pi)$.

Clausal Normal Form (Conjunctive Normal Form)

$$
\begin{array}{rlll}
(F \leftrightarrow G) & \Rightarrow_{K} & & (F \rightarrow G) \wedge(G \rightarrow F) \\
(F \rightarrow G) & \Rightarrow_{K} & & (\neg F \vee G) \\
\neg(F \vee G) & \Rightarrow_{K} & (\neg F \wedge \neg G) \\
\neg(F \wedge G) & \Rightarrow_{K} & (\neg F \vee \neg G) \\
\neg \neg F & \Rightarrow_{K} & F \\
(F \wedge G) \vee H & \Rightarrow_{K} & (F \vee H) \wedge(G \vee H) \\
(F \wedge T) & \Rightarrow_{K} & F \\
(F \wedge \perp) & \Rightarrow_{K} & \perp \\
(F \vee \top) & \Rightarrow_{K} & \top \\
(F \vee \perp) & \Rightarrow_{K} & F
\end{array}
$$

These rules are to be applied modulo associativity and commutativity of \wedge and \vee. The first five rules, plus the rule $(\neg Q)$, compute the negation normal form (NNF) of a formula.

The Complete Picture

$$
\begin{array}{rlr}
F & \Rightarrow{ }^{*} P & Q_{1} y_{1} \ldots Q_{n} y_{n} G \\
& \Rightarrow{ }^{*} S & \text { (G quantifier-free) } \\
& \Rightarrow{ }^{*} K & \underbrace{\forall x_{1}, \ldots, x_{m} H}_{F^{\prime}} \quad(m \leq n, H \text { quantifier-free) } \\
& & \underbrace{\forall x_{1}, \ldots, x_{m}}_{\text {leave out }} \bigwedge_{i=1}^{k} \underbrace{\bigvee_{j=1}^{n_{i}} L_{i j}}_{\text {clauses } C_{i}}
\end{array}
$$

$N=\left\{C_{1}, \ldots, C_{k}\right\}$ is called the clausal (normal) form (CNF) of F. Note: the variables in the clauses are implicitly universally quantified.

The Complete Picture

Theorem 2.10
Let F be closed. Then $F^{\prime} \models F$.
(The converse is not true in general.)

Theorem 2.11
Let F be closed. Then F is satisfiable iff F^{\prime} is satisfiable iff N is satisfiable

Optimization

Here is lots of room for optimization since we only can preserve satisfiability anyway:

- size of the CNF exponential when done naively;
- want to preserve the original formula structure;
- want small arity of Skolem functions.

2.6 Herbrand Interpretations

From now an we shall consider PL without equality. Ω shall contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra \mathcal{A} such that

- $U_{\mathcal{A}}=T_{\Sigma}(=$ the set of ground terms over $\Sigma)$
- $f_{\mathcal{A}}:\left(s_{1}, \ldots, s_{n}\right) \mapsto f\left(s_{1}, \ldots, s_{n}\right), f / n \in \Omega$

$$
f_{\mathcal{A}}(\triangle, \ldots, \triangle)=
$$

Herbrand Interpretations

In other words, values are fixed to be ground terms and functions are fixed to be the term constructors. Only predicate symbols $p / m \in \Pi$ may be freely interpreted as relations $p_{\mathcal{A}} \subseteq \mathrm{T}_{\Sigma}^{m}$.

Proposition 2.12
Every set of ground atoms / uniquely determines a Herbrand interpretation \mathcal{A} via

$$
\left(s_{1}, \ldots, s_{n}\right) \in p_{\mathcal{A}} \quad: \Leftrightarrow \quad p\left(s_{1}, \ldots, s_{n}\right) \in I
$$

Thus we shall identify Herbrand interpretations (over Σ) with sets of Σ-ground atoms.

Herbrand Interpretations

Example: $\Sigma_{\text {Pres }}=(\{0 / 0, s / 1,+/ 2\}, \quad\{</ 2, \leq / 2\})$
\mathbb{N} as Herbrand interpretation over $\Sigma_{\text {Pres }}$:

$$
\begin{aligned}
I=\{ & 0 \leq 0,0 \leq s(0), 0 \leq s(s(0)), \ldots, \\
& 0+0 \leq 0,0+0 \leq s(0), \ldots, \\
& \ldots,(s(0)+0)+s(0) \leq s(0)+(s(0)+s(0))
\end{aligned}
$$

$$
s(0)+0<s(0)+0+0+s(0)
$$

$$
\ldots\}
$$

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F, if $I \models F$.

Theorem 2.13
Let N be a set of Σ-clauses.
N satisfiable $\Leftrightarrow N$ has a Herbrand model (over Σ) $\Leftrightarrow \quad G_{\Sigma}(N)$ has a Herbrand model (over Σ)
where $G_{\Sigma}(N)=\left\{C \sigma\right.$ ground clause $\left.\mid C \in N, \sigma: X \rightarrow T_{\Sigma}\right\}$ is the set of ground instances of N.
[The proof will be given below in the context of the completeness proof for resolution.]

Example of a G_{Σ}

For $\Sigma_{\text {Pres }}$ one obtains for

$$
C=(x<y) \vee(y \leq s(x))
$$

the following ground instances:

$$
\begin{aligned}
& (0<0) \vee(0 \leq s(0)) \\
& (s(0)<0) \vee(0 \leq s(s(0)))
\end{aligned}
$$

$$
(s(0)+s(0)<s(0)+0) \vee(s(0)+0 \leq s(s(0)+s(0)))
$$

. . .

2.7 Inference Systems and Proofs

Inference systems 「 (proof calculi) are sets of tuples

$$
\left(F_{1}, \ldots, F_{n}, F_{n+1}\right), n \geq 0
$$

called inferences or inference rules, and written
$\frac{\overbrace{F_{1} \ldots F_{n}}^{\text {premises }}}{\underbrace{F_{n+1}}_{\text {conclusion }}}$.

Clausal inference system: premises and conclusions are clauses. One also considers inference systems over other data structures (cf. below).

Proofs

A proof in Γ of a formula F from a a set of formulas N (called assumptions) is a sequence F_{1}, \ldots, F_{k} of formulas where
(i) $F_{k}=F$,
(ii) for all $1 \leq i \leq k$: $F_{i} \in N$, or else there exists an inference $\left(F_{i_{1}}, \ldots, F_{i_{n_{i}}}, F_{i}\right)$ in Γ, such that $0 \leq i_{j}<i$, for $1 \leq j \leq n_{i}$.

Soundness and Completeness

Provability \vdash_{Γ} of F from N in Γ :
$N \vdash_{\Gamma} F: \Leftrightarrow$ there exists a proof Γ of F from N.
Γ is called sound $: \Leftrightarrow$

$$
\frac{F_{1} \ldots F_{n}}{F} \in \Gamma \Rightarrow F_{1}, \ldots, F_{n} \models F
$$

Γ is called complete : \Leftrightarrow

$$
N \models F \Rightarrow N \vdash_{\ulcorner } F
$$

「 is called refutationally complete $: \Leftrightarrow$

$$
N \models \perp \Rightarrow N \vdash_{\Gamma \perp} \perp
$$

Soundness and Completeness

Proposition 2.14
(i) Let Γ be sound. Then $N \vdash_{\Gamma} F \Rightarrow N \models F$
(ii) $N \vdash_{\Gamma} F \Rightarrow$ there exist $F_{1}, \ldots, F_{n} \in N$ s.t. $F_{1}, \ldots, F_{n} \vdash_{\Gamma} F$ (resembles compactness).

Proofs as Trees

2.8 Propositional Resolution

We observe that propositional clauses and ground clauses are the same concept.

In this section we only deal with ground clauses.

The Resolution Calculus Res

Resolution inference rule:

$$
\frac{C \vee A \quad \neg A \vee D}{C \vee D}
$$

Terminology: $C \vee D$: resolvent; A : resolved atom
(Positive) factorisation inference rule:

$$
\frac{C \vee A \vee A}{C \vee A}
$$

The Resolution Calculus Res

These are schematic inference rules; for each substitution of the schematic variables C, D, and A, respectively, by ground clauses and ground atoms we obtain an inference rule.

As " V " is considered associative and commutative, we assume that A and $\neg A$ can occur anywhere in their respective clauses.

Sample Refutation

$$
\begin{array}{rlr}
\text { 1. } & \neg P(f(a)) \vee \neg P(f(a)) \vee Q(b) & \text { (given) } \\
\text { 2. } & P(f(a)) \vee Q(b) & \text { (given) } \\
\text { 3. } & \neg P(g(b, a)) \vee \neg Q(b) & \text { (given) } \\
\text { 4. } & P(g(b, a)) & \text { (given) } \\
\text { 5. } & \neg P(f(a)) \vee Q(b) \vee Q(b) & \text { (Res. 2. into 1.) } \\
\text { 6. } & \neg P(f(a)) \vee Q(b) & \text { (Fact. 5.) } \\
\text { 7. } & Q(b) \vee Q(b) & \text { (Res. 2. into 6.) } \\
\text { 8. } & Q(b) & \text { (Fact. 7.) } \\
\text { 9. } & \neg P(g(b, a)) & \text { (Res. 8. into 3.) } \\
10 . & \perp & \text { (Res. 4. into 9.) }
\end{array}
$$

Resolution with Implicit Factorization RIF

$$
\frac{C \vee A \vee \ldots \vee A \quad \neg A \vee D}{C \vee D}
$$

1.	$\neg P(f(a)) \vee \neg P(f(a)) \vee Q(b)$	(given)
2.	$P(f(a)) \vee Q(b)$	(given)
3.	$\neg P(g(b, a)) \vee \neg Q(b)$	(given)
4.	$P(g(b, a))$	(given)
5.	$\neg P(f(a)) \vee Q(b) \vee Q(b)$	(Res. 2. into 1.)
6.	$Q(b) \vee Q(b) \vee Q(b)$	(Res. 2. into 5.)
7.	$\neg P(g(b, a))$	(Res. 6. into 3.)
8.	\perp	(Res. 4. into 7.)

Soundness of Resolution

Theorem 2.15
Propositional resolution is sound.
Proof:
Let $I \in \Sigma$-Alg. To be shown:
(i) for resolution: $I \models C \vee A, I \models D \vee \neg A \Rightarrow I \models C \vee D$
(ii) for factorization: $I \models C \vee A \vee A \Rightarrow I \models C \vee A$
ad (i): Assume premises are valid in I. Two cases need to be considered: (a) A is valid, or (b) $\neg A$ is valid.
a) $I \models A \Rightarrow I \models D \Rightarrow I \models C \vee D$
b) $I \models \neg A \Rightarrow I \models C \Rightarrow I \models C \vee D$
ad (ii): even simpler.

Soundness of Resolution

Note: In propositional logic (ground clauses) we have:

1. $I \models L_{1} \vee \ldots \vee L_{n} \Leftrightarrow$ there exists $i: I \models L_{i}$.
2. $I \models A$ or $I \models \neg A$.
