Literature: Franz Baader and Tobias Nipkow: *Term rewriting and all that*, Cambridge Univ. Press, 1998, Chapter 2.

To show the refutational completeness of resolution, we will make use of the concept of well-founded orderings.

A (strict) partial ordering \succ on a set M is a transitive and irreflexive binary relation on M.

An $a \in M$ is called minimal, if there is no b in M such that $a \succ b$.

An $a \in M$ is called smallest, if $b \succ a$ for all $b \in M$ different from a.

Notation

 \prec for the inverse relation \succ^{-1}

 \succeq for the reflexive closure ($\succ \cup =)$ of \succ

A (strict) partial ordering \succ is called well-founded (Noetherian), if there is no infinite decreasing chain $a_0 \succ a_1 \succ a_2 \succ \ldots$ with $a_i \in M$.

Natural numbers. $(\mathbb{N}, >)$

Lexicographic orderings. Let $(M_1, \succ_1), (M_2, \succ_2)$ be well-founded orderings. Then let their lexicographic combination

$$\succ = (\succ_1, \succ_2)_{\mathit{lex}}$$

on $M_1 \times M_2$ be defined as

 $(a_1, a_2) \succ (b_1, b_2) \iff a_1 \succ_1 b_1$, or else $a_1 = b_1 \& a_2 \succ_2 b_2$

(analogously for more than two orderings)

This again yields a well-founded ordering (proof below).

Length-based ordering on words. For alphabets $\boldsymbol{\Sigma}$ with a

well-founded ordering $>_{\Sigma}$, the relation \succ , defined as

$$w \succ w'$$
 := α) $|w| > |w'|$ or
 β) $|w| = |w'|$ and $w >_{\Sigma,lex} w'$,

is a well-founded ordering on Σ^* (proof below).

Counterexamples:

 $(\mathbb{Z}, >);$ $(\mathbb{N}, <);$ the lexicographic ordering on Σ^*

Basic Properties of Well-Founded Orderings

Lemma 2.16: (M, \succ) is well-founded if and only if every $\emptyset \subset M' \subseteq M$ has a minimal element.

Basic Properties of Well-Founded Orderings

Lemma 2.17: (M_i, \succ_i) is well-founded for i = 1, 2 if and only if $(M_1 \times M_2, \succ)$ with $\succ = (\succ_1, \succ_2)_{lex}$ is well-founded. Proof: (i) " \Rightarrow ": Suppose $(M_1 \times M_2, \succ)$ is not well-founded. Then there is an infinite sequence $(a_0, b_0) \succ (a_1, b_1) \succ (a_2, b_2) \succ \dots$. Let $A = \{a_i \mid i \ge 0\} \subseteq M_1$. Since (M_1, \succ_1) is well-founded, A has a minimal element a_n . But then $B = \{b_i \mid i \ge n\} \subseteq M_2$

can not have a minimal element, contradicting the well-foundedness of (M_2, \succ_2) .

(ii) " \Leftarrow ": obvious.

Theorem 2.18 (Noetherian Induction):

Let (M, \succ) be a well-founded ordering, let Q be a property of elements of M.

If for all $m \in M$ the implication

if Q(m'), for all $m' \in M$ such that $m \succ m'$,^a then Q(m).^b

is satisfied, then the property Q(m) holds for all $m \in M$.

^ainduction hypothesis ^binduction step

Noetherian Induction

Proof:

Let $X = \{m \in M \mid Q(m) \text{ false}\}$. Suppose, $X \neq \emptyset$. Since (M, \succ) is well-founded, X has a minimal element m_1 . Hence for all $m' \in M$ with $m' \prec m_1$ the property Q(m') holds. On the other hand, the implication which is presupposed for this theorem holds in particular also for m_1 , hence $Q(m_1)$ must be true so that m_1 can not be in X. Contradiction.

Let *M* be a set. A multi-set *S* over *M* is a mapping $S : M \to \mathbb{N}$. Hereby S(m) specifies the number of occurrences of elements *m* of the base set *M* within the multi-set *S*.

We say that m is an element of S, if S(m) > 0.

We use set notation (\in , \subset , \subseteq , \cup , \cap , etc.) with analogous meaning also for multi-sets, e.g.,

$$(S_1 \cup S_2)(m) = S_1(m) + S_2(m)$$

 $(S_1 \cap S_2)(m) = \min\{S_1(m), S_2(m)\}$

A multi-set is called finite, if

$$|\{m\in M|\; s(m)>0\}|<\infty$$
 ,

for each m in M.

From now on we only consider finite multi-sets.

Example. $S = \{a, a, a, b, b\}$ is a multi-set over $\{a, b, c\}$, where S(a) = 3, S(b) = 2, S(c) = 0.

Let (M, \succ) be a partial ordering. The multi-set extension of \succ to multi-sets over M is defined by

$$egin{aligned} S_1 \succ_{\mathsf{mul}} S_2 &: \Leftrightarrow S_1
eq S_2 \ & ext{and } orall m \in M : [S_2(m) > S_1(m) \ & ext{and } orall m' \in M : (m' \succ m ext{ and } S_1(m') > S_2(m'))] \end{aligned}$$

Theorem 2.19:

a) \succ_{mul} is a partial ordering. b) \succ well-founded $\Rightarrow \succ_{mul}$ well-founded c) \succ total $\Rightarrow \succ_{mul}$ total

Proof:

see Baader and Nipkow, page 22-24.