
2.9 Well-Founded Orderings

Literature: Franz Baader and Tobias Nipkow: Term rewriting

and all that, Cambridge Univ. Press, 1998, Chapter 2.

To show the refutational completeness of resolution, we will

make use of the concept of well-founded orderings.
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Partial Orderings

A (strict) partial ordering � on a set M is a transitive and

irreflexive binary relation on M.

An a ∈ M is called minimal, if there is no b in M such that

a � b.

An a ∈ M is called smallest, if b � a for all b ∈ M different

from a.

Notation

≺ for the inverse relation �−1

� for the reflexive closure (� ∪ =) of �
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Well-Foundedness

A (strict) partial ordering � is called well-founded (Noetherian),

if there is no infinite decreasing chain a0 � a1 � a2 � . . . with

ai ∈ M.
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Well-Founded Orderings: Examples

Natural numbers. (N,>)

Lexicographic orderings. Let (M1,�1), (M2,�2) be well-

founded orderings. Then let their lexicographic combination

� = (�1,�2)lex

on M1 × M2 be defined as

(a1, a2) � (b1, b2) :⇔ a1 �1 b1, or else a1 = b1 & a2 �2 b2

(analogously for more than two orderings)

This again yields a well-founded ordering (proof below).
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Well-Founded Orderings: Examples

Length-based ordering on words. For alphabets Σ with a

well-founded ordering >Σ, the relation �, defined as

w � w ′ := α) |w | > |w ′| or

β) |w | = |w ′| and w >Σ,lex w ′,

is a well-founded ordering on Σ∗ (proof below).

Counterexamples:

(Z,>);

(N,<);

the lexicographic ordering on Σ∗
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Basic Properties of Well-Founded Orderings

Lemma 2.16:

(M,�) is well-founded if and only if every ∅ ⊂ M ′ ⊆ M has a

minimal element.
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Basic Properties of Well-Founded Orderings

Lemma 2.17:

(Mi ,�i ) is well-founded for i = 1, 2 if and only if

(M1 × M2, �) with � = (�1,�2)lex is well-founded.

Proof:

(i) “⇒”: Suppose (M1 × M2, �) is not well-founded. Then

there is an infinite sequence (a0, b0) � (a1, b1) � (a2, b2) � . . . .

Let A = {ai | i ≥ 0} ⊆ M1. Since (M1,�1) is well-founded,

A has a minimal element an. But then B = {bi | i ≥ n} ⊆ M2

can not have a minimal element, contradicting the well-

foundedness of (M2,�2).

(ii) “⇐”: obvious.
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Noetherian Induction

Theorem 2.18 (Noetherian Induction):

Let (M,�) be a well-founded ordering, let Q be a property of

elements of M.

If for all m ∈ M the implication

if Q(m′), for all m′ ∈ M such that m � m′,a

then Q(m).b

is satisfied, then the property Q(m) holds for all m ∈ M.

ainduction hypothesis
binduction step
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Noetherian Induction

Proof:

Let X = {m ∈ M | Q(m) false}. Suppose, X 6= ∅. Since (M,�)

is well-founded, X has a minimal element m1. Hence for all

m′ ∈ M with m′ ≺ m1 the property Q(m′) holds. On the other

hand, the implication which is presupposed for this theorem

holds in particular also for m1, hence Q(m1) must be true so

that m1 can not be in X . Contradiction.
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Multi-Sets

Let M be a set. A multi-set S over M is a mapping S : M → N.

Hereby S(m) specifies the number of occurrences of elements m

of the base set M within the multi-set S .

We say that m is an element of S , if S(m) > 0.

We use set notation (∈, ⊂, ⊆, ∪, ∩, etc.) with analogous

meaning also for multi-sets, e.g.,

(S1 ∪ S2)(m) = S1(m) + S2(m)

(S1 ∩ S2)(m) = min{S1(m),S2(m)}
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Multi-Sets

A multi-set is called finite, if

|{m ∈ M| s(m) > 0}| < ∞,

for each m in M.

From now on we only consider finite multi-sets.

Example. S = {a, a, a, b, b} is a multi-set over {a, b, c}, where

S(a) = 3, S(b) = 2, S(c) = 0.

11



Multi-Set Orderings

Let (M,�) be a partial ordering. The multi-set extension of �

to multi-sets over M is defined by

S1 �mul S2 :⇔ S1 6= S2

and ∀m ∈ M : [S2(m) > S1(m)

⇒ ∃m′ ∈ M : (m′ � m and S1(m
′) > S2(m

′))]

Theorem 2.19:

a) �mul is a partial ordering.

b) � well-founded ⇒ �mul well-founded

c) � total ⇒ �mul total

Proof:

see Baader and Nipkow, page 22–24.
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