2.9 Well-Founded Orderings

Literature: Franz Baader and Tobias Nipkow: Term rewriting
and all that, Cambridge Univ. Press, 1998, Chapter 2.

To show the refutational completeness of resolution, we will
make use of the concept of well-founded orderings.



Partial Orderings

A (strict) partial ordering > on a set M is a transitive and

irreflexive binary relation on M.

An a € M is called minimal, if there is no b in M such that
a~ b.

An a € M is called smallest, if b = a for all b € M different
from a.

Notation
< for the inverse relation >="1
~ for the reflexive closure (>~ U =) of >~



Well-Foundedness

A (strict) partial ordering > is called well-founded (Noetherian),

if there is no infinite decreasing chain ag > a; > a» > ... with
a; € M.



Well-Founded Orderings: Examples

Natural numbers. (N, >)

Lexicographic orderings. Let (My, >1), (M5, =2) be well-

founded orderings. Then let their lexicographic combination

— = (>1, >2)/ex

on M; x M» be defined as
(a1,a2) > (b1, b2) &= a; =1 by, orelse ay = by & ay > by
(analogously for more than two orderings)

This again yields a well-founded ordering (proof below).



Well-Founded Orderings: Examples

Length-based ordering on words. For alphabets 2 with a
well-founded ordering >y, the relation >, defined as
w=w' = a)|w|>|w|or
B) lw| = [w'| and w > jex W',
is a well-founded ordering on ¥* (proof below).

Counterexamples:
(Z,>);
(N, <);

the lexicographic ordering on 2™



Basic Properties of Well-Founded Orderings

Lemma 2.16:
(M, =) is well-founded if and only if every ) C M’ C M has a

minimal element.



Basic Properties of Well-Founded Orderings

Lemma 2.17:
(M;, =) is well-founded for i = 1,2 if and only if
(My x My, »=) with = = (1, >2)jex is well-founded.

Proof:
(i) "=": Suppose (M; x M,, ) is not well-founded. Then

there is an infinite sequence (ag, bg) >~ (a1, b1) > (a2, b2) = ....
Llet A={a; | i > 0} C M;. Since (M, >1) is well-founded,
A has a minimal element a,. But then B = {b; | i > n} C M,

can not have a minimal element, contradicting the well-
foundedness of (M>, »5).

(ii) “«<": obvious.



Noetherian Induction

Theorem 2.18 (Noetherian Induction):

Let (M, >) be a well-founded ordering, let Q be a property of
elements of M.

If for all m € M the implication

if Q(m’), for all m" € M such that m >~ m’?
then Q(m)."

is satisfied, then the property Q(m) holds for all m € M.

4induction hypothesis
binduction step



Noetherian Induction

Proof:

Let X = {m € M | Q(m) false}. Suppose, X # (). Since (M, )
Is well-founded, X has a minimal element m;. Hence for all
m’ € M with m" < my the property Q(m’) holds. On the other
hand, the implication which is presupposed for this theorem
holds in particular also for my, hence Q(m;) must be true so

that my can not be in X. Contradiction.



Multi-Sets

Let M be a set. A multi-set S over M is a mapping S : M — N.
Hereby S(m) specifies the number of occurrences of elements m
of the base set M within the multi-set S.

We say that m is an element of S, if S(m) > 0.
We use set notation (€, C, C, U, N, etc.) with analogous
meaning also for multi-sets, e.g.,

(51 U 52)(m) — 51(m) -+ Sz(m)

(51 M 52)(m) — min{Sl(m), Sz(m)}
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Multi-Sets

A multi-set i1s called finite, if
[{m € M| s(m) > 0}| < oo,
for each min M.

From now on we only consider finite multi-sets.

Example. S ={a, a, a, b, b} is a multi-set over {a, b, c}, where

S(a) =3, S(b) =2, S(c) = 0.
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Multi-Set Orderings

Let (M, ) be a partial ordering. The multi-set extension of >
to multi-sets over M is defined by

51 ~ mul 52 e 51 7é 52
and Vm € M : [Sy(m) > S1(m)
= dm'e M :(m" = mand S;(m’") > S(m"))]

Theorem 2.19:
a) >mul IS a partial ordering.

b) > well-founded = >, well-founded
c) >~ total = >, total

Proof:
see Baader and Nipkow, page 22-24.
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