2.10 Refutational Completeness of Resolution

How to show refutational completeness of propositional
resolution:

e We have to show: N =1 = Nlges L,
or equivalently: If N Hres L, then N has a model.

e |dea: Suppose that we have computed sufficiently many
inferences (and not derived 1).

e Now order the clauses in N according to some appropriate
ordering, inspect the clauses in ascending order, and
construct a series of Herbrand interpretations.

e The limit interpretation can be shown to be a model of \.



Clause Orderings

1. We assume that > is any fixed ordering on ground atoms
that is total and well-founded. (There exist many such
orderings, e.g., the lenght-based ordering on atoms when
these are viewed as words over a suitable alphabet.)

2. Extend > to an ordering >, on ground literals:
[—|]A — [—I]B if A= B
—-A ~ A

3. Extend >, to an ordering > on ground clauses:
>c = (> )mul, the multi-set extension of .

Notation: = also for =; and >.



Example

Suppose As = Az = Az = As = A1 = Ap. Then:

Ay V Ap
A1V A
—A; V A
A1 VALV Az
—A; V 2ALV Az
—As V As

A A A A A



Properties of the Clause Ordering

Proposition 2.20:

1. The orderings on literals and clauses are total and well-
founded.

2. Let C and D be clauses with A = max(C), B = max(D),
where max(C) denotes the maximal atom in C.

(i) If A> B then C > D.

(ii) If A= B, A occurs negatively in C but only positively
in D, then C = D.



Stratified Structure of Clause Sets

Let A > B. Clause sets are then stratified in this form:

..V B
...VBVB
-BV...

all D where max(D) = B

.. VA
A JyvAVA
-AV...

all C where max(C) = A




Closure of Clause Sets under Res

Res(N) = {C | C is concl. of a rule in Res w/ premises in N}
Res®(N) = N
Res"™ 1 (N) = Res(Res"(N)) U Res"(N), for n > 0
Res*(N) = U,>q Res"(N)

N is called saturated (wrt. resolution), if Res(N) C N.

Proposition 2.21:
(i) Res*(N) is saturated.

(i) Res is refutationally complete, iff for each set N of ground
clauses:
N=1l & 1 € Res*(N)



Construction of Interpretations

Given: set N of ground clauses, atom ordering .
Wanted: Herbrand interpretation / such that

e “many’ clauses from N are valid in /;
e | =N, if N issaturated and 1. ¢ N.

Construction according to >, starting with the minimal clause.



Example

Let As = Az = A3 = Ax = A1 > Ap (max. literals in red)

clauses C Ic Ac Remarks
1 —1Ao 0 0 true in /¢
2 Ao V A 0 {A1} | A1 maximal
3 AV A {A1} 0 true in Ic
4 —A1 V A {A1} {A2} | A2 maximal
5 | A1 VALV A3V A {A1, A2} {As} | Az maximal
6 —A1 V—AsV Az | {A1, Az, Ag} 0 Az not maximal,;
min. counter-ex.
7 —A1V As | {A1, A2, As} | {As})

| = {A1, Az, A4, As} is not a model of the clause set
= there exists a counterexample.




Main ldeas of the Construction

e Clauses are considered in the order given by <.

e When considering C, one already has a partial interpretation
Ic (initially Ic = () available.

e If C is true in the partial interpretation /-, nothing is done.

(Ac =0).

o If C is false, one would like to change /- such that C
becomes true.



Main ldeas of the Construction

e Changes should, however, be monotone. One never deletes
anything from /- and the truth value of clauses smaller than
C should be maintained the way it was in /.

e Hence, one chooses A = {A} if, and only if, C is false
in Ic, if A occurs positively in C (adding A will make C
become true) and if this occurrence in C is strictly maximal
in the ordering on literals (changing the truth value of A
has no effect on smaller clauses).
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Resolution Reduces Counterexamples

—A1 VALV A3V A

—A1 V Az V A3

—A; VA1 VA3V A3V A

Construction of | for the extended clause set:

clauses C Ic Ac Remarks
-Ao 0 0
Ao V Ay 0 {A1}
A1V A {Al} )
—A1 V A {A1} {Ax}
—A1 VA1 VA3V A3V A {Al, A2} ) A3z occurs twice
minimal counter-ex.
—A1 VAsV A3V A {Al, A2} {A4}
—A1 V—-ALV Az | {A1, A, Ay} 0 counterexample
—A1 VAs | {A1, A2, A} | {As}

The same /, but smaller counterexample, hence some progress was made.
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Factorization Reduces Counterexamples

—A; VA1 VA3V A3V A

—A1 VA1 VA3V A

Construction of | for the extended clause set:

clauses C Ic Ac Remarks
-Agp 0 0
Ag V A 0 (A1}
A1V As {Al} 0
—A1 V A {A1} {Ax}
—A1 VA1 VA3V A {Al, A2} {A3}
—A1 VoA VA3V A3V Ay | {A1, Az, A3} ] true in I
—A1 VALV A3V Ay | {A1, A, A3} )
—A1 V —As V A3 {Al, As, A3} ) true in /¢
—A3 V As {Al, Ao, A3} {A5}

The resulting | = {A1, A2, A3, A5} is a model of the clause set.
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Construction of Candidate Models Formally

Let N, > be given. We define sets I and A for all ground
clauses C over the given signature inductively over »>:

lc = UC»D Ap

[ {A}, fCEN, C=CVAA=C IclEC
AC — <

\ 0. otherwise

We say that C produces A, if A¢c = {A}.

The candidate model for N (wrt. >) is given as I = |J- Ac.

We also simply write Iy, or I, for I,\T If > is either irrelevant or
known from the context.
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Structure of N, >~

Let A > B; producing a new atom does not affect smaller clauses.

;&ssibly productive

y
....\/B

::.0..\/8 B
“BV..|

y
. VA

) Ay A
“—.lA\/...

all D with max(D) = B

all C with max(C)=A




Some Properties of the Construction

Proposition 2.22:
(i) C=-AV (' = no D * C produces A.
(i) C productive = Ic UA¢ = C.

(iii) Let D" = D > C. Then
Ip UAp ‘: C = Ip: UAps ‘: C and Iy ‘: C.
If, in addition, C € N or max(D) > max(C):

IDUAD\#CilD/UAD/\;&Cand /N\#C
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Some Properties of the Construction

(iv) Let D" = D > C. Then

Ip ‘ZC:>/D/ \:Cand In ‘: C.

If, in addition, C € N or max(D) = max(C):

ID\#Cilpz\#Canle\;&C.

(v) D= CV A produces A = Iy = C.
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Model Existence Theorem

Theorem 2.23 (Bachmair & Ganzinger):
Let > be a clause ordering, let N be saturated wrt. Res, and

suppose that L ¢ N. Then I = N.

Corollary 2.24-
Let N be saturated wrt. Res. Then N =1 & | € N.
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Model Existence Theorem

Proof of Theorem 2.23:

Suppose L & N, but I = N. Let C € N minimal (in >) such
that I,C 7= C. Since C is false in Iy, C is not productive. As
C # L there exists a maximal atom A in C.

Case 1: C = —-AV (' (i.e., the maximal atom occurs negatively)
= Iy EAand Iy = C’

= some D = D’V A € N produces A. As D,VAD,\/CTAVC', we
infer that D’V C" € N, and C = D’V C" and Iy = D" v C’

= contradicts minimality of C.

Case 2: C = C'VAV A. Then C’CV,CXA yields a smaller

counterexample C’ V A € N. = contradicts minimality of C.
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Compactness of Propositional Logic

Theorem 2.25 (Compactness):
Let \V be a set of propositional formulas. Then N is unsatisfiable,
if and only if some finite subset M C N is unsatisfiable.

Proof:
"< trivial.

“=": Let N be unsatisfiable.

= Res*(N) unsatisfiable

= 1 € Res*(N) by refutational completeness of resolution
= dn >0: L € Res"(N)

= 1 has a finite resolution proof P;

choose M as the set of assumptions in P.
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