
2.11 General Resolution

Propositional resolution:

refutationally complete,

in its most naive version:

not guaranteed to terminate for satisfiable sets of clauses,

(improved versions do terminate, however)

clearly inferior to the DPLL procedure

(even with various improvements).

But: in contrast to the DPLL procedure, resolution can be easily

extended to non-ground clauses.
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General Resolution through Instantiation

Idea: instantiate clauses appropriately:

PSfrag replacements

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(f (a, b)) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, b))

¬Q(f (a, b)) Q(f (a, b))

⊥

[a/z ′, f (a, b)/z] [a/y ] [b/y ] [a/x ′, b/x ]
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General Resolution through Instantiation

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals

(so that inferences become possible).

Idea:

Do not instantiate more than necessary to get complementary

literals.
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General Resolution through Instantiation

Idea: do not instantiate more than necessary:

PSfrag replacements

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(z) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, x))

¬Q(z) Q(f (a, x))

¬Q(f (a, x)) Q(f (a, x))

⊥

[a/z ′] [a/y ] [b/y ] [a/x ′]

[f (a, x)/z]
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Lifting Principle

Problem: Make saturation of infinite sets of clauses as they

arise from taking the (ground) instances of finitely many

general clauses (with variables) effective and efficient.

Idea (Robinson 65):

• Resolution for general clauses:

• Equality of ground atoms is generalized to unifiability of

general atoms;

• Only compute most general (minimal) unifiers.
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Lifting Principle

Significance: The advantage of the method in (Robinson 65)

compared with (Gilmore 60) is that unification enumerates

only those instances of clauses that participate in an

inference. Moreover, clauses are not right away instantiated

into ground clauses. Rather they are instantiated only as

far as required for an inference. Inferences with non-ground

clauses in general represent infinite sets of ground inferences

which are computed simultaneously in a single step.
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Resolution for General Clauses

General binary resolution Res:

C ∨ A D ∨ ¬B

(C ∨ D)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]

General resolution RIF with implicit factorization:

C ∨ A1 ∨ . . . ∨ An D ∨ ¬B

(C ∨ D)σ
if σ = mgu(A1, . . . ,An,B)

[RIF]
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Resolution for General Clauses

For inferences with more than one premise, we assume that the

variables in the premises are (bijectively) renamed such that

they become different to any variable in the other premises.

We do not formalize this. Which names one uses for variables is

otherwise irrelevant.
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Unification

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si , ti terms or atoms) a multi-set

of equality problems. A substitution σ is called a unifier of E if

siσ = tiσ for all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.
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Unification

A substitution σ is called more general than a substitution τ ,

denoted by σ ≤ τ , if there exists a substitution ρ such that

ρ ◦ σ = τ , where (ρ ◦ σ)(x) := (xσ)ρ is the composition of σ

and ρ as mappings.

(Note that ρ ◦ σ has a finite domain as required for a

substitution.)

If a unifier of E is more general than any other unifier of E , then

we speak of a most general unifier of E , denoted by mgu(E ).
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Unification

Proposition 2.26:

(i) ≤ is a quasi-ordering on substitutions, and ◦ is associative.

(ii) If σ ≤ τ and τ ≤ σ (we write σ ∼ τ in this case), then xσ

and xτ are equal up to (bijective) variable renaming, for

any x in X .

A substitution σ is called idempotent, if σ ◦ σ = σ.

Proposition 2.27:

σ is idempotent iff dom(σ) ∩ codom(σ) = ∅.
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Unification after Martelli/Montanari

t
.
= t,E ⇒MM E

f (s1, . . . , sn)
.
= f (t1, . . . , tn),E ⇒MM s1

.
= t1, . . . , sn

.
= tn,E

f (. . .)
.
= g(. . .),E ⇒MM ⊥

x
.
= t,E ⇒MM x

.
= t,E [t/x ]

if x ∈ var(E ), x 6∈ var(t)

x
.
= t,E ⇒MM ⊥

if x 6= t, x ∈ var(t)

t
.
= x ,E ⇒MM x

.
= t,E

if t 6∈ X
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MM: Main Properties

If E = x1
.
= u1, . . . , xk

.
= uk , with xi pairwise distinct,

xi 6∈ var(uj ), then E is called an (equational problem in)

solved form representing the solution σE = [u1/x1, . . . , uk/xk ].

Proposition 2.28:

If E is a solved form then σE is am mgu of E .
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MM: Main Properties

Theorem 2.29:

1. If E ⇒MM E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗

⇒MM ⊥ then E is not unifiable.

3. If E
∗

⇒MM E ′ with E ′ in solved form, then σE ′ is an mgu of E .

Proof:

(1) We have to show this for each of the rules. Let’s treat the

case for the 4th rule here. Suppose σ is a unifier of x
.
= t, that

is, xσ = tσ. Thus, σ ◦ [t/x ] = σ[x 7→ tσ] = σ[x 7→ xσ] = σ.

Therefore, for any equation u
.
= v in E : uσ = vσ, iff

u[t/x ]σ = v [t/x ]σ. (2) and (3) follow by induction from (1)

using Proposition 2.28.
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Main Unification Theorem

Theorem 2.30:

E is unifiable if and only if there is a most general unifier σ of E ,

such that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E ).

Problem: exponential growth of terms possible
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Main Unification Theorem

Proof of Theorem 2.30:

• ⇒MM is Noetherian. A suitable lexicographic ordering on

the multisets E (with ⊥ minimal) shows this. Compare in

this order:

1. the number of defined variables (d.h. variables x in

equations x
.
= t with x 6∈ var(t)), which also occur

outside their definition elsewhere in E ;

2. the multi-set ordering induced by (i) the size (number of

symbols) in an equation; (ii) if sizes are equal consider

x
.
= t smaller than t

.
= x , if t 6∈ X .
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Main Unification Theorem

• A system E that is irreducible wrt. ⇒MM is either ⊥ or a

solved form.

• Therefore, reducing any E by MM will end (no matter

what reduction strategy we apply) in an irreducible E ′

having the same unifiers as E , and we can read off the

mgu (or non-unifiability) of E from E ′ (Theorem 2.29,

Proposition 2.28).

• σ is idempotent because of the substitution in rule 4.

dom(σ) ∪ codom(σ) ⊆ var(E ), as no new variables are

generated.
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Lifting Lemma

Lemma 2.31:

Let C and D be variable-disjoint clauses. If

C




y

σ

Cσ

D




y

ρ

Dρ

C ′
[propositional resolution]

then there exists a substitution τ such that

C D

C ′′





y

τ

C ′ = C ′′
τ

[general resolution]
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Lifting Lemma

An analogous lifting lemma holds for factorization.
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Saturation of Sets of General Clauses

Corollary 2.32:

Let N be a set of general clauses saturated under Res, i.e.,

Res(N) ⊆ N. Then also GΣ(N) is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).

20



Saturation of Sets of General Clauses

Proof:

W.l.o.g. we may assume that clauses in N are pairwise variable-

disjoint. (Otherwise make them disjoint, and this renaming

process changes neither Res(N) nor GΣ(N).)

Let C ′ ∈ Res(GΣ(N)), meaning (i) there exist resolvable ground

instances Cσ and Dρ of N with resolvent C ′, or else (ii) C ′ is a

factor of a ground instance Cσ of C .

Case (i): By the Lifting Lemma, C and D are resolvable with a

resolvent C ′′ with C ′′
τ = C ′, for a suitable substitution τ . As

C ′′ ∈ N by assumption, we obtain that C ′ ∈ GΣ(N).

Case (ii): Similar.
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Herbrand’s Theorem

Lemma 2.33:

Let N be a set of Σ-clauses, let A be an interpretation.

Then A |= N implies A |= GΣ(N).

Lemma 2.34:

Let N be a set of Σ-clauses, let A be a Herbrand interpretation.

Then A |= GΣ(N) implies A |= N.
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Herbrand’s Theorem

Theorem 2.35 (Herbrand):

A set N of Σ-clauses is satisfiable if and only if it has a Herbrand

model over Σ.

Proof:

The “⇐” part is trivial. For the “⇒” part let N 6|= ⊥.

N 6|= ⊥ ⇒ ⊥ 6∈ Res∗(N) (resolution is sound)

⇒ ⊥ 6∈ GΣ(Res∗(N))

⇒ IGΣ(Res∗(N)) |= GΣ(Res∗(N)) (Thm. 2.23; Cor. 2.32)

⇒ IGΣ(Res∗(N)) |= Res∗(N) (Lemma 2.34)

⇒ IGΣ(Res∗(N)) |= N (N ⊆ Res∗(N))
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The Theorem of Löwenheim-Skolem

Theorem 2.36 (Löwenheim–Skolem):

Let Σ be a countable signature and let S be a set of closed

Σ-formulas. Then S is satisfiable iff S has a model over a

countable universe.

Proof:

If both X and Σ are countable, then S can be at most countably

infinite. Now generate, maintaining satisfiability, a set N of

clauses from S . This extends Σ by at most countably many

new Skolem functions to Σ′. As Σ′ is countable, so is TΣ′ ,

the universe of Herbrand-interpretations over Σ′. Now apply

Theorem 2.35.

24



Refutational Completeness of General Resolution

Theorem 2.37:

Let N be a set of general clauses where Res(N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N.

Proof:

Let Res(N) ⊆ N. By Corollary 2.32: Res(GΣ(N)) ⊆ GΣ(N)

N |= ⊥ ⇔ GΣ(N) |= ⊥ (Lemma 2.33/2.34; Theorem 2.35)

⇔ ⊥ ∈ GΣ(N) (propositional resolution sound and complete)

⇔ ⊥ ∈ N
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Compactness of Predicate Logic

Theorem 2.38 (Compactness Theorem for First-Order Logic):

Let Φ be a set of first-order formulas.

Φ is unsatisfiable ⇔ some finite subset Ψ ⊆ Φ is unsatisfiable.

Proof:

The “⇐” part is trivial. For the “⇒” part let Φ be unsatisfiable

and let N be the set of clauses obtained by Skolemization and

CNF transformation of the formulas in Φ. Clearly Res∗(N) is

unsatisfiable. By Theorem 2.37, ⊥ ∈ Res∗(N), and therefore

⊥ ∈ Resn(N) for some n ∈ N. Consequently, ⊥ has a finite

resolution proof B of depth ≤ n. Choose Ψ as the subset of

formulas in Φ such that the corresponding clauses contain the

assumptions (leaves) of B.
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