
2.12 Ordered Resolution with Selection

Motivation: Search space for Res very large.

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 2.23)

one only needs to resolve and factor maximal atoms

⇒ if the calculus is restricted to inferences involving

maximal atoms, the proof remains correct

⇒ order restrictions

2. In the proof, it does not really matter with which negative

literal an inference is performed

⇒ choose a negative literal don’t-care-nondeterministically

⇒ selection

1

Selection Functions

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A

2

Resolution Calculus Res
�

S

In the completeness proof, we talk about (strictly) maximal

literals of ground clauses.

In the non-ground calculus, we have to consider those literals

that correspond to (strictly) maximal literals of ground instances:

Let � be a total and well-founded ordering on ground atoms.

A literal L is called [strictly] maximal in a clause C if and only

if there exists a ground substitution σ such that for all L′ in C :

Lσ � L′
σ [Lσ � L′

σ].

3

Resolution Calculus Res
�

S

Let � be an atom ordering and S a selection function.

C ∨ A ¬B ∨ D

(C ∨ D)σ
[ordered resolution with selection]

if σ = mgu(A,B) and

(i) Aσ strictly maximal wrt. Cσ;

(ii) nothing is selected in C by S ;

(iii) either ¬B is selected,

or else nothing is selected in ¬B ∨ D and ¬Bσ is maximal

in Dσ.

4

Resolution Calculus Res
�

S

C ∨ A ∨ B

(C ∨ A)σ
[ordered factoring]

if σ = mgu(A,B) and Aσ is maximal in Cσ and nothing is

selected in C .

5

Special Case: Propositional Logic

For ground clauses the resolution inference simplifies to

C ∨ A D ∨ ¬A

C ∨ D

if

(i) A � C ;

(ii) nothing is selected in C by. S;

(iii) ¬A is selected in D ∨ ¬A,

or else nothing is selected in D ∨ ¬A and ¬A � max(D).

Note: For positive literals, A � C is the same as A � max(C).

6

Search Spaces Become Smaller

1 A ∨ B

2 A ∨ ¬B

3 ¬A ∨ B

4 ¬A ∨ ¬B

5 B ∨ B Res 1, 3

6 B Fact 5

7 ¬A Res 6, 4

8 A Res 6, 2

9 ⊥ Res 8, 7

we assume A � B and S as in-

dicated by X . The maximal

literal in a clause is depicted

in red.

With this ordering and selection function the refutation proceeds

strictly deterministically in this example. Generally, proof search will

still be non-deterministic but the search space will be much smaller

than with unrestricted resolution.

7

Avoiding Rotation Redundancy

From
C1 ∨ A C2 ∨ ¬A ∨ B

C1 ∨ C2 ∨ B C3 ∨ ¬B

C1 ∨ C2 ∨ C3

we can obtain by rotation

C1 ∨ A

C2 ∨ ¬A ∨ B C3 ∨ ¬B

C2 ∨ ¬A ∨ C3

C1 ∨ C2 ∨ C3

another proof of the same clause. In large proofs many rotations

are possible. However, if A � B, then the second proof does not

fulfill the orderings restrictions.

8

Avoiding Rotation Redundancy

Conclusion: In the presence of orderings restrictions (however

one chooses �) no rotations are possible. In other words,

orderings identify exactly one representant in any class of of

rotation-equivalent proofs.

9

Lifting Lemma for Res
�

S

Lemma 2.39:

Let C and D be variable-disjoint clauses. If

C




y

σ

Cσ

D




y

ρ

Dρ

C ′
[propositional inference in Res

�

S
]

and if S(Cσ) ' S(C), S(Dρ) ' S(D) (that is, “corresponding”

literals are selected), then there exists a substitution τ such that

C D

C
′′





y

τ

C
′ = C

′′
τ

[Inference in Res
�

S
]

10

Lifting Lemma for Res
�

S

An analogous lifting lemma holds for factorization.

11

Saturation of General Clause Sets

Corollary 2.40:

Let N be a set of general clauses saturated under Res�
S

, i.e.

Res�
S

(N) ⊆ N. Then there exists a selection function S ′ such

that S |N = S ′|N and GΣ(N) is also saturated, i.e.,

Res�
S′(GΣ(N)) ⊆ GΣ(N).

Proof:

We first define the selection function S ′ such that S ′(C) = S(C)

for all clauses C ∈ GΣ(N) ∩ N. For C ∈ GΣ(N) \ N we choose

a fixed but arbitrary clause D ∈ N with C ∈ GΣ(D) and

define S ′(C) to be those occurrences of literals that are ground

instances of the occurrences selected by S in D. Then proceed

as in the proof of Corollary 2.32 using the above lifting lemma.

12

Soundness and Refutational Completeness

Theorem 2.41:

Let � be an atom ordering and S a selection function such that

Res�
S

(N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof:

The “⇐” part is trivial. For the “⇒” part consider first the

propositional level: Construct a candidate model IN as for

unrestricted resolution, except that clauses C in N that have

selected literals are not productive, even when they are false in

IC and when their maximal atom occurs only once and positively.

The result for general clauses follows using Corollary 2.40.

13

Craig-Interpolation

A theoretical application of ordered resolution is Craig-

Interpolation:

Theorem 2.42 (Craig 57):

Let F and G be two propositional formulas such that F |= G .

Then there exists a formula H (called the interpolant for

F |= G), such that H contains only prop. variables occurring

both in F and in G , and such that F |= H and H |= G .

14

Craig-Interpolation

Proof:

Translate F and ¬G into CNF. let N and M, resp., denote the

resulting clause set. Choose an atom ordering � for which the prop.

variables that occur in F but not in G are maximal. Saturate N into

N
∗ wrt. Res

�

S
with an empty selection function S . Then saturate

N
∗
∪ M wrt. Res

�

S
to derive ⊥. As N

∗ is already saturated, due

to the ordering restrictions only inferences need to be considered

where premises, if they are from N
∗, only contain symbols that also

occur in G . The conjunction of these premises is an interpolant

H. The theorem also holds for first-order formulas. For universal

formulas the above proof can be easily extended. In the general case,

a proof based on resolution technology is more complicated because

of Skolemization.

15

Redundancy

So far: local restrictions of the resolution inference rules using

orderings and selection functions.

Is it also possible to delete clauses altogether?

Under which circumstances are clauses unnecessary?

(Conjecture: e. g., if they are tautologies or if they are subsumed

by other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal

counterexample nor productive, then we do not need it.

16

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not

necessarily in N). C is called redundant w. r. t. N, if there exist

C1, . . . ,Cn ∈ N, n ≥ 0, such that Ci ≺ C and C1, . . . ,Cn |= C .

Redundancy for general clauses:

C is called redundant w. r. t. N, if all ground instances Cσ of C

are redundant w. r. t. GΣ(N).

Intuition: Redundant clauses are neither minimal counterexam-

ples nor productive.

Note: The same ordering � is used for ordering restrictions and

for redundancy (and for the completeness proof).

17

Examples of Redundancy

Proposition 2.43:

• C tautology (i.e., |= C) ⇒ C redundant w. r. t. any set N.

• Cσ ⊂ D ⇒ D redundant w. r. t. N ∪ {C}

• Cσ ⊆ D ⇒ D ∨ Lσ redundant w. r. t. N ∪ {C ∨ L, D}

(Under certain conditions one may also use non-strict subsump-

tion, but this requires a slightly more complicated definition of

redundancy.)

18

Saturation up to Redundancy

N is called saturated up to redundancy (wrt. Res�
S

)

:⇔ Res�
S

(N \ Red(N)) ⊆ N ∪ Red(N)

Theorem 2.44:

Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

19

Saturation up to Redundancy

Proof (Sketch):

(i) Ground case:

• consider the construction of the candidate model I�
N

for Res�
S

• redundant clauses are not productive

• redundant clauses in N are not minimal counterexamples

for I�
N

The premises of “essential” inferences are either minimal

counterexamples or productive.

(ii) Lifting: no additional problems over the proof of Theo-

rem 2.41.
20

Monotonicity Properties of Redundancy

Theorem 2.45:

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \ M)

Proof: Exercise.

We conclude that redundancy is preserved when, during a

theorem proving process, one adds (derives) new clauses or

deletes redundant clauses.

21

A Resolution Prover

So far: static view on completeness of resolution:

Saturated sets are inconsistent if and only if they contain ⊥.

We will now consider a dynamic view:

How can we get saturated sets in practice?

The theorems 2.44 and 2.45 are the basis for the completeness

proof of our prover RP.

22

Rules for Simplifications and Deletion

We want to employ the following rules for simplification of

prover states N:

• Deletion of tautologies

N ∪ {C ∨ A ∨ ¬A} . N

• Deletion of subsumed clauses

N ∪ {C ,D} . N ∪ {C}

if Cσ ⊆ D (C subsumes D).

• Reduction (also called subsumption resolution)

N ∪ {C ∨ L, D ∨ Cσ ∨ Lσ} . N ∪ {C ∨ L,D ∨ Cσ}

23

Resolution Prover RP

3 clause sets: N(ew) containing new resolvents

P(rocessed) containing simplified resolvents

clauses get into O(ld) once their inferences have been

computed

Strategy: Inferences will only be computed when there are no

possibilities for simplification

24

Transition Rules for RP (I)

Tautology elimination

NNN ∪ {C} | PPP | OOO . NNN | PPP | OOO

if C is a tautology

Forward subsumption

NNN ∪ {C} | PPP | OOO . NNN | PPP | OOO

if some D ∈ PPP ∪OOO subsumes C

Backward subsumption

NNN ∪ {C} | PPP ∪ {D} | OOO . NNN ∪ {C} | PPP | OOO

NNN ∪ {C} | PPP | OOO ∪ {D} . NNN ∪ {C} | PPP | OOO

if C strictly subsumes D

25

Transition Rules for RP (II)

Forward reduction

NNN ∪ {C ∨ L} | PPP | OOO . NNN ∪ {C} | PPP | OOO

if there exists D ∨ L′ ∈ PPP ∪OOO

such that L = L′
σ and Dσ ⊆ C

Backward reduction

NNN | PPP ∪ {C ∨ L} | OOO . NNN | PPP ∪ {C} | OOO

NNN | PPP | OOO ∪ {C ∨ L} . NNN | PPP ∪ {C} | OOO

if there exists D ∨ L′ ∈ NNN

such that L = L′
σ and Dσ ⊆ C

26

Transition Rules for RP (III)

Clause processing

NNN ∪ {C} | PPP | OOO . NNN | PPP ∪ {C} | OOO

Inference computation

∅ | PPP ∪ {C} | OOO . NNN | PPP | OOO ∪ {C},

with NNN = Res�
S

(OOO ∪ {C})

27

Soundness and Completeness

Theorem 2.46:

N |= ⊥ ⇔ N | ∅ | ∅
∗

. N ′ ∪ {⊥} | |

Proof in

L. Bachmair, H. Ganzinger: Resolution Theorem Proving

(on H. Ganzinger’s Web page under Publications/Journals;

appeared in the Handbook on Automated Theorem Proving,

2001)

28

