Motivation: Search space for *Res very* large.

Ideas for improvement:

- In the completeness proof (Model Existence Theorem 2.23) one only needs to resolve and factor maximal atoms
 ⇒ if the calculus is restricted to inferences involving maximal atoms, the proof remains correct
 ⇒ order restrictions
- 2. In the proof, it does not really matter with which negative literal an inference is performed
 - \Rightarrow choose a negative literal don't-care-nondeterministically
 - \Rightarrow selection

A selection function is a mapping

 $S: C \mapsto$ set of occurrences of *negative* literals in C

Example of selection with selected literals indicated as X:

$$\neg A \lor \neg A \lor B$$

$$\neg B_0 \lor \neg B_1 \lor A$$

In the completeness proof, we talk about (strictly) maximal literals of *ground* clauses.

In the non-ground calculus, we have to consider those literals that correspond to (strictly) maximal literals of ground instances:

Let \succ be a total and well-founded ordering on ground atoms. A literal *L* is called [strictly] maximal in a clause *C* if and only if there exists a ground substitution σ such that for all *L'* in *C*: $L\sigma \succeq L'\sigma [L\sigma \succ L'\sigma].$

Resolution Calculus Res_S^{\succ}

Let \succ be an atom ordering and S a selection function.

$$\frac{C \lor A \qquad \neg B \lor D}{(C \lor D)\sigma} \qquad \text{[ordered resolution with selection]}$$

if $\sigma = mgu(A, B)$ and

- (i) $A\sigma$ strictly maximal wrt. $C\sigma$;
- (ii) nothing is selected in C by S;
- (iii) either $\neg B$ is selected, or else nothing is selected in $\neg B \lor D$ and $\neg B\sigma$ is maximal in $D\sigma$.

if $\sigma = mgu(A, B)$ and $A\sigma$ is maximal in $C\sigma$ and nothing is selected in C.

Special Case: Propositional Logic

For ground clauses the resolution inference simplifies to

$$\frac{C \lor A \qquad D \lor \neg A}{C \lor D}$$

if

(i) $A \succ C$;

(ii) nothing is selected in C by. S;

(iii) $\neg A$ is selected in $D \lor \neg A$, or else nothing is selected in $D \lor \neg A$ and $\neg A \succeq \max(D)$.

Note: For positive literals, $A \succ C$ is the same as $A \succ \max(C)$.

Search Spaces Become Smaller

we assume $A \succ B$ and S as indicated by X. The maximal literal in a clause is depicted in red.

With this ordering and selection function the refutation proceeds strictly deterministically in this example. Generally, proof search will still be non-deterministic but the search space will be much smaller than with unrestricted resolution.

Avoiding Rotation Redundancy

From

$$\frac{C_1 \lor A \quad C_2 \lor \neg A \lor B}{C_1 \lor C_2 \lor B} \quad C_3 \lor \neg B}{C_1 \lor C_2 \lor C_3}$$

we can obtain by rotation

$$\frac{C_2 \lor \neg A \lor B \quad C_3 \lor \neg B}{C_2 \lor \neg A \lor C_3}$$

$$\frac{C_1 \lor A \quad C_2 \lor \neg A \lor C_3}{C_1 \lor C_2 \lor C_3}$$

another proof of the same clause. In large proofs many rotations are possible. However, if $A \succ B$, then the second proof does not fulfill the orderings restrictions.

Conclusion: In the presence of orderings restrictions (however one chooses \succ) no rotations are possible. In other words, orderings identify exactly one representant in any class of of rotation-equivalent proofs.

Lifting Lemma for Res_S^{\succ}

Lemma 2.39:

Let C and D be variable-disjoint clauses. If

$$\begin{array}{ccc} C & D \\ \downarrow \sigma & \downarrow \rho \\ \hline \frac{C\sigma & D\rho}{C'} \end{array} \quad [propositional inference in Res_{S}^{\succ}] \end{array}$$

and if $S(C\sigma) \simeq S(C)$, $S(D\rho) \simeq S(D)$ (that is, "corresponding" literals are selected), then there exists a substitution τ such that

$$\frac{C \quad D}{C''} \qquad [\text{Inference in } Res_{S}^{\succ}]$$

$$\downarrow \quad \tau$$

$$C' = C'' \tau$$

An analogous lifting lemma holds for factorization.

Saturation of General Clause Sets

Corollary 2.40: Let N be a set of general clauses saturated under Res_S^{\succ} , i.e. $Res_S^{\succ}(N) \subseteq N$. Then there exists a selection function S' such that $S|_N = S'|_N$ and $G_{\Sigma}(N)$ is also saturated, i.e.,

 $Res_{S'}^{\succ}(G_{\Sigma}(N)) \subseteq G_{\Sigma}(N).$

Proof:

We first define the selection function S' such that S'(C) = S(C)for all clauses $C \in G_{\Sigma}(N) \cap N$. For $C \in G_{\Sigma}(N) \setminus N$ we choose a fixed but arbitrary clause $D \in N$ with $C \in G_{\Sigma}(D)$ and define S'(C) to be those occurrences of literals that are ground instances of the occurrences selected by S in D. Then proceed as in the proof of Corollary 2.32 using the above lifting lemma.

Soundness and Refutational Completeness

Theorem 2.41:

Let \succ be an atom ordering and S a selection function such that $Res_S^{\succ}(N) \subseteq N$. Then

$$\mathsf{N}\models\bot\Leftrightarrow\bot\in\mathsf{N}$$

Proof:

The " \Leftarrow " part is trivial. For the " \Rightarrow " part consider first the propositional level: Construct a candidate model I_N as for unrestricted resolution, except that clauses C in N that have selected literals are not productive, even when they are false in I_C and when their maximal atom occurs only once and positively. The result for general clauses follows using Corollary 2.40.

A theoretical application of ordered resolution is Craig-Interpolation:

Theorem 2.42 (Craig 57):

Let *F* and *G* be two propositional formulas such that $F \models G$. Then there exists a formula *H* (called the interpolant for $F \models G$), such that *H* contains only prop. variables occurring both in *F* and in *G*, and such that $F \models H$ and $H \models G$.

Craig-Interpolation

Proof:

Translate F and $\neg G$ into CNF. let N and M, resp., denote the resulting clause set. Choose an atom ordering \succ for which the prop. variables that occur in F but not in G are maximal. Saturate N into N^* wrt. Res_S^{\succ} with an empty selection function S. Then saturate $N^* \cup M$ wrt. Res_S^{\succ} to derive \perp . As N^* is already saturated, due to the ordering restrictions only inferences need to be considered where premises, if they are from N^* , only contain symbols that also occur in G. The conjunction of these premises is an interpolant H. The theorem also holds for first-order formulas. For universal formulas the above proof can be easily extended. In the general case, a proof based on resolution technology is more complicated because of Skolemization.

So far: local restrictions of the resolution inference rules using orderings and selection functions.

Is it also possible to delete clauses altogether? Under which circumstances are clauses unnecessary? (Conjecture: e.g., if they are tautologies or if they are subsumed by other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor productive, then we do not need it.

A Formal Notion of Redundancy

Let *N* be a set of ground clauses and *C* a ground clause (not necessarily in *N*). *C* is called redundant w.r.t. *N*, if there exist $C_1, \ldots, C_n \in N$, $n \ge 0$, such that $C_i \prec C$ and $C_1, \ldots, C_n \models C$.

Redundancy for general clauses:

C is called redundant w.r.t. *N*, if all ground instances $C\sigma$ of *C* are redundant w.r.t. $G_{\Sigma}(N)$.

Intuition: Redundant clauses are neither minimal counterexamples nor productive.

Note: The same ordering \succ is used for ordering restrictions and for redundancy (and for the completeness proof).

Examples of Redundancy

Proposition 2.43:

- C tautology (i.e., $\models C$) $\Rightarrow C$ redundant w.r.t. any set N.
- $C\sigma \subset D \Rightarrow D$ redundant w.r.t. $N \cup \{C\}$
- $C\sigma \subseteq D \Rightarrow D \lor \overline{L}\sigma$ redundant w.r.t. $N \cup \{C \lor L, D\}$

(Under certain conditions one may also use non-strict subsumption, but this requires a slightly more complicated definition of redundancy.) N is called saturated up to redundancy (wrt. Res_S^{\succ})

$$:\Leftrightarrow \operatorname{Res}_{S}^{\succ}(N \setminus \operatorname{Red}(N)) \subseteq N \cup \operatorname{Red}(N)$$

Theorem 2.44: Let N be saturated up to redundancy. Then

$$N \models \bot \Leftrightarrow \bot \in N$$

Proof (Sketch):
(i) Ground case:

- consider the construction of the candidate model I_N^{\succ} for $\operatorname{Res}_S^{\succ}$
- redundant clauses are not productive
- redundant clauses in N are not minimal counterexamples for I_N^{\succ}

The premises of "essential" inferences are either minimal counterexamples or productive.

(ii) Lifting: no additional problems over the proof of Theorem 2.41.

Monotonicity Properties of Redundancy

Theorem 2.45:

- (i) $N \subseteq M \Rightarrow Red(N) \subseteq Red(M)$
- (ii) $M \subseteq Red(N) \Rightarrow Red(N) \subseteq Red(N \setminus M)$

Proof: Exercise.

We conclude that redundancy is preserved when, during a theorem proving process, one adds (derives) new clauses or deletes redundant clauses.

So far: static view on completeness of resolution:

Saturated sets are inconsistent if and only if they contain \perp .

We will now consider a dynamic view:

How can we get saturated sets in practice?

The theorems 2.44 and 2.45 are the basis for the completeness proof of our prover *RP*.

Rules for Simplifications and Deletion

We want to employ the following rules for simplification of prover states N:

• Deletion of tautologies

$$\mathsf{N} \cup \{\mathsf{C} \lor \mathsf{A} \lor \neg \mathsf{A}\} \mathrel{\triangleright} \mathsf{N}$$

• Deletion of subsumed clauses

$$N \cup \{C, D\} \triangleright N \cup \{C\}$$

if $C\sigma \subseteq D$ (*C* subsumes *D*).

• Reduction (also called subsumption resolution)

 $N \cup \{ C \lor L, D \lor C\sigma \lor \overline{L}\sigma \} \triangleright N \cup \{ C \lor L, D \lor C\sigma \}$

3 clause sets: N(ew) containing new resolvents P(rocessed) containing simplified resolvents clauses get into O(ld) once their inferences have been computed

Strategy: Inferences will only be computed when there are no possibilities for simplification

Transition Rules for *RP* (I)

Tautology elimination $\boldsymbol{N} \cup \{C\} \mid \boldsymbol{P} \mid \boldsymbol{O}$ $\triangleright N | P | O$ if C is a tautology Forward subsumption $N \cup \{C\} | P | O$ $\triangleright N | P | O$ if some $D \in \mathbf{P} \cup \mathbf{O}$ subsumes C Backward subsumption $N \cup \{C\} \mid P \cup \{D\} \mid O \quad \triangleright \quad N \cup \{C\} \mid P \mid O$ $N \cup \{C\} \mid P \mid O \cup \{D\} \quad \triangleright \quad N \cup \{C\} \mid P \mid O$ if C strictly subsumes D

Forward reduction $N \cup \{C \lor L\} \mid P \mid O \triangleright N \cup \{C\} \mid P \mid O$ if there exists $D \lor L' \in P \cup O$ such that $\overline{L} = L'\sigma$ and $D\sigma \subseteq C$

Backward reduction

 $N | P \cup \{C \lor L\} | O \Rightarrow N | P \cup \{C\} | O$ $N | P | O \cup \{C \lor L\} \Rightarrow N | P \cup \{C\} | O$ if there exists $D \lor L' \in N$

such that $\overline{L} = L'\sigma$ and $D\sigma \subseteq C$

Transition Rules for *RP* (III)

Clause processing $N \cup \{C\} \mid P \mid O$ \triangleright $N \mid P \cup \{C\} \mid O$

Inference computation

 $\emptyset \mid \boldsymbol{P} \cup \{C\} \mid \boldsymbol{O}$

$$\triangleright \quad \boldsymbol{N} \mid \boldsymbol{P} \mid \boldsymbol{O} \cup \{C\},$$
with $\boldsymbol{N} = \operatorname{Res}_{S}^{\succ}(\boldsymbol{O} \cup \{C\})$

Theorem 2.46:

$$N \models \bot \Leftrightarrow N \mid \emptyset \mid \emptyset \land \overset{*}{\triangleright} N' \cup \{\bot\} \mid _ \mid _$$

Proof in

L. Bachmair, H. Ganzinger: Resolution Theorem Proving (on H. Ganzinger's Web page under Publications/Journals; appeared in the Handbook on Automated Theorem Proving, 2001)