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➢ Recovery of a displacement field aligning template (Y) and 
reference (X) point sets as well as correspondences between those.
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➢ Our pipeline is composed of two stages: Displacement Estimation (DE) and Refinement stage.
➢ DE stage regresses global displacements between Y and X.
➢ Refinement stage improves the initial displacements.

Y: template   X: reference    Q: size of the voxel grid
M: number of points in Y     N: number of points in X 

P2V: point-to-voxel conversion
V2P: voxel-to-point conversion

➢ Displacement loss penalises the discrepancy 
between the output displacements and ground 
truth displacements.

Z   : GT displacements V  : voxelised template
V  : voxelised referenceX

Y

Trilinear Weighting

➢ Point projection loss penalises the Euclidean distances 
between a point y  in Y+   (Y,X) and its closest point   ′
in X.

Compute trilinear weights to estimate sub-voxel 
displacements.

Record the weights and indices of the 8 nearest 
displacements in the affinity table.

Compute the point projection loss.

Distribute gradients following the IDs and weights 
information recorded in the affinity table in II.  
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➢ We  propose the first neural network based general-purpose  
NRPSR method that is invariant to the number and order of points.

➢ Our approach is robust to large deformations, articulations, 
noises, outliers and missing data.

➢ Our approach runs orders of magnitude faster than previous 
techniques.
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