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Abstract. Monocular dense 3D reconstruction of deformable objects is a hard
ill-posed problem in computer vision. Current techniques either require dense
correspondences and rely on motion and deformation cues, or assume a highly
accurate reconstruction (referred to as a template) of at least a single frame given
in advance and operate in the manner of non-rigid tracking. Accurate computation
of dense point tracks often requires multiple frames and might be computation-
ally expensive. Availability of a template is a very strong prior which restricts
system operation to a pre-defined environment and scenarios. In this work, we
propose a new hybrid approach for monocular non-rigid reconstruction which we
call Hybrid Deformation Model Network (HDM-Net). In our approach, a defor-
mation model is learned by a deep neural network, with a combination of domain-
specific loss functions. We train the network with multiple states of a non-rigidly
deforming structure with a known shape at rest. HDM-Net learns different re-
construction cues including texture-dependent surface deformations, shading and
contours. We show generalisability of HDM-Net to states not presented in the
training dataset, with unseen textures and under new illumination conditions. Ex-
periments with noisy data and a comparison with other methods demonstrate the
robustness and accuracy of the proposed approach and suggest possible applica-
tion scenarios of the new technique in interventional diagnostics and augmented
reality.

Keywords: Monocular non-rigid reconstruction · Hybrid deformation model ·
Deep neural network.

1 Introduction

The objective of monocular non-rigid 3D reconstruction (MNR) is the recovery of a
time-varying geometry observed by a single moving camera. In the general case, none
of the states is observed from multiple views, and at the same time, both the object and
the camera move rigidly. This problem is highly ill-posed in the sense of Hadamard
since multiple states can cause similar 2D observations. To obtain a reasonable solu-
tion, multiple additional priors about the scene, types of motions and deformations as
well as camera trajectory are required. Application domains of MNR are numerous and
include robotics, medical applications and visual communication systems. MNR also
has a long history in augmented reality (AR), and multiple applications have been pro-
posed over the last twenty years ranging from medical systems to communication and
entertainment [15, 38].
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Fig. 1. Reconstruction of an endoscopically textured surface with the proposed HDM-Net. The
network is trained on a textured synthetic image sequence with ground truth geometry and ac-
curately reconstructs unseen views in a small fraction of a second (~5ms). Our architecture is
potentially suitable for real-time augmented reality applications.

All approaches to MNR can be divided into two main model-based classes —
non-rigid structure from motion (NRSfM) and template-based reconstruction (TBR).
NRSfM relies on motion and deformation cues and requires dense point correspon-
dences over multiple frames [26, 31]. Most accurate methods for dense correspon-
dences operate on multiple frames and are prohibitively slow for real-time applica-
tions [66]. Moreover, their accuracy is volatile and influenced by changing illumination
and shading effects in the scene. TBR, per definition, assumes a known template of the
scene or an object, i.e., a highly accurate reconstruction for at least one frame of the
scene [55, 80]. Sometimes, the template also needs to be accurately positioned, with a
minimal initial reprojection error to the reference frame. In this context, TBR can also
be comprehended as non-rigid tracking [62]. Obtaining a template is beyond the scope
of TBR, though joint solutions were demonstrated in the literature. In some cases, a
template is obtained under the rigidity assumption, which might not always be fulfiled
in practical applications [80].

Apart from the main classes, methods for monocular scene flow (MSF) and hybrid
NRSfM can be named. MSF jointly reconstructs non-rigid geometry and 3D displace-
ment fields [48]. In some cases, it relies on a known camera trajectory or proxy ge-
ometry (an initial coarse geometry estimate) [7]. In hybrid NRSfM, a scene-specific
shape prior is obtained on-the-fly under non-rigidity, and the input is a sequence of
point tracks [31]. Geometry estimation is then conditioned upon the shape prior.

MNR has only recently entered the realm of dense reconstructions [7, 58, 80]. The
dense setting brings additional challenges for augmented reality applications such as
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scalability with the number of points and increased computational and memory com-
plexity.

1.1 Contributions

The scope of this paper is general-purpose MNR, i.e., the reconstruction scenarios are
not known in advance. We propose deep neural network (DNN) based deformation
model for MNR. We train DNN with a new synthetically generated dataset covering the
variety of smooth and isometric deformations occurring in the real world (e.g., clothes
deformations, waving flags, bending paper and, to some extent, biological soft tissues).
The proposed DNN architecture combines supervised learning with domain-specific
loss functions. Our approach with a learned deformation model — Hybrid Deformation
Model Network (HDM-Net) — surpasses performances of the evaluated state-of-the-
art NRSfM and template-based methods by a considerable margin. We do not require
dense point tracks or a well-positioned template. Our initialisation-free solution sup-
ports large deformations and copes well with several textures and illuminations. At the
same time, it is robust to self-occlusions and noise. In contrast to existing DNN archi-
tectures for 3D, we directly regress 3D point clouds (surfaces) and depart from depth
maps or volumetric representations.

In the context of MNR methods, our solution can be seen as a TBR with consid-
erably relaxed initial conditions and a broader applicability range per single learned
deformation model. Thus, it constitutes a new class of methods — instead of a tem-
plate, we rather work with a weak shape prior and a shape at rest for a known scenario
class.

We generate a new dataset which fills a gap for training DNNs for non-rigid scenes1

and perform series of extensive tests and comparisons with state-of-the-art MNR meth-
ods. Fig. 1 provides an overview of the proposed approach — after training the network,
we accurately infer 3D geometry of a deforming surface. Fig. 2 provides a high-level
overview of the proposed architecture.

The rest of the paper is partitioned in Related Work (Sec. 2), Architecture of HDM-
Net (Sec. 3), Geometry Regression and Comparisons (Sec. 5) and Concluding Remarks
(Sec. 6) Sections.

2 Related Work

In this section, we review several algorithm classes and position the proposed HDM-Net
among them.

2.1 Non-Rigid Structure from Motion

NRSfM requires coordinates of tracked points throughout an image sequence. The sem-
inal work of Bregler et al. [10] marks the origin of batch NRSfM. It constrained sur-
faces to lie in a linear subspace of several unknown basis shapes. This idea was pur-
sued by several successor methods [9, 51, 73]. Since the basis shapes, as well as their

1 the dataset is available upon request.
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number, are unknown, this subclass is sensitive to noise and parameter choice. Fur-
thermore, an optimal number of basis shapes allowing to express all observed defor-
mation modes does not necessarily always exist [73]. Along with that, multiple further
priors were proposed for NRSfM including temporal smoothness [34, 82], basis [79],
inextensibility [13, 22, 75] and shape prior [12, 31, 67], among others. The inextensi-
bility constraint penalises deviations from configurations increasing the total surface
area. In other words, non-dilatable states are preferred. Several methods investigate a
dual trajectory basis and considerably reduce the number of unknowns [5], whereas
the other ones explicitly model deformations using physical laws [4]. Multiple general-
purpose unsupervised learning techniques were successfully applied to NRSfM includ-
ing non-linear dimensionality reduction [67] (diffusion maps), [34, 37] (kernel trick)
and expectation-maximisation [3, 43]. A milestone in NRSfM was accompanied by a
further decrease in the number of unknowns and required prior knowledge for recon-
struction. Thus, some of the methods perform a low-rank approximation of a stacked
shape matrix [18,26]. A further milestone is associated with the ability to perform dense
reconstructions [3, 6, 26, 31, 33].

Several methods allow sequential processing [1, 52, 82]. Starting from an initial
estimate obtained on several first frames of a sequence, they perform reconstructions
upon arrival of every new frame in an incremental manner. The accuracy of sequential
methods is consistently lower than those of the batch counterparts. While still relying on
point tracks, they can enable lowest latencies in real-time and interactive applications.
Several methods learn and update an elastic model of the observed scene on-the-fly
[2] (similarly to the sequential methods, point tracks over the complete sequence are
not required). Solving the underlying equations might be slow, and the solution was
demonstrated only for sparse settings.

2.2 Template-Based Reconstruction

Approaches of this class assume a known template, i.e., an accurate reconstruction of at
least one frame of the sequence. Most methods operate on a short window of frames or
single frames. Some TBR methods are known as non-rigid trackers [62]. Early physics-
based techniques formalised 3D reconstruction with elastic models and modal analysis
[15, 47]. They assumed that some material properties (such as the elastic modulus) of
the surface are known and could handle small non-linear deformations.

Multiple priors developed for NRSfM proved their effectiveness for TBR including
isometry [11, 49, 55, 60], statistical priors [59], temporal smoothness [61, 80], inex-
tensibility priors [11, 55] and mechanical priors in an improved form [38, 46]. More-
over, modelling image formation process by decomposing observed intensities into
lighting, shading and albedo components was also shown to improve tracking accu-
racy [24, 25, 45, 49, 77].

2.3 Monocular Scene Flow

A somewhat exotic class of approaches developed in parallel to NRSfM and TBR is
monocular scene flow (MSF). Birkbeck et al.’s approach can handle non-rigid scenes
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relying on a known constant camera motion [7]. While camera trajectory can be some-
times available in AR systems, there is no guarantee of its linearity. In [48], a varia-
tional solution to rigid multi-body scenes was proposed. Recently, Xiao et al. proposed
an energy-based method for rigid MSF in the context of automotive scenarios. Their
approach is based on a temporal velocity constancy constraint [78].

In general, MSF methods are restricted in the handling of non-rigid surfaces. One
exception — NRSfM-Flow of Golyanik et al. [32] — takes advantage of known 2D-
3D correspondences and relies on batch NRSfM techniques for an accurate scene flow
estimation of non-rigid scenes. It inherits the properties of NRSfM and does not assume
a known camera trajectory or proxy geometry.

2.4 Specialised Models for Faces and Bodies

For completeness, we provide a concise overview of specialised approaches. Compared
to TBR, they are dedicated to the reconstruction of single object classes like human
faces [8, 28, 63, 65] or human bodies [35, 76]. They do not use a single prior state
(a template), but a whole space of states with feasible deformations and variations.
The models et al. are learned from extensive data collections showing a wide vari-
ety of forms, expressions (poses) and textures. In almost all cases, reconstruction with
these methods means projection into the space of known shapes. To obtain accurate re-
sults, post-processing steps are required (e.g., for transferring subtle details to the initial
coarse estimates). In many applications, solutions with predefined models might be a
right choice, and their accuracy and speed may be sufficient.

2.5 DNN-based 3D Reconstruction

In the recent three years, several promising approaches for inferring 2.5D and 3D ge-
ometry have been developed. Most of them regress depth maps [20, 27, 30, 44, 68] or
use volumetric representations [14, 57] akin to sign distance fields [17]. Currently, the
balance of DNN-based methods for 3D reconstruction is perhaps in favour of face re-
gressors [19, 40, 63, 69]. The alternatives to sparse NRSfM of Tome et al. and Zhou
et al. work exclusively for human poses [72, 81]. The 3D-R2N2 network generates
3D reconstructions from single and multiple views and requires large data collections
for training [14]. In contrast to several other methods, it does not require image an-
notations. Point set generation netwoet al.rk of Fan et al. [21] is trained for a single
view reconstruction of rigid objects and directly outputs point sets. More and more
methods combine supervised learning and model-based losses thus imposing additional
problem-specific constraints [21, 27, 69]. Also, this has often the side effect of decreas-
ing the volume requirements on the datasets [30, 69]. The work of Pumarola et al. [56]
is most closely related to ours. The architecture is separated into three sub-networks
which have different roles — creating heat-map of 2D images, depth estimation and 3D
geometry inference. Those sub-networks are jointly trained. Our architecture is rela-
tively simple. Encoder and decoder are employed and the output is penalized with three
kinds of losses which have different geometrical properties — 3D geometry, smooth
surface and contour information after projection onto a 2D plane.
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Fig. 4. Our contour loss penalises deviations between reprojections of the regressed geometry and
reprojections of the ground truth.

2.6 Attributes of HDM-Net

In this section, we position the proposed approach among the vast body of the literature
on MNR. HDM-Net bears a resemblance to DNN-based regressors which use encoder-
decoder architecture [69]. In contrast to many DNN-based 3D regressors [14, 21, 69],
our network does not include fully connected layers as they impede generalisability
(lead to overfitting) as applied to MNR. As most 3D reconstruction approaches, it con-
tains a 3D loss.

In many cases, isometry is an effective and realistic constraint for TBR, as shown
in [13,55]. In HDM-Net, isometry is imposed through training data. The network learns
the notion of isometry from the opposite, i.e., by not observing other deformation
modes. Another strong constraint in TBR is contour information which, however, has
not found wide use in MSR, with only a few exceptions [36, 74]. In HDM-Net, we ex-
plicitly impose contour constraints by comparing projections of the learned and ground
truth surfaces.

Under isometry, the solution space for a given contour is much better constrained
compared to the extensible cases. The combined isometry and contour cues enable ef-
ficient occlusion handling in HDM-Net. Moreover, contours enable texture invariance
up to a certain degree, as a contour remains unchanged irrespective of the texture. Next,
through variation of light source positions, we train the network for the notion of shad-
ing. Since for every light source configuration, the underlying geometry is the same,
HDM-Net acquires awareness of varying illumination. Besides, contours and shading
in combination enable reconstruction of texture-less surfaces. To summarise, our frame-
work has unique properties among MSR methods which are rarely found in other MNR
techniques, especially when combined.

3 Architecture of HDM-Net

We propose a DNN architecture with encoder and decoder depicted in Fig. 2 (a general
overview). The network takes as an input an image of dimensions 224×224 with three
channels. Initially, the encoder extracts contour, shading and texture deformation cues
and generates a compact latent space representation of dimensions 28×28×128. Next,
the decoder applies a series of deconvolutions and outputs a 3D surface of dimensions
73× 73× 3 (a point cloud). It lifts the dimensionality of the latent space until the di-
mensionality of activation becomes identical to the dimensionality of ground truth. The
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transition from the implicit representation into 3D occurs on the later stage of decoder
through a deconvolution. Fig. 3 provides a detailed clarification about the structures of
encoder and decoder.

As can be seen in Fig. 2 and 3, we skip some connections in HDM-Net to avoid
vanishing gradients, similar to resnet [39]. Due to the nature of convolutions, our deep
network might potentially lose some important information in the forward path which
might be advantageous in the deeper layers. Thus, connection skipping compensates
for this side effect — for each convolution layer — which results in the increased per-
formance. Moreover, in the backward path, shortcut connections help to overcome the
vanishing gradient problem, i.e., a series of numerically unstable gradient multiplica-
tions leading to vanishing gradients. Thus, the gradients are successfully passed to the
shallow layers.

Fully connected (FC) layers are often used in classification tasks [42]. They have
more parameters than convolution layers and are known as a frequent cause of over-
fitting. We have tried FC layers in HDM-Net and observed overfitting on the training
dataset. Thus, FC layers reduce generalisation ability of our network. Furthermore, spa-
tial information is destroyed as the data in the decoder is concatenated before being
passed to the FC layer. In our task, needless to say, spatial cues are essential for 3D
regression. In the end, we omit FC layers and successfully show generalisation ability
of 3D reconstruction on the test data.

3.1 Loss Functions

Let S = {S f }, f ∈ {1, . . . ,F} denote predicted 3D states, and SGT = {SGT
f } is the

ground truth geometry; F is the total number of frames and N is the number of points in
the 3D surface. In HDM-Net, contour similarity and the isometry constraint are the key
innovations and we apply three types of loss functions summarised into the loss energy:

E(S,SGT ) = E3D(S,SGT )+Eiso(S)+Econt.(S,SGT ). (1)

3D error: The 3D loss is the main loss in 3D regression. It penalises the differences
between predicted and ground truth 3D states and is common in training for 3D data:

E3D(S,SGT ) =
1
F

F

∑
f=1
‖SGT

f −S f ‖2
F , (2)

where ‖·‖F denotes the Frobenius norm. Note that we take an average of the squared
Frobenius norms of the differences between the learned and ground truth geometries.
Isometry prior: To additionally constrain the regression space, we embed isometry
loss which enforces the neighbouring vertices to be located close to each other. Several
versions of inextensibility and isometry constraints can be found in MSR — a common
one is based on differences between Euclidean and geodesic distances. For our DNN
architecture, we choose a differentiable loss which performs Gaussian smoothing of S f

and penalises the difference between the unembellished and smoothed version Ŝi:

Eiso(S) =
1
F

F

∑
f=1
‖Ŝ f −S f ‖F , (3)
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Fig. 5. Camera poses used for the dataset generation (a); different textures applied to the dataset:
endoscopy, graffiti, clothes and carpet (b-top) and different illuminations (b-bottom).

with

Ŝ f =
1

2πσ2 exp
(
−x2 + y2

2σ2

)
∗S f , (4)

where ∗ denotes a convolution operator and σ2 is the variance of Gaussian.
Contour loss: If the output of the network and the ground truth coordinates are similar,
the contour shapes after projection onto a 2D plane have to be similar as well. The
main idea of the reprojection loss is visualised in Fig. 4-(a). After the inference of the
3D coordinates by the network, we project them onto the 2D plane and compute the
difference between the two projected contours. If focal lengths fx, fy as well as the
principal point (cx,cy) of the camera are known (the K used for the dataset generation
is provided in Sec. 4), observed 3D points p = (px, py, pz) are projected to the image
plane by the projection operator π : R3→ R2:

p′(u,v) = π(p) =

(
fx

px

pz
+ cx, fy

py

pz
+ cy

)T

, (5)

where p′ is the 2D projection of p with 2D coordinates u and v. Otherwise, we apply an
orthographic camera model.

A naı̈ve shadow casting of a 3D point cloud onto a 2D plane is not differentiable,
i.e., the network cannot backpropagate gradients to update the network parameters. The
reason is twofold. In particular, the cause for indifferentiability is the transition from
point intensities to binary shadow indicators with an ordinary step function (the numer-
ical reason) using point coordinates as indexes on the image grid (the framework-related
reason).

Fig. 4-(b) shows how we circumvent this problem. The first step of the procedure
is the projection of 3D coordinates onto a 2D plane using either a perspective or an
orthographic projection. As a result of this step, we obtain a set of 2D points. We gen-
erate K = 732 translation matrices T j =

(
1 0 u
0 1 v

)
using 2D points and a flow field tensor of

dimension K× 99× 99× 2 (the size of each binary image is 99× 99). Next, we apply
bilinear interpolation [41] with generated flow fields on the replicated basis matrix B K
times and obtain K translation indicators. B99×99 is a sparse matrix with only a single
central non-zero element which equals to 1. Finally, we sum up all translation indica-
tors and softly threshold positive values in the sums to ≈ 1, i.e., our shadow indicator.
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Note that to avoid indifferentiability in the last step, the thresholding is performed by a
combination of a rectified linear unit (ReLU) and tanh function (see Fig. 4-(b)):

τ(I (s f (n))) = max(tanh(2S f (n)),0), (6)

where n ∈ {1, . . . ,N} denotes the point index, s f (n) denotes a reprojected point S f (n)
in frame f , and I (·) fetches intensity of a given point. We denote the differentiable
projection operator and differentiable soft thresholding operator by the symbols π†(·)
and τ(·) respectively. Finally, the contour loss reads

Econt.(S,SGT ) =
1
F

F

∑
f=1
‖τ
(
π

†(S f
))
− τ
(
π

†(SGT
f
))
‖2

F . (7)

Note that object contours correspond to 0-1 transitions.

4 Dataset and Training

For our study, we generated a dataset with a non-rigidly deforming object using Blender
[23]. In total, there are 4648 different temporally smooth 3D deformation states with
structure bendings, smooth foldings and wavings, rendered under Cook-Torrance illu-
mination model [16] (see Fig. 1 for the exemplary frames from our dataset). We have
applied five different camera poses, five different light source positions and four dif-
ferent textures corresponding to the scenarios we are interested in — endoscopy, graf-
fiti (it resembles a waving flag) clothes and carpet (an example of an arbitrary tex-
ture). The endoscopic texture is taken from [29]. Illuminations are generated based on

・・・・

Test Data Training Data

Deformation:0 Deformation:4,648
80 states 20 states

Fig. 6. The pattern of the training and test datasets.

the scheme in Fig. 5-(a), the textures and illuminations are shown in Fig. 5-(b). We
project the generated 3D scene by a virtual camera onto a 2D plane upon Eq. (5), with
K =

280 0 128
0 497.7 128
0 0 1

 . The background in every image is of the same opaque colour. We split

the data into training and test subsets in a repetitive manner, see Fig. 6 for the pattern.
We train HDM-Net jointly on several textures and illuminations, with the purpose of
illumination-invariant and texture-invariant regression. One illumination and one tex-
ture are reserved for the test dataset exclusively. Our images are of the dimensions
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256×256. They reside in 15.2 Gb of memory, and the ground truth geometry requires
1.2 Gb (in total, 16.4 Gb). The hardware configuration consists of two six-core pro-
cessors Intel(R) Xeon(R) CPU E5-1650 v4 running at 3.60GHz, 16 GB RAM and a
GEFORCE GTX 1080Ti GPU with 11GB of global memory. In total, we train for 95
epochs, and the training takes two days in pytorch [53, 54]. The evolution of the loss
energy is visualised in Fig. 11-(a). The inference of one state takes ca. 5 ms.

5 Geometry Regression and Comparisons

We compare our method with the template-based reconstruction of Yu et al. [80], vari-
ational NRSfM approach (VA) of Garg et al. [26] and NRSfM method of Golyanik
et al. [33] — Accelerated Metric Projections (AMP). We use an optimised heteroge-
neous CPU-GPU version of VA written in C++ and CUDA C [50]. AMP is a C++ CPU
version which relies on an efficient solution of a semi-definite programming problem
and is currently one of the fastest batch NRSfM methods. For VA and AMP, we com-
pute required dense point tracks. Following the standard praxis in NRSfM, we project
the ground truth shapes onto a virtual image plane by a slowly moving virtual camera.
Camera rotations are parametrised by Euler angles around the x-, y- and z-axes. We ro-
tate for up to 20 degrees around each axis, with five degrees per frame. This variety in
motion yields minimal depth changes required for an accurate initialisation in NRSfM.
We report runtimes, 3D error

e3D =
1
F

F

∑
f=1

‖SGT
f −S f ‖F
‖SGT

f ‖F
(8)

and standard deviation σ of e3D. Before computing e3D, we align S f and the corre-
sponding SGT

f with Procrustes analysis.
Runtimes, e3D and σ for all three methods are summarised in Table 1. AMP achieves

around 30 fps and can execute only for 100 frames per batch at a time. However, this
estimate does not include often prohibitive computation time of dense correspondences
with multi-frame optical flow methods such as [66]. Note that runtime of batch NRSfM
depends on the batch size, and the batch size influences the accuracy and ability to
reconstruct. VA takes advantage of a GPU and executes with 2.5 fps. Yu et al. [80]
achieves around 0.3 fps. In contrast, HDM-Net processes one frame in only 5 ms. This is
by far faster than the compared methods. Thus, HDM-Net can compete in runtime with
rigid structure from motion [71]. The runtime of the latter method is still considered as
the lower runtime bound for NRSfM2.

At the same time, the accuracy of HDM-Net is the highest among all tested methods.
Selected results with complex deformations are shown in Fig. 7. We see that Yu et
al. [80] copes well with rather small deformations, and our approach accurately resolves
even challenging cases not exposed during the training. In the case of Yu et al. [80], the

2 when executed in a batch of 100 frames with 732 points each, a C++ version of [71] takes 1.47
ms per frame on our hardware; for 400 frames long batch, it requires 5.27 ms per frame.
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Yu et al. [80] AMP [33] VA [26] HDM-Net

t, s 3.305 0.035 0.39 0.005
e3D 1.3258 1.6189 0.46 0.0251
σ 0.0077 1.23 0.0334 0.03

Table 1. Per-frame runtime t in seconds, e3D and
σ comparisons of Yu et al. [80], AMP [33] and
HDM-Net (proposed method).

endoscopy graffiti clothes carpet

e3D 0.0485 0.0499 0.0489 0.1442
σ 0.01356 0.022 0.02648 0.02694

Table 2. Comparison of 3D error for different
textures and the same illumination (number 1).

illum. 1 illum. 2 illum. 3 illum. 4 illum. 5

e3D 0.07952 0.0801 0.07942 0.07845 0.07827

σ 0.0525 0.0742 0.0888 0.1009 0.1123
Table 3. Comparison of 3D error for differ-
ent illuminations.

3D 3D + Con. 3D + Iso. 3D + Con. + Iso.

e3D 0.0698 0.0688 0.0784 0.0773
σ 0.0761 0.0736 0.0784 0.0789

Table 4. Comparison of effects of loss func-
tions.

Fig. 8. Comparison of 3D reconstruction with
3D error (top row) and 3D error + isometry prior
(bottom row)

Fig. 9. Qualitative comparisons of ground truth
(a), HDM-Net (proposed method) (b), AMP
[33] (c), VA [26] (d) and Yu et al. [80] (e) on
several frames of our test sequence from the
first 100 frames (each column corresponds to
one frame).

high e3D is explained by a weak handling of self-occlusions and large deformations. In
the case of NRSfM methods, the reason for the high e3D is an inaccurate initialisation.
Moreover, VA does not handle foldings and large deformations well.

Table 3 summarises e3D for our method under different illumination conditions. We
notice that our network copes well with all generated illuminations — the difference
in e3D is under 3%. Table 2 shows e3D comparison for different textures. Here, the
accuracy of HDM-Net drops on the previously unseen texture by the factor of three,
which still corresponds to reasonable reconstructions with the captured main deforma-
tion mode. Another quantitative comparison is shown in Fig. 9. In this example, all
methods execute on the first 100 frames of the sequence. AMP [33] captures the main
deformation mode with e3D = 0.1564 but struggles to perform a fine-grained distinction
(in Table 1, e3D is reported over the sequence of 400 frames, hence the differing met-
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Fig. 10. Exemplary reconstructions from real images obtained by HDM-Net (music notes, a fab-
ric, surgery and an air balloon)

rics). VA suffers under an inaccurate initialisation under rigidity assumption and Yu et
al. [80], by contrast, does not recognise the variations in the structure. All in all, HDM-
Net copes well with self-occlusions. Graphs of e3D as functions of the state index under
varying illuminations and textures can be found in Fig. 11-(b,c). Table 4 shows the com-
parison of e3D using networks trained with various combinations of loss functions. 3D
+ Con. shows the lowest e3D and applying isometry prior increases e3D. Since isome-
try prior is smoothing loss, the 3D grid becomes smaller in comparison to the outputs
without isometry prior hence higher e3D. However, as shown in Fig. 8, isometry prior
allows the network to generate smoother 3D geometries preserving deformation states.

Next, we evaluate the performance of HDM-Net on noisy input images. Therefore,
we augment the dataset with increasing amounts of uniform salt-pepper noise. Fig. 11-
(d) shows the evolution of the e3D as a function of the amount of noise, for several
exemplary frames corresponding to different input difficulties for the network. We ob-
serve that HDM-Net is well-posed w.r.t noise — starting from the respective values
obtained for the noiseless images, the e3D increases gradually.

We tested HDM-Net on several challenging real images. Fig. 10 shows the tested
images and our reconstructions. We recorded a music note image for an evaluation
of our network in real-world scenario. Despite different origin of the inputs (music
notes, a fabric [70], an endoscopic view during a surgery [29] and an air balloon [64]),
HDM-Net produces realistic and plausible results. Note how different are the regressed
geometries which suggests the generalisation ability of the proposed solution.

In many real-world cases, HDM-Net produces acceptable results. However, if the
observed states differ a lot from the states in the training data, HDM-Net might fail to
recognise and regress the state. This can be addressed by an extension or tailoring of the
data set for specific cases. Adding training data originating from motion and geometry
capture of real objects might also be an option.
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Fig. 11. Graphs of e3D for varying illuminations (for endoscopy texture), varying textures (for
illumination 1) as well as six states under increasing amount of noise. Note that in b/ and c/,
only the errors obtained on the test data are plotted. For c/, HDM-Net was trained on a subset of
training states (three main textures and one illumination).

6 Concluding Remarks

We have presented a new monocular surface recovery method with a deformation model
replaced by a DNN — HDM-Net. The new method reconstructs time-varying geometry
from a single image and is robust to self-occlusions, changing illumination and varying
texture. Our DNN architecture consists of an encoder, a latent space and a decoder, and
is furnished with three domain-specific losses. Apart from the conventional 3D data
loss, we propose isometry and reprojection losses. We train HDM-Net with a newly
generated dataset with ca. four an a half thousands states, four different illuminations,
five different camera poses and three different textures. Experimental results show the
validity of our approach and its suitability for reconstruction of small and moderate iso-
metric deformations under self-occlusions. Comparisons with one template-based and
two template-free methods have demonstrated a higher accuracy in favour of HDM-Net.
Since HDM-Net is one of the first approach of the new kind, there are multiple avenues
for investigations and improvements. One apparent direction is the further augmenta-
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tion of the test dataset with different backgrounds, textures and illuminations. Next, we
are going to test more advanced architectures such as generative adversarial networks
and recurrent connections for the enhanced temporal smoothness. Currently, we are also
investigating the relevance of HDM-Net for medical applications with augmentation of
soft biological tissues.
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