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Abstract

This paper introduces a new segmentwise tech-
nique which consolidates multiple principles for non-
rigid structure from motion (NRSfM) into a single
energy-based framework. The energy functional of
our Consolidating Monocular Dynamic Reconstruction
(CMDR) approach is optimised by non-linear least
squares and includes terms allowing to define the de-
formation model and additional constraints simultane-
ously in the metric and trajectory spaces. The pro-
posed method achieves high accuracy on several tested
sequences while providing robustness and scalability due
to the spatial scene segmentation and the new lifted
spatial Laplacian term. CMDR is flexible and easy to
implement, thanks to the unified optimisation frame-
work. It allows for scenario-specific extensions and can
be used for rapid prototyping of new NRSfM methods.

1 Introduction

Non-rigid structure from motion (NRSfM) addresses
3D reconstruction of dynamic scenes from monocu-
lar image sequences relying on motion and deforma-
tion cues [1, 2]. Bregler et al. [1] showed that 2D
point tracks are sufficient for monocular non-rigid re-
construction, and their pioneering work has entailed
multiple successor methods for sparse reconstruction
with various additional assumptions about the nature
of motions and deformations [3, 4, 5, 6, 7]. In the last
several years, the advent of accurate dense multi-frame
optical trackers [8, 9] paved the way for dense NRSfM
[10]. In dense NRSfM, points of interest often consti-
tute connected regions. While many principles tested
for sparse NRSfM can be directly generalised for the
dense case, the transition from sparse to dense brings
additional possibilities to constrain the solution space.
Thus, several methods combine reconstruction and fil-
tering of the recovered point clouds [2, 11]. Another
example is the application of new in the context of
NRSfM mathematical techniques (e.g., tensor calculus
as shown for the semi-dense case in [12]).

Along with that, many ideas were predominantly
demonstrated in isolation. The reason is a large variety
of frameworks and optimisation tools for dense NRSfM.
Moreover, formulations are often interleaved with op-
timisation methods, are not transferable to other op-
timisation frameworks and even minor changes might
result in a redesign of the optimisation techniques. The
recent NRSfM challenge [13] has shown how diverse the
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Figure 1: An overview of the proposed scalable segment-
wise CMDR approach and the entire pipeline for non-rigid
3D reconstruction from monocular image sequences.

performances of different methods can be in different
scenarios. Having a new data set at hand, it is not
always easy to predict how a method will perform on
it. We believe that an important direction in NRSfM
research is consolidating multiple ideas into a single
framework which would enable a convenient integra-
tion and testing of different ideas. Though not gained
much attention so far, it is a next logical step for boost-
ing new ideas and discoveries in NRSfM.

1.1 Contributions

Our main contribution is a new unifying energy-
based Consolidating Monocular Dynamic Reconstruc-
tion (CMDR) approach. Our motivation for a single
energy-based framework is to remove the burden of
combinability of different principles for dense NRSfM,
and we believe that this goal can be achieved by sepa-
rating the problem formulation from the optimisation
techniques. For optimisation, we employ non-linear
least squares (NLLS) which brings an additional ad-
vantage of consistently handling linear and non-linear
effects (see Sec. 3). We propose a new effective lifted
spatial Laplacian term which assigns a weight to every
pair of neighbouring segments. In systematic experi-
ments (see Sec. 4), CMDR achieves high reconstruc-
tion accuracy with reduced runtime, due to the seg-
mentwise processing, and competes with several recent
approaches. An overview of CMDR is shown in Fig. 1.

2 Related Work

Several NRSfM approaches are based on energy min-
imisation [2, 11, 14, 15]. Among sparse settings, [14]
employs locally smooth manifold learning. Agudo and



Moreno-Noguer formulate sparse reconstruction for or-
thographic camera model as an energy minimisation
problem and solve it by linear least squares [15]. In
CMDR, we optimise up to several millions of param-
eters simultaneously and solve dense reconstruction
with NLLS. Among dense settings, Garg et al. [2] uses
variational optimisation framework with energy split-
ting and alternating solving of two subproblems, and
Golyanik et al. [11] optimise an energy with a frequency
domain regulariser. All these approaches are highly di-
verse in the energy optimisation methods. In contrast,
CMDR unifies multiple principles into a single energy-
based framework.

The usefulness of patch-based processing was previ-
ously shown in NRSfM [16, 17]. In contrast to previous
methods, we initialise segments either from the refer-
ence image by appliying a SLIC superpixel approach
[18], or directly on the 3D solution initialisation with
the segmentation method [19]. Several methods simul-
taneously formulate constraints in metric and trajec-
tory spaces [6, 20] (probabilistic formulation). Simi-
larly, we integrate two terms for expressing the defor-
mation model and additional constraints in metric and
trajectory spaces. The trajectory space smoothness
term was rarely used in energy-based NRSfM so far.
It allows integration of subspace constraints on point
trajectories and originates from [5]. In CMDR, we im-
pose smoothness of neighbouring trajectories by a to-
tal variation of trajectory coefficients. A similar regu-
lariser was used in NRSfM [21] and multi-frame optical
flow estimation [8, 9]. As a spatial segment regulariser,
we employ a weighted lifted Laplacian which was pre-
viously applied in template-based non-rigid tracking
from an RGB-D camera [22] and multi-frame RGB-D
scene flow estimation [23].

Lately, scalability is increasingly gaining attention
in NRSfM, referring to the method’s support of a wide
range of scenarios and types of data [24, 25]. In CMDR,
scalability is enabled by different reconstruction gran-
ularity levels, thanks to the segmentation and piece-
wise affine modelling. Thus, it is possible to process
data within time bounds by varying the segment size.
Moreover, CMDR reconstructs different types of defor-
mations (e.g., faces, cloths, spinal deformation capture,
surfaces of internal organs), with the number of points
ranging from few thousands to as much as 2 · 105 (an
example is the barn owl sequence in Sec. 4).

3 Consolidating Monocular Dynamic Re-
construction (CMDR)

In this Section, we first introduce notations and then
describe the proposed CMDR framework for segment-
wise reconstruction.

3.1 Assumptions and Notations

Given a measurement matrix W =
[W1W2 . . .WF ]T ∈ R2F×P , i.e., a set of P 2D
points tracks through F views, the objective of
NRSfM is the recovery of a time-varying geometry
S = [S1S2 . . .SF ]T ∈ R3F×P and camera poses
R = [R1R2 . . .RF ]T, where f ∈ {1, . . . , F} is a
frame index. In CMDR, we cluster points into L
segments Sl, l ∈ {1, . . . , L}. Every segment represents
a connected region with correspondences across all Sf .
W is registered to the origin of the coordinate system
so that the translation is resolved and we have to
estimate the per-frame camera rotation Rf . For the
orthographic camera, projection operator π(·) is I2×3

identity matrix, though the derivations hold for both
the calibrated perspective and orthographic cameras.

3.2 The Energy Functional with Segments

The proposed target segmentwise energy functional
and can be interpreted for multiple granularity levels:

E(R,T,A,w) = αEdata(R,T) + βEtemp(T)+

γElinking(T,A) + ρEreg(A) + ζ Elifting(T,w).
(1)

All notations used in Eq. (1) will become clear by the
end of this section, with all terms discussed in detail.
See Fig. 1 for an overview of the entire pipeline. During
initialisation, we compute an over-segmentation of the
reference frame and cluster the trajectories. All points
in a segment share common parameters.

The data term constrains segmentwise projections
of the recovered shapes to agree with the 2D measure-
ments:

Edata(R,T) =

F∑
f=1

∥∥∥Wf − π
(

Rf

[
g(Tf

1 ,S1) . . . g(Tf
L,SL)

] )∥∥∥2

ε
,

(2)
where g(Tf

l ,Sl) is an affine 7 DoF transformation Tf
l =

{Rf
l , t

f
l , s

f
l } of segment Sl, l ∈ {1, . . . , L} in frame f ,

with the segment pose Rf
l , translation tfl and scale sfl .

‖·‖ε denotes Huber loss defined as

‖α‖ε =

{
α, for |α| ≤ ε
2
√
α− 1, for |α| > ε.

(3)

Robust norms such as `1 or a Huber norm often lead
to more accurate results in the presence of outliers.

The temporal smoothness term imposes similarity
on reconstructions of adjacent frames. It is expressed
in terms of differences of per-segment frame-to-frame
transformations:

Etemp(T) =

F∑
f=2

L∑
l=1

∥∥∥Φl
f ◦ (Tf

l −Tf−1
l )

∥∥∥2

ε
, (4)



with the per-frame and per-segment weights Φf =

{Φ1,Φ2, . . . ,ΦL} and ◦ denoting Hadamard product.

The Φl
f weights are set from the prior knowledge about

the scene and segment transformations. They can be
also influenced by an indicator of external and self-
occlusions in the scene.

The linking term expresses assumptions about the
deformation complexity of the scene. Here, we rely
on known basis trajectories Θ sampled from discrete
cosine transform (DCT) at regular intervals:

Elinking(S,A) = ‖Ψ− (Θ⊗ I3)3F×3K A3K×L‖2ε , (5)

where Ψ =


g(T1

1,S1) g(T1
2,S2) . . . g(T1

L,SL)
g(T2

1,S1) g(T2
2,S2) . . . g(T2

L,SL)
...

g(TF
1 ,S1) g(TF

2 ,S2) . . . g(TF
L ,SL)

 ,
(6)

and Θ =

θ11 . . . θ1K

...
. . .

...
θF1 . . . θFK

 , with

θfk =
σk√

2
cos
( π

2F
(2f − 1)(k − 1)

)
and

σk =

{
1 if k = 1,√

2 otherwise.

(7)

In Eq. (5), ⊗ denotes Kronecker product and A holds
coefficients of linear combinations which approximate
trajectories of recovered 3D points. The linking term
connects or ”links” the recovered trajectories to un-
known though valid combinations of basis trajectories.

The regularisation term imposes a temporal coher-
ence constraint in terms of discrepancies of 3D trajec-
tories of neighbouring clusters. Since the recovered 3D
trajectories are parameterised by Ak, the regularisa-
tion term can be expressed as

Ereg.(A) =

L∑
l=1

K∑
k=1

w(l) ‖∇Ak,l‖2ε , (8)

where w(l) is a connectivity vector for every Sl. To
compute gradients of trajectory coefficients, Eq. (8) re-
quires segment adjacencies. We compute an adjacency
lookup table from the spatial arrangement of the seg-
ments.

Finally, we propose the lifted weighted Laplacian
term accounting for the spatial segment coherency:

Elifting(T,w) =

F∑
f=1

∑
∀wj,h

(
ζ1
∥∥w2

j,h(Tj −Tk)
∥∥2

2
+ ζ2

∥∥(1− w2
j,h)
∥∥2

2

)
,

(9)
with wj,h = ±1 if two segments move coherently and
wj,h = 0 if two segments belong to unrelated parts of a

scene. If |wj,h| is small, the mutual influence between
Sj and Sh is attenuated. Whether two segments move
coherently or independently, is determined automati-
cally by finding an optimal w. The weights ζ1 and ζ2
— controlling the subterms of the lifting term — are
fixed in all experiments. Solely the ζ weight is varied
depending on assumptions about the scene. Our Elifting

is a robust spatial segment regulariser as w allows for
an approximate detection of topological boundaries.

3.3 Initialisation and Energy Optimisation

We initialise R and S assuming predominant rigid
component in the scene with [26]. The segments are
obtained either with the superpixel approach [18] — if
a reference frame is available — or with a graph-cut
method run on the 3D initialisation [19]. For the refer-
ence frame — which can be any frame of the sequence

— all Tf
l are initialised as R = I, t = 0 und s = 1.

Every segment obtained after rigid initialisation can be
planarised. In the Huber loss, we use ε = 0.1 and set
α = β = γ = ρ = ζ = 1.0, ζ1 = 0.2, ζ2 = 0.8 in
all experiments. The target energy functional (1) con-
tains M = FP + L(10F + 7) residual blocks, i.e., FP
for the data term, (F − 1)L for temporal smoothness,
FL for linking, 8L for regularisation (assuming eight
neighbours per Sl) and 8FL for lifting. In total, there
are Q = 3F +7LF +3KL+8L parameters, i.e., 3F for
global poses, 7LF for segment orientations for every
frame, 3KL for the DCT coefficients and 8L for w.

Let x be a set of unknowns in the target energy
functional. Suppose the residuals are compactly de-
noted by fr(x), r ∈ {1, . . . ,M} and stacked into a
multivariate vector-valued function F(x) : RQ → RM :
F(x) = [f1(x), f2(x), . . . , fr(x)]T. The target non-
linear energy optimisation problem can be compactly
written in terms of x as x′ = arg minx ‖F(x)‖22 . In ev-
ery optimisation step, the objective is linearised in the
vicinity of the current solution xt by the first-order
Taylor expansion: F(x + ∆x) ≈ F(x) + J(x)∆x, with
J(x)M×Q, i.e., the Jacobian of F(x). The per-iteration
convex and overconstrained objective for ∆x reads
min∆x ‖J(x)∆x + F(x)‖2. An optimum is achieved
when the condition J(x)∆x = −F(x) holds, and, in
practice, is computed in the least-squares sense with
Levenberg-Marquardt (LM) algorithm.

4 Experiments

In this section, we describe the results. CMDR is
implemented in C++ for a CPU. As NLLS solver, we
use ceres [27]. We run the experiments on a system
with 24 Gb RAM and a quadcore Intel Xeon v3520
processor achieving 2.67 GHz. If the size of a segment
equals to one point, we refer to the dense per-pixel case.



4.1 Quantitative Evaluation

For the quantitative evaluation, we select two syn-
thetic face sequences with a wide variation of expres-
sions (99 frames, 28887 points per frame) [2], several
sequences from White et al. [28], i.e., coin (a cloth
laid upon a bowl with coins being dropped into the
center of the cloth; 45 frames, 2146 points per frame;
this sequence was used for evaluation in [20]), toss (a
rag being tossed onto a cup, with a large deformation
occurring when the bump is formed on the surface; 26
frames, 1370 points per frame), flag mocap (450 frames,
540 points per frame), synthetic flag (60 frames, 9622
points per frame) [8]. We project the 3D sequences of
White et al. by a smoothly moving virtual camera to
generate the ground truth measurements (an angular
step of 5◦ per axis, with the maximum deviation of
20◦). Next, we adapt the mocap sequence of Valgaerts
et al. [29] so that the ground truth geometry, measure-
ments, corresponding images and masks are available
for every frame. For the modification, we rotate the
ground truth surfaces and project them into an image
plane by ray tracing. The projection of the reference
frame defines the mask. The ground truth optical flow
is obtained as the distances between the projections of
the corresponding points in the image plane. The ob-
tained sequences (actor mocap and actor mocap #2 )
contain 100 frames each, with 3.5·104 points per frame.

We compare several approaches qualitatively in the
dense per-pixel case: Trajectory Basis (TB) [5], Met-
ric Projections (MP) [7], Variational Approach (VA)
[2], Coherent Depth Fields (CDF) [11], Dense Spatio-
Temporal Approach (DSTA) [30], Scalable Monoc-
ular Surface Recovery (SMSR) [24], Grassmannian
Manifold (GM) [25] and the proposed CMDR. We
report mean per-sequence 3D error e3D defined as

e3D = 1
F

∑F
f=1

‖SGT
f −Sf‖F
‖SGT

f ‖F
, where SGTf denotes the f -

th ground truth shape. e3D for TB, VA, MP and DSTA
are replicated from [30], and e3D for CDF and GM are
taken from the respective papers.

Tables 1 and 2 summarise e3D for the synthetic face
data set and the sequences from White et al. [28]. On
the synthetic face, our method achieves the third best
accuracy after SMSR [24] and GM [25]. The differ-
ence in e3D is volatile and smaller compared to the
difference with VA [2] ranked fourth. At the same
time, CMDR outperforms SMSR [24] on the coin, toss,
flag mocap and synthetic flag by a considerable mar-
gin. The Probabilistic Point Trajectory Approach [20]
achieves a slightly lower e3D = 0.057 on coin, but our
tracks and camera poses differ from those used in [20].

Fig. 2 summarises the accuracy, runtime and num-
ber of LM solver iterations as the functions of the seg-
ment size for the actor mocap sequence. The accuracy
variation of CMDR is low — the difference for the seg-
ments with 50 pixels compared to 200 pixels is below
12% while the runtime drops by the factor of six. While

Figure 2: e3D, runtime and number of LM solver iterations
as the functions of the segment size for the actor mocap.

Table 1: Comparison of multiple methods on 99 frames
long synthetic faces from [2], observed by two different cam-
era settings. Our method achieves the third best e3D with
a volatile difference to SMSR [24] and GM [25].

seq. TB
[5]

MP
[7]

VA
[2]

DSTA
[30]

CDF
[11]

SMSR
[24]

GM
[25]

CMDR
(ours)

Seq. 3 0.1252 0.0611 0.0346 0.0374 0.0886 0.0304 0.0294 0.0324
Seq. 4 0.1348 0.0762 0.0379 0.0428 0.0905 0.0319 0.0309 0.0369

Table 2: Comparison of SMSR [24] and CMDR on the
sequences from [28] and [8].

approach coin toss flag
mocap

synth. flag actor
mocap

actor mo-
cap #2

SMSR [24] 0.2424 0.4003 0.196 0.1467 0.054 0.0145
CMDR 0.0696 0.3064 0.0792 0.084 0.0257 0.0228

Table 3: The summary of the ablation study.

seq. all
terms

no
Ereg.

no
Elift.

Edata, Etemp.

and Elift.

Edata,
Etemp.

Seq. 3 0.0627 0.0616 0.0906 0.0622 0.0681
Seq. 4 0.0678 0.0678 0.0967 0.0682 0.0736

segment size increases, the decreasing number of seg-
ments results in a smaller number of variables and the
total number of solver iterations until the convergence
decreases up to the factor of two.

Ablation Study. We perform ablation study by sys-
tematically switching off different combinations of en-
ergy terms in the experiment with the synthetic face.
We obtain the segmentation with the Felzenszwalb’s
method [19] on 3D coordinates, with 40 points per seg-
ment (pps) on average. The results are summarised
in Table 3. The ablation study demonstrates that
all terms are useful and contribute to the accuracy of
CMDR. For seq. 3, all terms except Ereg. result in the
most accurate reconstruction, and the combination of
the data, smoothness and lifting terms also works well.
For seq. 4, all terms on lead to the most accurate recov-
ery, with a slight decay if Ereg. is disabled. Otherwise,
the e3D patterns of both sequences are similar. The
mean CMDR’s runtime amounts to eight minutes.
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Figure 3: Visualisations of selected reconstruction results. For actor mocap [29], results of CMDR for two segment sizes are
shown (57 points per segment (pps) and 212 pps). On synthetic face, no noticeable qualitative difference between VA [2],
SMSR [24] and CMDR is observed. On toss, SMSR shows a lower accuracy than CMDR due to a less accurate initialisation,
as one of the reasons. For back [31], face [2], barn owl [32] and heart surgery [33], CMDR outputs highly realistic results
while reducing the runtime by the factor of six compared to the dense per point case. Note smooth spatial transitions
between the segments. Orientations of the segments cause slightly different hues of neighbouring segments.

4.2 Experiments with Real Data

Fig. 3 visualises selected experimental results. On
the actor mocap, we see qualitatively that CMDR is
well-posed w.r.t. the segment size, i.e., the reconstruc-
tions are similar and accurately resemble the ground
truth irrespective of the segment size. The minor differ-
ences in e3D arise due to the varying segment granular-

ity. For the synthetic faces, there is no noticeable qual-
itative difference for VA [2], SMSR [24] and CMDR.
Compared to SMSR, CMDR captures the rag defor-
mations in the toss sequence more accurately. Addi-
tionally, we show the efficiency of CMDR in different
real-world scenarios with face [2], back [31], barn owl
[32] and heart surgery [33] sequences. As only images
are initially available, we compute dense point tracks



by multiframe optical flow with subspace constraints
and explicit handling of small occlusions [9]. CMDR
captures realistic geometry in all scenes, see Fig. 3.
We set the average segment size to 57 pixels. In back,
the segments are visible only under a close look. In the
remaining sequences, the surfaces are moderately inho-
mogeneous. Since the segments are planarised and due
to differing surface orientations, variations in segment
hues are observed. Those, on the one hand, do not sub-
stantially affect the perception, and, on the other hand,
can be alleviated by surface smoothing (currently not
applied), if necessary. The cardiac cycle is distinctly
perceptible in the reconstructions of the heart surgery.

5 Conclusion

The proposed CMDR consolidates various principles
for dense NRSfM into a unified energy-based frame-
work. Along with the data term and trajectory regu-
larisation as a deformation model, we propose weighted
temporal smoothness, trajectory regularisation and the
new segment lifting terms. The ablation study has
shown that all terms contribute to the accuracy of the
method. CMDR achieves high reconstruction accuracy
on multiple synthetic and real data sets while bringing
the advantage of scalability thanks to segments. One
of the promising directions for future work is automatic
handling of topological boundaries and we are currently
working on adapting CMDR for endoscopic scenarios
on parallel hardware.
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