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Abstract

The high frame rate is a critical requirement for cap-
turing fast human motions. In this setting, existing mark-
erless image-based methods are constrained by the light-
ing requirement, the high data bandwidth and the conse-
quent high computation overhead. In this paper, we pro-
pose EventCap — the first approach for 3D capturing of
high-speed human motions using a single event camera.
Our method combines model-based optimization and CNN-
based human pose detection to capture high frequency mo-
tion details and to reduce the drifting in the tracking. As
a result, we can capture fast motions at millisecond resolu-
tion with significantly higher data efficiency than using high
frame rate videos. Experiments on our new event-based fast
human motion dataset demonstrate the effectiveness and ac-
curacy of our method, as well as its robustness to challeng-
ing lighting conditions.

1. Introduction
With the recent popularity of virtual and augmented re-

ality (VR and AR), there has been a growing demand for
reliable 3D human motion capture. As a low-cost alterna-
tive to the widely used marker- and sensor-based solutions,
markerless video-based motion capture alleviates the need
for intrusive body-worn motion sensors and markers. This
research direction has received increased attention over the
last years [13, 21, 53, 63, 69].

In this paper, we focus on markerless motion capture
for high-speed movements, which is essential for many ap-
plications such as training and performance evaluation for
gymnastics, sports and dancing. Capturing motion at a high
frame rate leads to a very high data bandwidth and algo-
rithm complexity for the existing methods. While the cur-
rent marker- and sensor-based solutions can support more
than 400 frames per second (fps) [62, 65, 43], the literature
on markerless high frame rate motion capture is sparse.

Figure 1: We present the first monocular event-based 3D human motion
capture approach. Given the event stream and the low frame rate intensity
image stream from a single event camera, our goal is to track the high-
speed human motion at 1000 frames per second.

Several recent works [30, 72] revealed the importance of
the high frame rate camera systems for tracking fast mo-
tions. However, they still suffer from the aforementioned
fundamental problem — the high frame rate leads to exces-
sive amounts of raw data and large bandwidth requirement
for data processing (e.g., capturing RGB stream of VGA
resolution at 1000 fps from a single view for one minute
yields 51.5GB of data). Moreover, both methods [30, 72]
assume 1) well-lit scenarios for compensating the short ex-
posure time at high frame rate, and 2) indoor capture due to
the limitation of the IR-based depth sensor.

In this paper, we propose a rescue to the problems out-
lined above by using an event camera. Such bio-inspired
dynamic vision sensors [32] asynchronously measure per-
pixel intensity changes and have multiple advantages over
conventional cameras, including high temporal resolution,
high dynamic range, low power consumption and low data
bandwidth. These properties potentially allow capturing
very fast motions with significantly higher data efficiency
in general lighting conditions. Nevertheless, using the
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event camera for motion capture is challenging. First, the
high temporal resolution leads to very sparse measurements
(events) in each frame interval, since the inter-frame inten-
sity changes are subtle. The resulting low signal-to-noise
ratio (SNR) makes it difficult to track the motion robustly.
Second, since the event stream only encodes temporal in-
tensity changes, it is difficult to initialize the tracking and
prevent drifting. A naı̈ve solution is to reconstruct images at
a high frame rate by accumulating the events and apply ex-
isting methods on the reconstructed images. Such a policy
makes the data dense again, and the temporal information
encoded in the events is lost.

To tackle these challenges, we propose EventCap – the
first monocular event-based 3D human motion capture ap-
proach (see Fig. 1 for an overview). More specifically, we
design a hybrid and asynchronous motion capture algorithm
that leverages the event stream and the low frame rate inten-
sity image stream from the event camera in a joint optimiza-
tion framework. Our method consists of three stages: First,
we track the events in 2D space in an asynchronous manner
and reconstruct the continuous spatio-temporal event trajec-
tories between each adjacent intensity image frames. By
evenly slicing the continuous event trajectories, we achieve
2D event tracking at the desired high frame rate. Second, we
estimate the 3D motion of the human actor using a batch-
based optimization algorithm. To tackle drifting due to the
accumulation of tracking errors and depth ambiguities in-
herent to the monocular setting, our batch-based optimiza-
tion leverages not only the tracked event trajectories but also
the CNN-based 2D and 3D pose estimation from the inten-
sity images. Finally, we refine the captured high-speed mo-
tion based on the boundary information obtained from the
asynchronous event stream. To summarise, the main con-
tributions of this paper include:

• We propose the first monocular approach for event
camera-based 3D human motion capture.

• To tackle the challenges of low signal-to-noise ratio
(SNR), drifting and the difficulty in initialization, we
propose a novel hybrid asynchronous batch-based op-
timization algorithm.

• We propose an evaluation dataset for event camera-
based fast human motion capture and provide high-
quality motion capture results at 1000 fps. The dataset
will be publicly available.

2. Related Work

3D Human Motion Capture. Marker-based multi-view
motion capture studios are widely used in both indus-
try and academia [65, 62, 43], which can capture fast
motions at high frame rate (e.g., 960 fps [43]). Those
systems are usually costly, and it is quite intrusive for

the users to wear the marker suites. Markerless multi-
camera motion capture algorithms overcome these prob-
lems [5, 57, 67, 66, 22, 16, 50, 51, 53, 25, 68]. Recent
work [2, 6, 14, 46, 47, 41, 52] even demonstrates robust
out-of-studio motion capture. Although the cost is drasti-
cally reduced, synchronizing and calibrating multi-camera
systems is still cumbersome. Furthermore, when capturing
fast motion at high frame rate [30], a large amount of data
from multiple cameras becomes a bottleneck not only for
the computation but also for data processing and storage.

The availability of commodity depth cameras enabled
low-cost motion capture without complicated multi-view
setups [49, 3, 64, 71, 19]. To capture fast motions, Yuan et
al. [72] combine a high frame rate action camera with a
commodity 30 fps RGB-D camera, resulting in a synthetic
depth camera of 240 fps. However, the active IR-based cam-
eras are unsuitable for outdoor capture, and their high power
consumption limits the mobile application.

Recently, purely RGB-based monocular 3D human pose
estimation methods have been proposed with the advent of
deep neural networks [23, 48, 11, 60, 29]. These meth-
ods either regress the root-relative 3D positions of body
joints from single images [31, 55, 73, 34, 56, 40, 35], or
lift 2D detection to 3D [4, 74, 10, 70, 24]. The 3D po-
sitional representation used in those works is not suitable
for animating 3D virtual characters. To solve this problem,
recent works regress joint angles directly from the images
[26, 28, 38, 42, 54]. In theory, these methods can be applied
directly on high frame rate video for fast motion capture.
However, in practice, the tracking error is typically larger
than the inter-frame movements, which leads to the loss of
fine-level motion details. Methods combining data-driven
3D pose estimation and image-guided registration allevi-
ate this problem and can achieve higher accuracy [69, 20].
However, data redundancy is still an issue. Furthermore,
when capturing a high frame rate RGB video, the scene
has to be well-lit, since the exposure time cannot be longer
than the frame interval. Following [69], we combine data-
driven method with batch optimization. Differently, instead
of using high frame rate RGB video, we leverage the event
stream and the low frame rate intensity image stream from
an event camera. Compared to RGB-based methods, our
approach is more data-efficient and works well in a broader
range of lighting conditions.
Tracking with Event Cameras. Event cameras are caus-
ing a paradigm shift in computer vision, due to their high
dynamic range, absence of motion blur and low power con-
sumption. For a detailed survey of the event-based vision
applications, we refer to [17]. Event-based object tracking
is the most closely related to our approach.

The specific characteristics of the event camera make it
very suitable for tracking fast moving objects. Most of the
related works focus on tracking 2D objects like known 2D

2



Figure 2: The pipeline of EventCap for accurate 3D human motion capture at a high frame rate. Assuming the hybrid input from a single event camera and
a personalized actor rig, we first generate asynchronous event trajectories (Sec. 3.1). Then, the temporally coherent per-batch motion is recovered based on
both the event trajectories and human pose detections (Sec. 3.2). Finally, we perform event-based pose refinement (Sec. 3.3).

templates [37, 36], corners [61] and lines [15]. Piatkowska
et al. [44] propose a technique for multi-person bounding
box tracking from a stereo event camera. Valeiras et al. [59]
track complex objects like human faces with a set of Gaus-
sian trackers connected with simulated springs.

The first 3D tracking method was proposed in [45],
which estimates 3D pose estimation of rigid objects. Start-
ing from a known object shape in a known pose, their
method incrementally updates the pose by relating events
to the closest visible object edges. Recently, Calabrese et
al. [7] provide the first event-based 3D human motion cap-
ture method based on multiple event cameras. A neural net-
work is trained to detect 2D human body joints using the
event stream from each view. Then, the 3D body pose is es-
timated through triangulation. In their method, the events
are accumulated over time, forming image frames as in-
put to the network. Therefore, the asynchronous and high
temporal resolution natures of the event camera are under-
mined, which prevents the method from being used for high
frame rate motion capture.

3. EventCap Method

Our goal in this paper is to capture high-speed human
motion in 3D using a single event camera. In order to faith-
fully capture the fine-level details in the fast motion, a high
temporal resolution is necessary. Here, we aim at a tracking
frame rate of 1000 fps.

Fig. 2 provides an overview of EventCap. Our method
relies on a pre-processing step to reconstruct a template
mesh of the actor. During tracking, we optimize the skele-
ton parameters of the template to match the observation of
a single event camera, including the event stream and the
low frame rate intensity image stream. Our tracking algo-
rithm consists of three stages: First, we generate sparse

event trajectories between two adjacent intensity images,
which extract the asynchronous spatio-temporal informa-
tion from the event stream (Sec. 3.1). Then, a batch opti-
mization scheme is performed to optimize the skeletal mo-
tion at 1000 fps using the event trajectories and the CNN-
based body joint detection from the intensity image stream
(Sec. 3.2). Finally, we refine the captured skeletal motion
based on the boundary information obtained from the asyn-
chronous event stream (Sec. 3.3).

Template Mesh Acquisition. We use a 3D body scan-
ners [58] to generate the template mesh of the actor. To
rig the template mesh with a parametric skeleton, we fit
the Skinned Multi-Person Linear Model (SMPL)[33] to the
template mesh by optimizing the body shape and pose pa-
rameters, and then transfer the SMPL skinning weights to
our scanned mesh. One can also use image-based human
shape estimation algorithms, e.g. [26], to obtain a SMPL
mesh as the template mesh, if the 3D scanner is not avail-
able. A comparison of these two methods is provided in
Sec. 4.1. To resemble the anatomic constraints of body
joints, we reduce the degrees of freedom of the SMPL skele-
ton. Our skeleton parameter set S = [θ,R, t] includes the
joint angles θ ∈ R27 of the NJ joints of the skeleton, the
global rotation R ∈ R3 and translation t ∈ R3 of the root.

Event Camera Model. Event cameras are bio-inspired
sensors that measure the changes of logarithmic bright-
ness L(u, t) independently at each pixel and provide an
asynchronous event stream at microsecond resolution. An
event ei = (ui, ti, ρi) is triggered at pixel ui at time ti
when the logarithmic brightness change reaches a thresh-
old: L(ui, ti)−L(ui, tp) = piC, where tp is the timestamp
of the last event occurred at ui, pi ∈ {−1, 1} is the event
polarity corresponding to the threshold ±C. Besides the
event stream, the camera also produces an intensity image
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stream at a lower frame rate, which can be expressed as an
average of the latent images during the exposure time:

I(k) = 1

T

∫ tk+T/2

tk−T/2

exp(L(t))dt, (1)

where tk is the central timestamp of the k-th intensity image
and T is the exposure time. Note that I(k) can suffer from
severe motion blur due to high-speed motions.

3.1. Asynchronous Event Trajectory Generation

A single event does not carry any structural information
and therefore tracking based on isolated events is not robust.
To extract the spatio-temporal information from the event
stream, in the time interval [tk, tk+1] (denoted as the k-th
batch) between adjacent intensity images I(k) and I(k+1),
we use [18] to track the photometric 2D features in an asyn-
chronous manner, resulting in the sparse event trajectories
{T (h)}. Here, h ∈ [1, H] denotes the temporal 2D pixel
locations of all the H photometric features in the current
batch, which are further utilized to obtain correspondences
to recover high-frequency motion details.
Intensity Image Sharpening. Note that [18] relies on sharp
intensity images for gradient calculation. However, the in-
tensity images suffer from severe motion blur due to the
fast motion. Thus, we first adopt the event-based double
integral (EDI) model [39] to sharpen the images I(k) and
I(k+1). A logarithmic latent imageL(t) can be formulated
as L(t) = L(tk) + E(t), where E(t) =

∫ t

tk
pi(s)Cδ(s)ds

denotes continuous event accumulation. By aggregating the
latent image I(k) (see Eq. (1)) and the logarithmic intensity
changes, we follow [39] obtain the sharpened image:

L(tk) = log
(
I(k)

)
−log

(
1

T

∫ tk+T/2

tk−T/2

exp
(
E(t)

)
dt

)
. (2)

We extract 2D features from the sharpened images L(tk)
and L(tk+1) instead of the original blurry images.
Forward and Backward Alignment. The feature tracking
can drift over time. To reduce the tracking drifting, we ap-
ply the feature tracking method both forward from L(tk)
and backward from L(tk+1). As illustrated in Fig. 3, the
bidirectional tracking results are stitched by associating the
closest backward feature position to each forward feature
position at the central timestamp (tk + tk+1)/2. The stitch-
ing is not applied if the 2D distance between the two asso-
ciated locations is farther than a pre-defined threshold (four
pixels). For the h-th stitched trajectory, we fit a B-spline
curve to its discretely tracked 2D pixel locations in a batch
and calculate a continuous event feature trajectory T (h).
Trajectory Slicing. In order to achieve motion capture at
the desired tracking frame rate, e.g. 1000 fps, we evenly
slice the continuous event trajectory T (h) at each millisec-
ond time stamp (see Fig. 3). Since we perform tracking

Figure 3: Illustration of asynchronous event trajectories between two adja-
cent intensity images. The green and orange curves represent the forward
and backward event trajectories of exemplary photometric features. The
blue circles denote alignment operation. The color-coded circles below
indicate the 2D feature pairs between adjacent tracking frames.

on each batch independently, for simplification we omit the
subscript k and let 0, 1, ..., N denote the indexes of all the
tracking frames for the current batch, where N equals to
the desired tracking frame rate divided by the frame rate of
the intensity image stream. Thus, the intensity images I(k)
and I(k + 1) are denoted as I0 and IN for short, and the
corresponding latent images as L0 and LN .

3.2. Hybrid Pose Batch Optimization

Next, we jointly optimize all the skeleton poses S =
{Sf}, f ∈ [0, N ] for all the tracking frames in a batch.
Our optimization leverages the hybrid input modality from
the event camera. That is, we leverage not only the event
feature correspondences obtained in Sec. 3.1, but also the
CNN-based 2D and 3D pose estimates to tackle the drifting
due to the accumulation of tracking errors and the inherent
depth ambiguities of the monocular setting. We phrase the
pose estimation across a batch as a constrained optimization
problem:

S∗ = argmin
S

Ebatch(S)

s.t. θmin ≤ θf ≤ θmax, ∀f ∈ [0, N ],
(3)

where θmin and θmax are the pre-defined lower and up-
per bounds of physically plausible joint angles to prevent
unnatural poses. Our per-batch objective energy functional
consists of four terms:

Ebatch(S) =λcorEcor + λ2DE2D+

λ3DE3D + λtempEtemp.
(4)

Event Correspondence Term. The event correspondence
term exploits the asynchronous spatio-temporal motion in-
formation encoded in the event stream. To this end, for the
i-th tracking frame in a batch, we first extract the event cor-
respondences from the sliced trajectories on two adjacent
frames i − 1 and i + 1, as shown in Fig. 3. This forms
two sets of event correspondences Pi,i−1 and Pi,i+1, where
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Pi,∗ = {(pi,h, p∗,h)}, h ∈ [1, H]. The term encourages the
2D projection of the template meshes to match the two sets
of correspondences:

Ecor(S) =
N−1∑
i=1

∑
j∈{i−1,i+1}

H∑
h=1

τ(pi,h)‖π(vi,h(Sj))− pj,h‖22,

(5)
where τ(pi,h) is the indicator which equals to 1 only if the
2D pixel pi,h corresponds to a valid vertex of the mesh at
the i-th tracking frame; vi,h(Sj) is the corresponding vertex
on the mesh in the skeletal pose Sj and π : R3 → R2 is
the perspective projection operator from 3D space to the 2D
image plane.
2D and 3D Detection Terms. These terms encourage the
posed skeleton to match the 2D and 3D body joint detection
obtained by CNN from the intensity images. To this end, we
apply VNect [35] and OpenPose [8] on the intensity images
to estimate the 3D and 2D joint positions, denoted as P3D

f,l

and P2D
f,l , respectively, where f ∈ {0, N} is the frame in-

dex, and l is the joint index. Beside the body joints, We also
use the four facial landmarks from the OpenPose [8] detec-
tion to recover the face orientation. The 2D term penalizes
the differences between the projection of the landmarks of
our model and the 2D detection:

E2D(S) =
∑

f∈{0,N}

NJ+4∑
l=1

‖π(Jl(Sf ))− P2D
f,l ‖22, (6)

where Jl(·) returns the 3D position of the l-th joint or face
marker using the kinematic skeleton. Our 3D term aligns
the model joints and 3D detection:

E3D(S) =
∑

f∈{0,N}

NJ∑
l=1

‖Jl(Sf )− (P3D
f,l + t′)‖22, (7)

where t′ ∈ R3 is an auxiliary variable that transforms P3D
f,l

from the root-centred to the global coordinate system [69].
Temporal Stabilization Term. Since only the moving
body parts can trigger events, so far, the non-moving body
parts are not constrained by our energy function. Therefore,
we introduce a temporal stabilization constraint for the non-
moving body parts. This term penalizes the changes in joint
positions between the current and previous tracking frames:

Etemp(S) =
N−1∑
i=0

NJ∑
l=1

φ(l)‖Jl(Si)− Jl(Si+1)‖22, (8)

where the indicator φ(·) equals to 1 if the corresponding
body part is not associated with any event correspondence,
and equals 0 otherwise.
Optimization. We solve the constrained optimization prob-
lem (3) using the Levenberg-Marquardt (LM) algorithm of

(a) (b) (c)
Figure 4: Event-based pose refinement. (a) Polarities and color-coded nor-
malized distance map ranging from 0 (blue) to 1 (red). (b, c) The skeleton
overlapped with the latent image before and after the refinement. Yellow
arrows indicate the refined boundaries and exemplary 2D correspondences.

ceres [1]. For initialization, we minimize the 2D and 3D
joint detection termsE2D+E3D to obtain the initial values
of S0 and SN , and then linearly interpolate S0 and SN to
obtain the initial values of all the tracking frames {Sf} in
the current batch proportional to their timestamps.

3.3. Event-Based Pose Refinement

Most of the events are triggered by the moving edges
in the image plane, which have a strong correlation with
the actor’s silhouette. Based on this finding, we refine our
skeleton pose estimation in an Iterative Closest Point (ICP)
[12] manner. In each ICP iteration, we first search for the
closest event for each boundary pixel of the projected mesh.
Then, we refine the pose Sf by solving the non-linear least
squares optimization problem:

Erefine(Sf ) = λsilEsil(Sf ) + λstabEstab(Sf ). (9)

Here, we enforce the refined pose to stay close to its initial
position using the following stability term:

Estab(Sf ) =

NJ∑
l=1

‖Jl(Sf )− Ji(Ŝf )‖22, (10)

where Ŝf is the skeleton pose after batch optimization (Sec.
3.2). The data term Esil relies on the closest event search,
which we will describe later. Let sb and vb denote the b-
th boundary pixel and its corresponding 3D position on the
mesh based on barycentric coordinates. For each sb, let ub
denote the corresponding target 2D position of the closest
event. Then Esil measures the 2D point-to-plane misalign-
ment of the correspondences:

Esil(Sf ) =
∑
b∈B

‖nT
b

(
π(vb(Sf )− ub)

)
‖22, (11)

where B is the boundary set of the projected mesh and nb ∈
R2 is the 2D normal vector corresponding to sb.
Closest Event Search. Now we describe how to obtain the
closest event for each boundary pixel sb. The criterion for
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Figure 5: Qualitative results of EventCap on some sequences from our benchmark dataset, including “wave”, “ninja”, “javelin”, “boxing”, “karate” and
“dancing” from the upper left to lower right. (a) The reference RGB image (not used for tracking); (b) Intensity images and the accumulated events; (c,d)
Motion capture results overlaid on the reconstructed latent images; (e,f) Results rendered in 3D views.

the closest event searching is based on the temporal and spa-
tial distance between sb and each recent event e = (u, t, ρ):

D(sb, e) = λdist‖
tf − t
tN − t0

‖22 + ‖sb − u‖22, (12)

where tf is the timestamp of the current tracking frame,
λdist balances the weights of temporal and spatial distances,
and tN − t0 equals to the time duration of a batch. We then
solve the following local searching problem to obtain the
closest event for each boundary pixel sb:

eb = argmin
e∈P

D(sb, e). (13)

Here, P is the collection of events, which happen within a
local 8× 8 spatial patch centred at sb and within the batch-
duration-sized temporal window centered at tf . The posi-
tion ub of the closest event eb is further utilized in Eq. (11).
Optimization. During the event-based refinement, we ini-
tialize Sf with the batch-based estimates and typically per-
form four ICP iterations. In each iteration, the energy in
Eq. (9) is solved using the LM method provided by ceres
[1]. As shown in Figs. 4(b) and 4(c), our iterative refinement
based on the event stream improves the pose estimates.

4. Experimental Results
In this section, we evaluate our EventCap method on a

variety of challenging scenarios. We run our experiments
on a PC with 3.6 GHz Intel Xeon E5-1620 CPU and 16GB
RAM. Our unoptimized CPU code takes 4.5 minutes for a
batch (i.e. 40 frames or 40ms), which divides to 30 seconds
for the event trajectory generation, 1.5 minutes for the batch
optimization and 2.5 minutes for the pose refinement. In all
experiments, we use the following empirically determined
parameters: λ3D = 1, λ2D = 200, λadj = 50, λtemp = 80,
λsil = 1.0, λstab = 5.0, and λdist = 4.0.

EventCap Dataset. To evaluate our method, we propose a
new benchmark dataset for monocular event-based 3D mo-
tion capture, consisting of 12 sequences of 6 actors perform-
ing different activities, including karate, dancing, javelin
throwing, boxing, and other fast non-linear motions. All
our sequences are captured with a DAVIS240C event cam-
era, which produces an event stream and a low frame rate
intensity image stream (between 7 and 25 fps) at 240× 180
resolution. For reference, we also capture the actions with
a Sony RX0 camera, which produces a high frame rate (be-
tween 250 and 1000 fps) RGB videos at 1920 × 1080 res-
olution. In order to perform a quantitative evaluation, one
sequence is also tracked with a multi-view markerless mo-
tion capture system [9] at 100 fps.

Fig. 5 shows several example frames of our EventCap
results on the proposed dataset. For qualitative evaluation,
we reconstruct the latent images at 1000 fps from the event
stream using the method of [39]. We can see in Fig. 5 that
our results can be precisely overlaid on the latent images (c-
d), and that our reconstructed poses are plausible in 3D (e-
f). The complete motion capture results are provided in our
supplementary video. From the 1000 fps motion capture re-
sults, we can see that our method can accurately capture the
high-frequency temporal motion details, which cannot be
achieved by using standard low fps videos. Benefiting from
the high dynamic range of the event camera, our method
can handle various lighting conditions, even many extreme
cases, such as the actor in black ninja suite captured out-
door in the night (see Fig. 5 top right). While it is already
difficult for human eyes to spot the actor in the reference
images, our method still yields plausible results.

4.1. Ablation Study

In this section, we evaluate the individual components
of EventCap. Let w/o batch and w/o refine denote the
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Figure 6: Ablation study for the EventCap components. In the second
column, polarity events are accumulated between the time duration from
the previous to the current tracking frames. Results of the full pipeline
overlay more accurately with the latent images.

Figure 7: Ablation study: the average per-joint 3D error demonstrates
the effectiveness of each algorithmic component of EventCap. Our full
pipeline consistently achieves the lowest error.

variations of our method without the batch optimization
(Sec. 3.2) and the pose refinement (Sec. 3.3), respectively.
For w/o batch, we optimize the pose for each tracking frame
t ∈ [0, N ] independently. The skeleton poses St are ini-
tialized with linear interpolation of the poses obtained from
the two adjacent intensity images I0 and IN . As shown in
Fig. 6, the results of our full pipeline are overlaid on the
reconstructed latent images more accurately than those of
w/o batch and w/o refine (the full sequence can be found
in our supplementary video). We can see that, benefiting
from the integration of CNN-based 2D and 3D pose estima-
tion and the event trajectories, our batch optimization sig-
nificantly improves the accuracy and alleviated the drifting
problem. Our pose refinement further corrects the remain-
ing misalignment, resulting in a better overlay on the recon-
structed latent images.

This is further evidenced by our quantitative evaluation
in Fig. 7, where we obtain ground truth 3D joint positions
using a multi-view markerless motion capture software [9].
Then, we compute the average per-joint error (AE) and the
standard deviation (STD) of AE on every 10th tracking
frame, because our tracking frame rate is 1000 fps while
the maximum capture frame rate of [9] is 100 fps. Fol-
lowing [69], to factor out the global pose, we perform Pro-

Figure 8: Influence of the template mesh accuracy. Our results using a pre-
scanned template and using SMPL mesh are comparable, while the more
accurate 3D scanned template improves the overlay on the latent images.

Figure 9: Quantitative analysis of the template mesh. The more accurate
template improves the tracking accuracy in terms of average per-joint error.

crustes analysis to rigidly align our results to the ground
truth. Fig. 7 shows our full pipeline consistently outper-
forms the baselines on all frames, yielding both the lowest
AE and the lowest STD. This not only highlights the con-
tribution of each algorithmic component but also illustrates
that our approach captures more high-frequency motion de-
tails in fast motions and achieves temporally more coherent
results.

We further evaluate the influence of the template mesh
accuracy. To this end, we compare the result using SMPL
mesh from image-based body shape estimation [26] (de-
noted as w/o preScan) against that using more accurate 3D
scanned mesh (denoted as with preScan). As shown in
Fig. 8, the two methods yield comparable pose estimation
results, while the 3D scanned mesh helps in terms of an im-
age overlay since the SMPL mesh cannot model the clothes.
Quantitatively, the method using 3D scanned mesh achieves
a lower AE (73.72mm vs 77.88mm) as shown in Fig. 9.

4.2. Comparison to Baselines

To the best of our knowledge, our approach is the first
monocular event-based 3D motion capture method. There-
fore, we compare to existing monocular RGB-based ap-
proaches, HMR [26] and MonoPerfCap [69], which are
most closely related to our approach. For a fair com-
parison, we first reconstruct the latent intensity images
at 1000 fps using [39]. Then, we apply HMR [27]
and MonoPerfCap1 [69] on all latent images, denoted as
HMR all and Mono all, respectively. We further apply
MonoPerfCap [69] and HMR [27] only on the raw in-
tensity images of low frame rate and linearly upsample

1Only the pose optimization stage of MonoPerfCap is used, as their
segmentation does not work well on the reconstructed latent images.
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Figure 10: Qualitative comparison. Note that the polarity events are accu-
mulated between the time duration from the previous to the current track-
ing frames. Our results overlay better with the latent images than the re-
sults of other methods.

AE all (mm) AE raw
(mm)

AE nonRaw
(mm)

Size sec
(MB)

Mono linear 88.6±17.3 89.2±19.7 88.5±16.8 1.83
Mono all 98.4±22.8 90.2±21.4 99.8±23.0 58.59

HMR linear 105.3±19.2 104.3±20.6 105.4±19.1 1.83
HMR all 110.3±20.4 105.5±19.5 105.4±20.4 58.59

Ours 73.7±11.8 75.2±13.3 73.5±11.3 2.02

Table 1: Quantitative comparison of several methods in terms of tracking
accuracy and data throughput.

the skeleton poses to 1000 fps, denoted as Mono linear
and HMR linear, respectively. As shown in Fig. 10, both
HMR all and Mono all suffer from inferior tracking results
due to the accumulated error of the reconstructed latent im-
ages, while Mono linear and HMR linear fail to track the
high-frequency motions. In contrast, our method achieves
significantly better tracking results and more accurate over-
lay with the latent images. For quantitative comparison,
we make use of the sequence with available ground truth
poses (see Sec. 4.1). In Table 1, we report the mean AE
of 1) all tracking frames (AE all), 2) only the raw intensity
frames (AE raw), and 3) only the reconstructed latent im-
age frames (AE nonRaw). We also report the data through-
put as the size of processed raw data per-second (Size sec)
for different methods. These quantitative results illustrate
that our method achieves the highest tracking accuracy in
our high frame rate setting. Furthermore, our method uses
only 3.4% of the data bandwidth required in the high frame
rate images setting (HMR all and Mono all), or only 10%
higher compared to the low frame rate upsampling setting
(Mono linear and HMR linear).

Furthermore, we apply MonoPerfCap [69] and HMR
[27] to the high frame rate reference RGB images directly,
denoted as HMR refer and Mono refer, respectively. Due
to the difference of image resolution between the reference
and the event cameras, for a fair comparison, we downsam-
ple the reference images into the same resolution of the in-
tensity image from the event camera. As shown in Fig. 11,

Figure 11: Qualitative comparison. Our results yield similar and even
better overlay with the reference image, compared to results of Mono refer
and HMR refer, respectively.

AE all (mm) STD (mm) Size sec (MB)

Mono refer 76.5 13.4 58.59
HMR refer 83.5 17.8 58.59

Ours 73.7 11.8 2.02

Table 2: Quantitative comparison against Mono refer and HMR refer in
terms of tracking accuracy and data throughput.

our method achieves similar overlap to the reference image
without using the high frame rate reference images. The
corresponding AE and STD for all the tracking frames, as
well as the Size sec are reported in Table 2. Note that our
method relies upon only 3.4% of the data bandwidth of the
reference image-based methods, and even achieves better
tracking accuracy compared to Mono refer and HMR refer.

5. Discussion and Conclusion

Limitations. Our approach shares a few common limita-
tions with other monocular motion capture methods, such
as being not able to handle topology change and severe
(self-)occlusion. Besides, our approach requires a stable
capture background and cannot handle the challenging sce-
narios like sudden lighting changes or moving the camera,
which will lead to a large amount of noise events. In future
work, we intend to investigate handling large occlusions and
topological changes and improve the runtime performance.
Conclusion. We have presented the first approach for mark-
erless 3D human motion capture using a single event cam-
era and a new dataset with high-speed human motions. Our
batch optimization makes full usage of the hybrid image and
event streams, while the captured motion is further refined
with a new event-based pose refinement approach. Our ex-
perimental results demonstrate the effectiveness and robust-
ness of EventCap in capturing fast human motions in var-
ious scenarios. We believe that it is a significant step to
enable markerless capturing of high-speed human motions,
with many potential applications in AR and VR, gaming,
entertainment and performance evaluation for gymnastics,
sports and dancing.
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