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4

5 minute break

¥
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¥

‘ Future Directions ‘
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Motivation & Applications

The world is dynamic! Needs to be modelled in various applications.
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Motivation & Applications
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Motivation & Applications

Recent advances are making non-rigid 3D reconstruction methods more and more powerful! ‘
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Scope
Recent Trends in 3D Reconstruction of General Non-Rigid Scenes
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Scope
Recent Trends in 3D Reconstruction of General Non-Rigid Scenes

e v

e Focus on methods that consider non-rigid
deformations during reconstruction
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Scope
Recent Trends in 3D Reconstruction of Non-Rigid Scenes
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e Focus on methods that consider non-rigid
deformations during reconstruction
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e No domain-specific methods
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-> Covers methods mostly from the last
three years

-=> Werefer to older Eurographics STARs
for a survey of earlier techniques:

e Focus on methods that consider non-rigid
deformations during reconstruction
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SMPL FLAME

e No domain-specific methods

Tewari et al. (2022) Tretschk et al. (2023)
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State-of-the-Art Report
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State-of-the-Art Report

Over 150 methods divided into four categories

© Eurographics Conference 2024. All rights preserved.

11



State-of-the-Art Report

‘ Over 150 methods divided into four categories ‘
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State-of-the-Art Report

For this talk, we will look at three main trends from these four categories
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Trends
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Trends

1. Speed and Quality Advancements
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Trends

1. Speed and Quality Advancements

2. Handling of Large Deformations / Long-Term 3D Correspondences
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Trends

1. Speed and Quality Advancements

2. Handling of Large Deformations / Long-Term 3D Correspondences

3. Modelling Articulated Motion for General Objects
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Trends

First, let’s have a brief look at the different aspects of non-rigid 3D reconstruction
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Task
Non-Rigid 3D Reconstruction and View Synthesis
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Task
Non-Rigid 3D Reconstruction and View Synthesis

Time

Observations
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Sensors and Capture Settings

© Eurographics Conference 2024. All rights preserved.

21



Sensors and Capture Settings

Passive Depth
Structured Depth

Time-of-Flight

Depth

Event

Sensor Types
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Sensors and Capture Settings
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Sensors and Capture Settings
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Sensors and Capture Settings

Determine the difficulty of reconstruction and influence quality

More prior information is required when observations are sparse
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Task
Non-Rigid 3D Reconstruction and View Synthesis

Time

Observations
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Task

Non-Rigid 3D Reconstruction and View Synthesis

Time

Observations

Model

4D Representation (3D + time)
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Task

Non-Rigid 3D Reconstruction and View Synthesis

— Model

Time

Observations

Geometry

g

4D Representation (3D + time)

© Eurographics Conference 2024. All rights preserved.

28



Task

Non-Rigid 3D Reconstruction and View Synthesis

Geometry
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Mesh
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4D Representation (3D + time)
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Task

Non-Rigid 3D Reconstruction and View Synthesis

— Model

Time
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4D Representation (3D + time)
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Task

Non-Rigid 3D Reconstruction and View Synthesis

Time

Observations

Appearance N Geometry

Model

4D Representation (3D + time)
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Task

Non-Rigid 3D Reconstruction and View Synthesis
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Task

Non-Rigid 3D Reconstruction and View Synthesis
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Task

Non-Rigid 3D Reconstruction and View Synthesis

Time

Observations

Appearance N Geometry

Model

4D Representation (3D + time)
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Task

Non-Rigid 3D Reconstruction and View Synthesis

Time

Observations

Appearance N Geometry

Deformation

Model

4D Representation (3D + time)
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Task
Non-Rigid 3D Reconstruction and View Synthesis

Appearance . Geometry
Direct X = f(x)
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Task

Non-Rigid 3D Reconstruction and View Synthesis

Time

Observations

Appearance N Geometry

Deformation

Model

4D Representation (3D + time)
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Task
Non-Rigid 3D Reconstruction and View Synthesis

Appearance N Geometry <

Reconstruction:
Optimize the model to fit
observations

> Deformation

—Pp | Model | —p

Time

Observations 4D Representation (3D + time)
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Task
Non-Rigid 3D Reconstruction and View Synthesis

Appearance . Geometry
~ o
Reconstruction: N

Optimize the model to fit
observations

Deformation

—Pp | Model | —p

Challenges:
e Depth Ambiguity

e Occlusions
Time

e View-Dependent
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Observations 4D Representation (3D + time)
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Task
Non-Rigid 3D Reconstruction and View Synthesis

Appearance N Geometry <

Deformation

—Pp | Model | —p

Novel View Synthesis:
Render the scene from
unobserved viewpoints
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Time

Observations 4D Representation (3D + time)
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Task

Non-Rigid 3D Reconstruction and View Synthesis

Time

Observations

Appearance Geometry

Deformation

— Model

Model is optimized per-scene;
how to make it generalizable?

4D Representation (3D + time)
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Task

Non-Rigid 3D Reconstruction and View Synthesis

—
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Time \ K

Observations

Also, how to get a better reconstruction
when observations are sparse?

Appearance Geometry

Deformation

Model

Model is optimized per-scene;
how to make it generalizable?

4D Representation (3D + time)
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Task

Non-Rigid 3D Reconstruction and View Synthesis

Appearance Geometry

Prior
Knowledge

\

Deformation

Observations

Also, how to get a better reconstruction
when observations are sparse?

Model

Model is optimized per-scene;
how to make it generalizable?

—

4D Representation (3D + time)
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Task

Non-Rigid 3D Reconstruction and View Synthesis

Prior
Knowledge

\

3D Shape/Appearance Priors

3D Deformation/Flow Priors

Articulation Priors

2D Correspondence Priors
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Task

Non-Rigid 3D Reconstruction and View Synthesis

Time

Observations

Appearance N Geometry
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Prior )
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4D Representation (3D + time)
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Task
Non-Rigid 3D Reconstruction and View Synthesis

Let’s look at the trends
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Trends

1. Speed and Quality Advancements

2. Handling of Large Deformations / Long-Term 3D Correspondences

3. Modelling Articulated Motion for General Objects
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Trends

1. Speed and Quality Advancements
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Speed and Quality Advancements
Seminal Works in 3D Rigid Reconstruction and View Synthesis

Quality or speed advancements in non-rigid setting follows the advancements in rigid setting:

5D Input Output —
Position Duoctlon Color - Density j
. T 1 /

1 Adaptive
8 5 30 Gaussians Density Control

NeRF Instant-NGP 3D Gaussian Splatting

=

O00000O*
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000000

NG AW = O NG R W= O
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Speed and Quality Advancements
Seminal Works in 3D Rigid Reconstruction and View Synthesis

Quality or speed advancements in non-rigid setting follows the advancements in rigid setting:

5D Input Output —
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NeRF Instant-NGP 3D Gaussian Splatting

Let’s see how these rigid setting advancements have been
adapted to the non-rigid setting in recent years
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Speed and Quality Advancements
Photo-realistic View Synthesis: Neural Scene Representations

5D Input Output Volume
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Speed and Quality Advancements
Photo-realistic View Synthesis: Neural Scene Representations

5D Input Output
Position + Direction Color + Density
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Speed and Quality Advancements
Photo-realistic View Synthesis: Neural Scene Representations
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Speed and Quality Advancements
Photo-realistic View Synthesis: Neural Scene Representations

bl put Output Global Canonical Model
osition + Direction ["][l Color + Density
(x320.0) ||l || |- (RGBs) ,
Vi, at
gl Y RN e— e > (e Warps

— o e e e mm e M M e M M M e Mmm M M e mm M M e e e e ]

I Space-Time NeRF I

Individual Frame

Nerfies

: © Eurographics Conference 2024. All rights preserved.
Neural Scene Flow Fields 54



Speed and Quality Advancements
Photo-realistic View Synthesis: Neural Scene Representations

Further advancements mostly with hybrid representations

A few advancements were also seen in quality with purely
neural scene representations
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Speed and Quality Advancements
Photo-realistic View Synthesis: Neural Scene Representations
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Speed and Quality Advancements
Photo-realistic View Synthesis: Neural Scene Representations

I Deformable NeRF I <

5D Input Output
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Speed and Quality Advancements
High-fidelity Geometry: Neural Scene Representations

Dynamic Neural Surface
Reconstruction
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Speed and Quality Advancements
High-fidelity Geometry: Neural Scene Representations

Dynamic Neural Surface
Reconstruction

RGB with mask and mesh proxy e RGBonly

Rendered color Rendered normal

Input Input  Novel 4DRegSDF
Image View  View
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Speed and Quality Advancements
High-fidelity Geometry: Neural Scene Representations

Rendered color

= |

Dynamic Neural Surface
Reconstruction

e RGBonly

Rendered normal

4DRegSDF

: enforce local rigidity

> (% g

— AR
Total variation of curvature

Z( &‘ —> k‘ ) : limit uncessary kinks

Absolute curvature of SDF

Z( &o —> &o ) : make gradient of SDF valid

Eikonal loss
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Speed and Quality Advancements

High-fidelity Geometry: Neural Scene Representations ﬁw

e Adopts photorealistic reconstruction and view synthesis from rigid setting
e Also adopts the slow rendering and training speed

e Early methods cannot handle long sequences or novel views that are
significantly different than training views

© Eurographics Conference 2024. All rights preserved.
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Speed and Quality Advancements
3D Scene Representations

Point Cloud

Voxel Grid
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Speed and Quality Advancements
3D Scene Representations
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Speed and Quality Advancements
3D Scene Representations

Point Cloud

Voxel Grid
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MLP Transformer

Octree Tensor Factorization
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x € R? are the 3D coordinates

(x,H; 0),
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Speed and Quality Advancements
3D Scene Representations

: " Discrete I Hybrid I Continuous ,

8 Ry vy, I | ==
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Point Cloud Mesh Multiplane Images Images | Neural Features | MLP Transformer

ke
L

Voxel Grid

d

x € R? are the 3D coordinates

y =p(x,H; 9),

g © Eurographics Conference 2024. All rights preserved.
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Speed and Quality Advancements
3D Scene Representations

. s Discrete
. ‘ . . \
Point Cloud Mesh Multiplane Images Images

Fet
o

d

.Lg.;..

Continuous

¢
t

_> _>
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:][,:

MLP Transformer

x € R? are the 3D coordinates

y =p(x,H; 9),

‘H are optional additional inputs (e.g. view direction)

O storesthe scene information
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Speed and Quality Advancements
3D Scene Representations

s Discrete I Hybrid I Continuous ,
C I l =
ﬁﬁh A - - ~1ll-

s ° .. E | E ] o =
Point Cloud Mesh Multiplane Images Images | Neural Features | MLP Transformer
Voxel Gr|d Hash Grid Octree Tensor Factorization 1

x € R? are the 3D coordinates
‘H are optional additional inputs (e.g. view direction)

Yy = IO(X7 7_[; e) ? @ storesthe sceneinformation

y represents any scene property (e.g. geometry, colour, deformation, etc.)
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Speed and Quality Advancements
3D Scene Representations

Continuous <
=

i | | | e
EEgE=

MLP Transformer

O isstoredin network parameters

y=pXx,H;0),

P isan MLP or Transformer
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Speed and Quality Advancements
3D Scene Representations

Continuous ‘
S=es
MLP Transformer
‘ Slow to train and render because of global scene parameterization ‘

O isstoredin network parameters

y=pXx,H;0),

P isan MLP or Transformer
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Speed and Quality Advancements
3D Scene Representations

Discrete

k2

Point Cloud Mesh Multiplane Images Images

Acceleration |

‘ @ P 8

Voxel Grid Hash Grid Octree Tensor Factorization 1

y =p(x,H; 9),

O isstored atdiscretely defined nodes

P interpolates the scene information for any continuous 3D point
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Speed and Quality Advancements
3D Scene Representations

Discrete I Hybrid I Continuous

* I I ‘
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Point Cloud Mesh Multiplane Images Images | Neural Features | MLP Transformer
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O areneural features stored in a discrete structure

y =p(x,H; 9),

P defines interpolation of discrete information followed by
network query
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Speed and Quality Advancements
3D Scene Representations

-'.g-;.

Speed up by disentanglement and localization of neural parameters in discrete structures

O areneural features stored in a discrete structure

y=px,H;0),

P defines interpolation of discrete information followed by
network query
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Speed and Quality Advancements
Seminal Hybrid Scene Representations for Rigid Setting
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Speed and Quality Advancements
Faster Training and Rendering: Hybrid Neural Scene Representations
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Speed and Quality Advancements
Faster Training and Rendering: Hybrid Neural Scene Representations
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Speed and Quality Advancements
Faster Training and Rendering: Hybrid Neural Scene Representations
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Speed and Quality Advancements
Faster Training and Rendering: Hybrid Neural Scene Representations
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Reference images

Dynamic Neural Surface
Reconstruction
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e Online per-frame optimization from
multiple views

e Speeds up surface reconstruction while
retaining high-quality

Novel view synthesis  Geometry reconstruction
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Speed and Quality Advancements
Faster Training and Rendering: Hybrid Neural Scene Representations
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Speed and Quality Advancements
Faster Training and Rendering: Hybrid Neural Scene Representations

I Space-Time Planar NeRF I <

Compaction of voxel grid
for memory efficiency
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Speed and Quality Advancements
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Faster Training and Rendering: Hybrid Neural Scene Representations /V

fxyzt)

4D Sequence

3 (fx)

m3(f2)

T3 (fy)

I Space-Time Planar NeRF I

Coarse-to-fine hierarchical decomposition
policy

Results in 9 planes which can model finer details

High-fidelity reconstruction from sparse
multi-views

© Eurographics Conference 2024. All rights preserved.

/
/

/
/
/

///
/

80



Speed and Quality Advancements
High-quality Rendering: Hybrid Neural Scene Representations

© Eurographics Conference 2024. All rights preserved.
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Speed and Quality Advancements
High-quality Rendering: Hybrid Neural Scene Representations

I Image-based Dynamic NeRF I <

Input View

e Image features for fine appearance details

e Aggregated from multiple views

CNN Encoder Target View

e High-resolution rendering possible with high

Image-based (pixelNeRF) resolution training images, upto 4K!
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Rendering
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o= Repreceriat £=]1C-Cl3
Multi-view Videos Multi-view Image-based Appearance Representation 2

4K4D

Im4D . .
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Speed and Quality Advancements

High-quality Rendering: Hybrid Neural Scene Representations Lj;V

e Speed-up by disentanglement and localization of neural parameters in discrete structures
e Reconstruction time down from hours to minutes

e Fastrendering times

e Higher resolution renders possible with fine appearance details
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Speed and Quality Advancements

High-quality Rendering: Hybrid Neural Scene Representations Lj#ﬁt %

e Speed-up by disentanglement and localization of neural parameters in discrete structures
e Reconstruction time down from hours to minutes

e Fastrendering times

e Higher resolution renders possible with fine appearance details

Rendering is fast for hybrid representations but seldom real-time, which brings us
to the next major breakthrough!
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Speed and Quality Advancements
Real-time Rendering: 3D Gaussian Splatting

SfM Points

—

Initialization

Camera

e
e

3D Gaussians

Projection

N

Adaptive
Density Control

3D Gaussian Splatting

N
/

Differentiable
Tile Rasterizer

Image

— Operation Flow

—p Gradient Flow
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Speed and Quality Advancements
Real-time Rendering: 3D Gaussian Splatting

SfM Points

—

Initialization

Camera

-
—

3D Gaussians

Projection

!

Adaptive
Density Control

3D Gaussian Splatting

\

Differentiable
Tile Rasterizer

Image

—» Operation Flow

—p Gradient Flow

e Each 3D Gaussian stores position, rotation, scale and spherical harmonics coefficients,
which are optimized from images using a fast tile-based rasterizer
e Much faster than volume rendering, enabling real-time performance
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Speed and Quality Advancements
Real-time Rendering: 3D Gaussian Splatting

Camera

Projection

~zeo

e

3D Gaussians

/M

Adaptive
Density Control

3D Gaussian Splatting

— o e M e e M M M e M M M e M M M e e e e e ]
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Speed and Quality Advancements |
Real-time Rendering: 3D Gaussian Splatting <

e Upto 80 FPS rendering speed

Camera | — : Deformable 3D Gaussian Splatting

Projection [
- :

: e Deform position, rotation and scale of

AT Bergcioarre Adaptive : canonical Gaussians to fit each time-step

Density Control 1
|
|
|

3D Gaussian Splatting

X, Y, z: Position of 3D Gaussians
t: Timestamp
.......................................................................................... Y Ax, Ay, Az: Deformation of Position Deformed 3D
xt yt zt ™. Ar, As: Deformation of Covariance ~Gaussians G’

5 Position “
— Head ¢, Ax, Ay, Az
. ILP | << i Splatting
3D Gaussians G ‘ Rotation A
Head gy =7 .
. Scaling A ¢ <
» £ & Head @
Spatial-Temporal Structure Encoder Multi-head Gaussian Deformation Decoder
4D-GS
/ ‘—,7 Deformable3DGS
/
(?;\\\\
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Speed and Quality Advancements
Real-time Rendering: 3D Gaussian Splatting

Camera —

<
&./

3D Gaussians

Projection

Density Control

Adaptive

3D Gaussian Splatting

— e e e e e e e e e e e S e e e M e e e e e

Temporal
Opacity

Polynomial
Trajectory

Polynomial
Rotation

Time

Features D:D El:lj

(a) Spacetime Gaussians

Space-time 3D Gaussian Splatting I

e Extra 1D Gaussian added to 3D Gaussians

e Featuresinstead of SHs, with an MLP to convert them into an
RGB image after splatting

e 8Kvideorendering at 66 FPS!

(b) Feature Splatting and Rendering

SpacetimeGaussians
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Speed and Quality Advancements
Real-time Rendering: 3D Gaussian Splatting

Streamable 3D Gaussian Splatting I <

3D Gaussian Splatting e Additional frame-specific Gaussian spawning

Camera | —p :
/ Projection |
|
-2 / I
I L] L] o (] L]
l, \ | e Online Reconstruction from multi-view videos
|
. Adaptive | . . . .
30y Gaussians Density Control | e Multi-resolution neural hash-grid as a cache for transformation
|
|
|
|

— o e M e e M M M e M M M e M M M e e e e e ]

3DGStream —~ W

Stage 1 Stage 2 F 1 ] e
Stage 1 Stage 2

i 1 I

Frames att=1 |Renderings at t=1 \

Y eo000000

""F L © Eurographics Conference 2024. All rights preserved.
i

90



Speed and Quality Advancements
Real-time Rendering: 3D Gaussian Splatting

Camera

Streamable 3D Gaussian Splatting I <

Projection

-Te

X

3D Gaussians

e Online Reconstruction from multi-view videos

!

Adaptive
Density Control

e Multi-resolution neural hash-grid as a cache for transformation

3D Gaussian Splatting e Additional frame-specific Gaussian spawning

— e e e e e e e e e e e S e e e M e e e e e

. Reconstructionin 12
3DGStream ~ seconds with up to 200 FPS

Stage1  Stage2 IR rendering speed!
Stage 1 Stage 2 )

i 1 I

Frames att=1 |Renderings at t=1 \

i 0000000
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Speed and Quality Advancements
Real-time Rendering: 3D Gaussian Splatting

Camera

-Te

X

3D Gaussians

3D Gaussian Splatting

!

Projection

Adaptive
Density Control

— e e e e e e e e e e e S e e e M e e e e e

Even though it is getting close, real-time reconstruction
is still only possible using classical representations
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Speed and Quality Advancements
Real-time Reconstruction: Classical Representations

e Registers RGB-D frames into a canonical TSDF grid <
e Uses amesh-based deformation graph to track deformation of canonical frame to each timestep

e Pre-trains a GNN to predict motion of occluded regions from the visible motion

e Geometryonly!

Live Demo

- ¥y Y N E— 50150 o

2D Optical Flow 3Df§/9¢t:)lMI(’mon 4 4 % AI Complete Node Motion
of Visible Part i

Reconstructed
Geometry

Input Color Image

,'ﬂ:‘{\,‘ Q A B8N 12 :
Depth i ot 4G
\ Graph Neural Network .}. v /
Input RGB-D Pair ‘:."" LSTM-based Temporal Motion Encoding C:)nﬁdcncc
Complete Node Graph

Occlusion Fusion
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Trends

5 minute break!
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Trends

2. Handling of Large Deformations / Long-Term 3D Correspondences
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

<

Global Canonical Model Deformation Basis Canonical First Frame Individual Frame
Canonical . ,
Basis Local Trajectory
Scene ‘ lﬂ . 7 Yy -0
Rep. .7 > ] ; ............. .}.Narps IR Vectors “. s i Elow
AN Fields
Live & ¥ Y u , | W wa e U O T A
Rep. : : : — : : : —p ; : : — : : : —
Time Time Time Time
Time Global Time Local

Design choice determines the trade-off between time consistency and large motion modelling!
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

¢

Global Canonical Model Deformation Basis Canonical First Frame Individual Frame
Canonical . .
Basis Local Trajectory
Scene ‘ﬁ\. e 1’ ........... .
Rep. .7 T .}.Narps I Vectors .. o i S Flow
X Fields
Live & ¥ Y 4 / | X isa ea N e L
Rep. - : : — : : : —p : : : — : : : —f
Time Time Time Time
Time Global Time Local

Time consistency enables
applications like 3D editing and
virtual asset creation
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

Global Canonical Model

<

Deformation Basis Canonical First Frame Individual Frame

Canonical ~— : .
. Basis Local Trajectory
Scene ln , C;( D . 4B "ﬂ 3 O
Rep. . PR Sy Watps Czny Vectors ‘., «®" S0 Flow
Fields
Live & g 4 LT . ¥ kva i Y i VI
Scene ¥X LN, = T ~ & . Lwl
Rep. — : : —> : : : —> : : . —> ! : : —>
Time Time Time Time
Time Global Time Local
Time consistency enables But we don’t want to
applications like 3D editing and compromise on motion
virtual asset creation modelling
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

<

Global Canonical Model Individual Frame
Canonical )
Scene . :ﬂ: W Lowc“:il'm"l.':éjlectofy
Rep. . A om arps el .07 Flow
Fields
Live £ g ] "y \ £
Rep. : : : — : : : —
Time Time
Time Global Time Local
e Global Temporal Correspondences e Optional and local
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

<

Global Canonical Model Individual Frame
Canonical :
Scene N zﬁ: W L?ff.!_.T:?JeCtOW
Rep. . s JVarps w® O o7 Flow
Fields
Live & ¥ 4 g | £
Scene ¥ o € = w w W =
Rep. — : : —> : : : —>
Time Time
Time Global Time Local
e Global Temporal Correspondences e Optional and local
e Restricted Motion Modelling e Empirically larger
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

<

Global Canonical Model Individual Frame
Canonical :
Scene . :ﬁ‘ W LocflT:aj Setony
Rep. .7 e T YValpE w® ..o Flow
Field
Live & ¥ 4 "4 ‘ £
Scene ¥ W € = W w € =
Rep. — : : — : ; . —
Time Time
Time Global Time Local
e Global Temporal Correspondences e Optional and local
e Restricted Motion Modelling e Empirically larger
e Difficult; cannot handle discontinuities ~Topology Changes e Straightforward
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

<

Global Canonical Model Individual Frame
Canonical .
Scene X /ﬂ‘ W Lowcilw"l.':?jectory
Rep_ ...................... ¢ rt< ............ arps s 0.7 Flow
Field
Live w0 M. Y u T
Scene X¥¥ W, ™ KN Yy w =
Rep. : : : —p> : : : —
Time Time
Time Global Time Local
e Global Temporal Correspondences e Optional and local
e Restricted Motion Modelling e Empirically larger
e Difficult; cannot handle discontinuities Topology Changes e Straightforward
e Difficult; canonical model is Appearance Changes e Straightforward
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

Deformation Basis Canonical First Frame
Canonical -
S(izqene @ Vectors > <
°p. PR
Live , | | B i csbe
Scene W o € w € =
Rep. ; ; " —> . L . —>
Time Time

Trade-offs to balance the best of both worlds!
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

<

Global Canonical Model Deformation Basis Canonical First Frame Individual Frame
Canonical . ,
”\ Basis Local Trajectory
Scene , 'ﬂ ......

Rep_ ..................... > Sk P Wa rps T:ﬁ Vectors ‘_ L & ...,._‘ ..... g Flow

Live & ¥ 4 "u B | T . o
Rep. - : : — : : : — : : : — : : : —f
Time Time Time Time
Time Global Time Local

Let’s look at some improvements for each type of
modelling in recent years
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

Forward Flow Modelling: <

e Deformations are modelled from canonical to live frame for smooth and continuous
motion model learning

e Enabled by a voxel-based canonical field for discrete forward warping

e Give point trajectories for each point in canonical space

|
.
11
L1

1

| 9 © 0 02 04 06 08 1 t 0 02 04 06 0.8
) (d) Backward Flow of p (e) Forward Flow of q

ForwardFlowDNeRF

Time Global Global Canonical Model Time Local
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

Time-Consistent Canonical Modelling:

e Builds a canonical model from the first frame of multiview
videos and fixes it

e Online reconstruction of next timesteps

e Hard constraint on time-consistency of canonical model,
thus improving temporal correspondences while handling
large motion through coarse-to-fine deformations

f t f , =1
/\coarscﬁnorm.w(a(}) /\ﬁncﬁnornl.w(()f) I¢!(r)

A5 0%)
A’_(.;H('v) £444 .8 B¢ : é o

4 .u‘
«

. {r(s) s 5 60T, [y (de(r(5:); 6007 1

Coarse Deformations d..(-; 67) Fine Deformations d(-; Hf,) Canonical Model m Volumetric Rendering SceNerFlow

Time Global Global Canonical Model Time Local
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

Canonical Feature Embeddings: <

e Shares canonical space over multiple videos of an object
e 2D DensePose features are distilled into the 3D canonical model as embeddings

e Enforcement of 3D canonical embeddings to match 2D DensePose features in each
corresponding view improves long-term registration
1MLP
P(X*)e R

2 [ ()
BANMo i Pose 2 { }""\/ : Canonical Space
7 Fine-tuned Fine-tuned
Bone >

: ] g . ~ DensePose CNN <E E» DensePose CNN
<
Casual Videos of An Object Canonical Space Canonical Embeddings 21”‘ ) ER® g (x*) 1M|_i

Image Space at 11 Image Space at 2

Color: Skinning weights  Pgge 1

BANMO

Time Global Global Canonical Model Time Local
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

Decomposed Motion Modelling:

e Decomposes object motion into root pose and residual motion
e Simpler motion modelling allows it to scale to longer scenes

e Takes RGB-D input and needs root-pose initialization with PoseNet

Input RGBD 3D Scene
Video Reconstruction

Total-Recon

Time Global Global Canonical Model Time Local
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

Decomposed Motion Modelling:

e Decomposes object motion into root pose and residual motion
e Simpler motion modelling allows it to scale to longer scenes

e Takes RGB-D input and needs root-pose initialization with PoseNet

Input RGBD 3D Scene
Video Reconstruction

.' 1‘»,/1/“:/ -

Total-Recon

Scales up to minute-long RGB-D
videos with large motion!

Time Global Global Canonical Model Time Local
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

Low-rank Deformation Template: <

e Shared point template for each frame, automatically giving temporal correspondences
e Generated by low-rank basis, thus forcing information sharing

e Models complex motion while providing regularization for challenging novel views

Novel Views

Stage 1

Neural Parametric Gaussians

Time Local
© Eurographics Conference 2024. All rights preserved.

Time Global Deformation Basis

110



Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

Per-frame Canonical Model Optimization:

e Rotation and position of canonical Gaussians
are optimized for each timestep from last
timestep, giving dense 6-DOF trajectories

e Models long-range motion but trajectories
candrift over time

e Multi-view supervision required and surface
rigidity losses introduced to tackle this

Dyn3DGS

Time Global Canonical First Frame Time Local
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

Motion Trajectory Modelling: <

e Per-frame hybrid representation which takes in image features aggregated over time

e Motion trajectories allows information aggregation from a greater temporal neighbourhood

D Source View r ) ‘
:l Target View {fjlj = N(Z)}

:_-___; Rendered View

SR

(ci(t), oi(t))
Tranl:f?;mer :> |—,

ray distance

Volume

S Rendering

DyniBaR

Time Global Individual Frame Time Local
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Large Motion vs. Long-term 3D Correspondences
Spatio-Temporal Modelling

Motion Trajectory Modelling: <

e Per-frame hybrid representation which takes in image features aggregated over time
e Motion trajectories allows information aggregation from a greater temporal neighbourhood

e Improves time consistency while modelling free-form motion

DyniBaR

Time Global Individual Frame Time Local
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Trends

2. Handling of Large Deformations / Long-Term 3D Correspondences
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Trends

3. Modelling Articulated Motion for General Objects
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Modelling General Articulated Motion

Deformations of humans, animals, and many other articulated objects can be represented and <
controlled by an underlying skeleton:

- v
.'4$~
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Modelling General Articulated Motion

Deformations of humans, animals, and many other articulated objects can be represented and <
controlled by an underlying skeleton:

e Skeletons allow reposing of objects to unseen
poses
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Modelling General Articulated Motion

Deformations of humans, animals, and many other articulated objects can be represented and <
controlled by an underlying skeleton:

e Skeletons allow reposing of objects to unseen
poses

e If we know how an object category articulates, we
can use that information as prior to estimate
motion of new sequences of that object
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Modelling General Articulated Motion

Deformations of humans, animals, and many other articulated objects can be represented and
controlled by an underlying skeleton:

Skeletons allow reposing of objects to unseen
poses

If we know how an object category articulates, we
can use that information as prior to estimate
motion of new sequences of that object

Category-level object templates are available
mostly for human categories (e.g. SMPL) which are
obtained from expensive 3D data.
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Modelling General Articulated Motion

Deformations of humans, animals, and many other articulated objects can be represented and
controlled by an underlying skeleton:

Skeletons allow reposing of objects to unseen
poses

If we know how an object category articulates, we
can use that information as prior to estimate
motion of new sequences of that object

Category-level object templates are available
mostly for human categories (e.g. SMPL) which are
obtained from expensive 3D data.

How can we obtain them for general object
categories where such data is not available?
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Modelling General Articulated Motion

Deformations of humans, animals, and many other articulated objects can be represented and
controlled by an underlying skeleton:

Skeletons allow reposing of objects to unseen
poses

If we know how an object category articulates, we
can use that information as prior to estimate
motion of new sequences of that object

Category-level object templates are available
mostly for human categories (e.g. SMPL) which are
obtained from expensive 3D data.

How can we obtain them for general object
categories where such data is not available?

From RGB videos!

© Eurographics Conference 2024. All rights preserved.

121



Modelling General Articulated Motion
Self-Supervised Part Discovery for Reposing
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Modelling General Articulated Motion
Self-Supervised Part Discovery for Reposing

Motion-based grouping:

e Models both backward and forward motion with
feature grids

e Features from forward motion are grouped into slots
using an attention mechanism

e Similar motion = sameslot = same part

e Discovered parts can be skeletonized and reposed

Eulerian Volume Vg Eulerian Motion Modeling Canonical Volume V.,

‘SE fEm DE X 1 z

' :|—| > »Rp, t; —( é —>x
t—s i
Cycle
Consistency

MovingParts

T —t o
X R;1,—t, < - < e % Al Specffic uil | [
|| «— § Particle
Xc D, fim &L P — Il
T . : —s e
Lagrangian Motion Modeling Lagrangian Volume V,
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Modelling General Articulated Motion
Self-Supervised Part Discovery for Reposing

Unsupervised Part Prediction:
e Represent parts by ellipsoids in 3D

e Eachellipsoid has a rotation and a position

e Optimize the per-frame ellipsoids prediction MLP

from multi-view videos
e Repose using discovered ellipsoids

&

—_—

(a) Sparse multi-view video

/.
Joint Cand. £

RGB Ellipsoids Center t;
(- - K- 28
Appearance New pose Appearance
_
- -
: } !
Structure Parts Structure Parts

(b) Frame-wise Reconstruction (¢) Re-posing

Watch-it-Move
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Modelling General Articulated Motion
Skeleton Discovery for Reposing

Morphological Operations: E;
e Point-based canonical representation U -
extracted from a dynamic NeRF backbone =

e Medial Axis Transform used to extract
skeleton from canonical points

b) Simplified
Kinematic Model

e Linear blend skinning-based model to learn
forward dynamics from observations

e Repose using the learnt template

e Also fast because of the point-based hybrid 22
representation 2%
e 2
o
a) Point Cloud Extraction b) Kinematic Neural Point Cloud Training ,’/p‘;_ - Qp Rl'l

7 @
’/

e

Pose Regressor

:_>III — > (R, t} A :

&

. ‘1_7

innii b I

: : Klnematcharp ] S

& g & ) L\;Q\

Dense Sampling ~ NeRF Feature ~ Learned Skinning  Extracted ' © Eurographics Conference 2024. All rights preserved. 12
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Point Cloud Weights Skeleton |
Rendered Image and Weights

""" "Colorand Density

Regressor Uzolas et al.




Modelling General Articulated Motion

e Previous methods are trained on a single video sequence

e Can we utilize multiple videos of the same object to build an
instance-level model?
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Modelling General Articulated Motion
Modelling Articulations with Neural Bones

e Canonical space is shared between videos <

oy . . Pose MLP
e Bone positions and transforms are estimated per-frame using an . Aj”c

auto-decoded MLP y R
- -+ O\\
e Articulated using volumetric skinning p I .
T o
Model captures the articulations across videos, Autodecoder
providing better regularization

Bone =

Color: Skinning weights  Pgge 1 ' ’ Ty
S .
Pose 2 ) [
.‘ ’ ' \\.”\/I "\Vl

Casual Videos of An Object Canonical Space View 1 View 2 Canonical Embeddings

BANMO
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Modelling General Articulated Motion
Modelling Articulations with Neural Bones

e Use optimized pose embeddings from a driving video for another <
structurally similar geometry model for motion retargeting!

Driving Sequence Target Geometry

BANMO
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Modelling General Articulated Motion

A category of objects articulates in the same
way (e.g. different breeds of cats)

Can we learn category-level templates from
videos to regularize motion even further and
use it as a prior for instances?
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NN

Modelling General Articulated Motion

A category of objects articulates in the same
way (e.g. different breeds of cats)

Can we learn category-level templates from
videos to regularize motion even further and
use it as a prior for instances?

Yes, but we need to capture shape variations
between category instances as well!
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Modelling General Articulated Motion
Category-level Modelling from Depth Videos

e Use auto-decoders to model both shape and pose variations <

e Shape embeddings can capture category-level variations
while pose embeddings capture instance articulations

e Optimize shape and then pose at test-time

Shape MLP d /ﬂ/ﬂ‘\—_\ Pose MLP
- - -

Ls
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Modelling General Articulated Motion
Category-level Modelling from Depth Videos

e Use auto-decoders to model both shape and pose variations

e Shape embeddings can capture category-level variations
while pose embeddings capture instance articulations Learned from depth sequences

Canwedo it from RGB videos?

e Optimize shape and then pose at test-time

Shape MLP d /i—\ Pose MLP A
s = Lp

7 Az
S d o.
— - -+ -»> U~ =
p
xr o
Zr o -
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Modelling General Articulated Motion
Category-level Modelling from RGB Videos

e Learncategory-level shape and skeleton model T Color: Skinning weights <
from internet videos of a category — P
. . . Differentiabl B
e Predict the instance-level bone locations for IILLELTXYRTY ;. - L
. , o W e feX
- 32 o g " \
cgtggory skeleton using an auto-decoded MLP, T Pt pam
similar to BANMO TI1JIl ' Skeleton
e Capture instance-level articulations using BANM(Q  Intemet Videos ofra Category Canonigalspase
Tsphynx cat
==,

Morphology

t=0s t=2s
Articulations & Deformations

RAC
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Modelling General Articulated Motion
Category-level Modelling from RGB Videos

e Learncategory-level shape and skeleton model T Color: Skinning weights <
from internet videos of a category — P
. . . Differentiabl ey
e Predict the instance-level bone locations for IILELELEXYREY . - L
i - ,‘ ; A,,( ~ Wi g
c.atggory skeleton using an auto-decoded MLP, T Pt ¥
similar to BANMO TI1JIl ' Skeleton
e Capture instance-level articulations using BANM(Q  nternet Videos of a Category Cangnical Space
Tsphynx cat ,
. = )
Qn 7 % -
X f‘?i z
° L] L] o
Can we do it from image collections, = el _
which are more commonly available S« :?
for general categories than videos? W
t=0s t=2s

Articulations & Deformations

RAC
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Modelling General Articulated Motion
Category-level Modelling from Image Collections

e Shape, articulation, pose and texture are directly predicted with separate decoders from an

encoded image

e Category-level prior learned by shape and articulation decoders

e Enables prediction from single image at test-time

d)’l m

| Encoder Net

Input Image /

Initial Sphere

A=

{W, m}

ffr,;_‘

Articulated

SAOR

“ Deformation Net \ ;Artxculatlon Net é g Texture Net

T € RHXH x3

Textured

1 Render I1 >
\_ﬁj Pose Net ‘

P={r,t}

.

Posed

Output Image /
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Modelling General Articulated Motion
Category-level Modelling from Image Collections

e Per-frame video reconstruction <

SAOR
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Trends

3. Modelling Articulated Motion for General Objects
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Trends

Non-rigid 3D reconstruction is far from solved! ‘
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Remaining Challenges and Future Directions
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Remaining Challenges and Future Directions

Intrinsic Decomposition and Relighting <

e Current methods for general scenes do not
estimate materials and lighting

e Requiredto correctly relight objects in new
environments

Posed Multi-View Images
under an Unknown Illumination

Real-World Capture

NeRFactor
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Remaining Challenges and Future Directions

Intrinsic Decomposition and Relighting

e Current methods for general scenes do not
estimate materials and lighting

e Requiredto correctly relight objects in new
environments

Normals Visibility
) .‘6’. ) i

g

Posed Multi-View Images
under an Unknown Illumination

Real-World Capture

NeRFactor

Faster Scene Representations

e Gaussian Splatting has introduced real-time
rendering with photorealistic appearance

e Photorealistic reconstruction still requires offline
training
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Remaining Challenges and Future Directions

Reliable Camera Pose Estimation <

e Current view synthesis methods rely on static
Structure-from-Motion for camera poses

e Noisy when large and complex motions are present
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Remaining Challenges and Future Directions

Reliable Camera Pose Estimation Multi-Object Interaction <
e Current view synthesis methods rely on static e |Interaction between objects is not explicitly
Structure-from-Motion for camera poses modelled by current methods for general objects
e Noisy when large and complex motions are present e Useful to enforce the correct dynamics and

constraints
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Remaining Challenges and Future Directions

Reconstruction from Sparse Casual Captures <

e Most methods evaluate on data with multi-view
cues

e Reconstruction quality degrades for sparse, realistic
monocular captures

Slow cam. ~~ " /47)
Saens U Slow scene — mm ~ ©
Strict Effective Strict
monocular multi-view multi-view
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Remaining Challenges and Future Directions

Reconstruction from Sparse Casual Captures

e Most methods evaluate on data with multi-view
cues

e Reconstruction quality degrades for sparse, realistic
monocular captures

Slow cam. ~~ " Fast cam. /m}t
Fast scene —0 Slow scene — 00
‘ N J/ )
Strict Effective Strict
monocular multi-view multi-view

Long-Term Dense Correspondences

Recent works allow establishing 3D
correspondences over time on lab-captured data

Results not satisfactory for general real scenes with
large and complex motion
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Remaining Challenges and Future Directions

Generalizable Modeling and Generative Priors

e Text-to-image and text-to-video 2D diffusion
models have been used as priors for 3D non-rigid
scene generators

e We can see these powerful generative models
being utilized for the non-rigid reconstruction task
as well
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146



EUROGRAPHICS
CONFERENCE 2024 °
More Information:

_Q j https://razayunus.github.io/non-rigid-star

a2\

Contact Information:

https://razayunus.github.io

Thanks to all authors for their contribution to the STAR!
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