Rakshith Shetty (PhD Student)

MSc Rakshith Shetty

Adresse
Max-Planck-Institut für Informatik
Saarland Informatics Campus
Campus
Standort
-
Telefon
+49 681 9325 2000
Fax
+49 681 9325 2099

Publications

2020
Towards Causal VQA: Revealing and Reducing Spurious Correlations by Invariant and Covariant Semantic Editing
V. Agarwal, R. Shetty and M. Fritz
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020), 2020
Diverse and Relevant Visual Storytelling with Scene Graph Embeddings
X. Hong, R. Shetty, A. Sayeed, K. Mehra, V. Demberg and B. Schiele
Proceedings of the 24th Conference on Computational Natural Language Learning (CoNLL 2020), 2020
Towards Automated Testing and Robustification by Semantic Adversarial Data Generation
R. Shetty, M. Fritz and B. Schiele
Computer Vision -- ECCV 2020, 2020
2019
Not Using the Car to See the Sidewalk: Quantifying and Controlling the Effects of Context in Classification and Segmentation
R. Shetty, B. Schiele and M. Fritz
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019), 2019
2018
Answering Visual What-If Questions: From Actions to Predicted Scene Descriptions
M. Wagner, H. Basevi, R. Shetty, W. Li, M. Malinowski, M. Fritz and A. Leonardis
Computer Vision - ECCV 2018 Workshops, 2018
Image and Video Captioning with Augmented Neural Architectures
R. Shetty, H. R. Tavakoli and J. Laaksonen
IEEE MultiMedia, Volume 25, Number 2, 2018
Adversarial Scene Editing: Automatic Object Removal from Weak Supervision
R. Shetty, M. Fritz and B. Schiele
Advances in Neural Information Processing Systems 31, 2018
Abstract
While great progress has been made recently in automatic image manipulation, it has been limited to object centric images like faces or structured scene datasets. In this work, we take a step towards general scene-level image editing by developing an automatic interaction-free object removal model. Our model learns to find and remove objects from general scene images using image-level labels and unpaired data in a generative adversarial network (GAN) framework. We achieve this with two key contributions: a two-stage editor architecture consisting of a mask generator and image in-painter that co-operate to remove objects, and a novel GAN based prior for the mask generator that allows us to flexibly incorporate knowledge about object shapes. We experimentally show on two datasets that our method effectively removes a wide variety of objects using weak supervision only
A4NT: Author Attribute Anonymity by Adversarial Training of Neural Machine Translation
R. Shetty, B. Schiele and M. Fritz
Proceedings of the 27th USENIX Security Symposium, 2018
2017
Speaking the Same Language: Matching Machine to Human Captions by Adversarial Training
R. Shetty, M. Rohrbach, L. A. Hendricks, M. Fritz and B. Schiele
IEEE International Conference on Computer Vision (ICCV 2017), 2017
Paying Attention to Descriptions Generated by Image Captioning Models
H. R. Tavakoli, R. Shetty, A. Borji and J. Laaksonen
IEEE International Conference on Computer Vision (ICCV 2017), 2017