Thorben Krüger

Thorben Krüger

Adresse
Max-Planck-Institut für Informatik
Saarland Informatics Campus
Campus E1 4
66123 Saarbrücken
Standort
E1 4 - 508
Telefon
+49 681 9325 3515
Fax
+49 681 9325 3599

Personal Information

Hobbies & Interests

  • Fixed-wing Unmanned Aerial Vehicles (UAVs)
  • Space Exploriation
  • Sustainable Economics
  • Sailing
  • Bouldering
  • Literature

Publications

2018
Palmer, M., Krüger, T., Chandrasekaran, B., & Feldmann, A. (2018a). The QUIC Fix for Optimal Video Streaming. Retrieved from http://arxiv.org/abs/1809.10270
(arXiv: 1809.10270)
Abstract
Within a few years of its introduction, QUIC has gained traction: a significant chunk of traffic is now delivered over QUIC. The networking community is actively engaged in debating the fairness, performance, and applicability of QUIC for various use cases, but these debates are centered around a narrow, common theme: how does the new reliable transport built on top of UDP fare in different scenarios? Support for unreliable delivery in QUIC remains largely unexplored. The option for delivering content unreliably, as in a best-effort model, deserves the QUIC designers' and community's attention. We propose extending QUIC to support unreliable streams and present a simple approach for implementation. We discuss a simple use case of video streaming---an application that dominates the overall Internet traffic---that can leverage the unreliable streams and potentially bring immense benefits to network operators and content providers. To this end, we present a prototype implementation that, by using both the reliable and unreliable streams in QUIC, outperforms both TCP and QUIC in our evaluations.
Export
BibTeX
@online{Palmer_arXiv1809.10270, TITLE = {The {QUIC} Fix for Optimal Video Streaming}, AUTHOR = {Palmer, Mirko and Kr{\"u}ger, Thorben and Chandrasekaran, Balakrishnan and Feldmann, Anja}, LANGUAGE = {eng}, URL = {http://arxiv.org/abs/1809.10270}, EPRINT = {1809.10270}, EPRINTTYPE = {arXiv}, YEAR = {2018}, MARGINALMARK = {$\bullet$}, ABSTRACT = {Within a few years of its introduction, QUIC has gained traction: a significant chunk of traffic is now delivered over QUIC. The networking community is actively engaged in debating the fairness, performance, and applicability of QUIC for various use cases, but these debates are centered around a narrow, common theme: how does the new reliable transport built on top of UDP fare in different scenarios? Support for unreliable delivery in QUIC remains largely unexplored. The option for delivering content unreliably, as in a best-effort model, deserves the QUIC designers' and community's attention. We propose extending QUIC to support unreliable streams and present a simple approach for implementation. We discuss a simple use case of video streaming---an application that dominates the overall Internet traffic---that can leverage the unreliable streams and potentially bring immense benefits to network operators and content providers. To this end, we present a prototype implementation that, by using both the reliable and unreliable streams in QUIC, outperforms both TCP and QUIC in our evaluations.}, }
Endnote
%0 Report %A Palmer, Mirko %A Krüger, Thorben %A Chandrasekaran, Balakrishnan %A Feldmann, Anja %+ Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society %T The QUIC Fix for Optimal Video Streaming : %G eng %U http://hdl.handle.net/21.11116/0000-0002-BFC0-E %U http://arxiv.org/abs/1809.10270 %D 2018 %X Within a few years of its introduction, QUIC has gained traction: a significant chunk of traffic is now delivered over QUIC. The networking community is actively engaged in debating the fairness, performance, and applicability of QUIC for various use cases, but these debates are centered around a narrow, common theme: how does the new reliable transport built on top of UDP fare in different scenarios? Support for unreliable delivery in QUIC remains largely unexplored. The option for delivering content unreliably, as in a best-effort model, deserves the QUIC designers' and community's attention. We propose extending QUIC to support unreliable streams and present a simple approach for implementation. We discuss a simple use case of video streaming---an application that dominates the overall Internet traffic---that can leverage the unreliable streams and potentially bring immense benefits to network operators and content providers. To this end, we present a prototype implementation that, by using both the reliable and unreliable streams in QUIC, outperforms both TCP and QUIC in our evaluations. %K Computer Science, Networking and Internet Architecture, cs.NI
Palmer, M., Krüger, T., Chandrasekaran, B., & Feldmann, A. (2018b). The QUIC Fix for Optimal Video Streaming. In EPIQ’18, Workshop on the Evolution, Performance, and Interoperability of QUIC. Heraklion, Greece: ACM. doi:10.1145/3284850.3284857
Export
BibTeX
@inproceedings{Palmer_EPIQ18, TITLE = {The {QUIC} Fix for Optimal Video Streaming}, AUTHOR = {Palmer, Mirko and Kr{\"u}ger, Thorben and Chandrasekaran, Balakrishnan and Feldmann, Anja}, LANGUAGE = {eng}, ISBN = {978-1-4503-6082-1}, DOI = {10.1145/3284850.3284857}, PUBLISHER = {ACM}, YEAR = {2018}, MARGINALMARK = {$\bullet$}, DATE = {2018}, BOOKTITLE = {EPIQ'18, Workshop on the Evolution, Performance, and Interoperability of QUIC}, PAGES = {43--49}, ADDRESS = {Heraklion, Greece}, }
Endnote
%0 Conference Proceedings %A Palmer, Mirko %A Krüger, Thorben %A Chandrasekaran, Balakrishnan %A Feldmann, Anja %+ Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society %T The QUIC Fix for Optimal Video Streaming : %G eng %U http://hdl.handle.net/21.11116/0000-0002-BED7-6 %R 10.1145/3284850.3284857 %D 2018 %B Workshop on the Evolution, Performance, and Interoperability of QUIC %Z date of event: 2018-12-04 - 2018-12-04 %C Heraklion, Greece %B EPIQ'18 %P 43 - 49 %I ACM %@ 978-1-4503-6082-1

Research Interests

  • Path-aware Networking
  • Next-generation Internet Architecture
  • Federated Services/Applications

Teachings

At MPI/UdS:

  • DataNetworks (course administration)

At TU-Berlin:

  •  Network Protocols and Architecture (course material assistance)
  •  Introduction to Programming (course administration assistance)
  •  Routerlab (course material assistance)

At Universität Osnabrück:

  • Introduction to Computational Linguistics (teaching assistance)

Recent Positions

2018 - today:
Research Assistant at MPII, Saarbrücken


2015-2018:
Research Assistant at TU, Berlin


2013-2015:
DevOps at Netsign, Berlin

Education

  • System and Network Engineering (MSc, University of Amsterdam, 2011)
  • Cognitive Science (BSc, Universität Osnabrück, 2010)